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Abstract

Fluctuation theorems (FTs), such as the Crooks or Jarzynski equalities (JEs), have become an
important tool in single-molecule biophysics where they allow experimentalists to exploit thermal
fluctuations and measure free-energy differences from non-equilibrium pulling experiments. The
rich phenomenology of biomolecular systems has stimulated the development of extensions to the
standard FTs, to encompass different experimental situations. Here we discuss an extension of the
Crooks fluctuation relation that allows the thermodynamic characterization of kinetic molecular
states. This extension can be connected to the generalized JE under feedback. Finally we address the
recently introduced concept of thermodynamic inference or how FT's can be used to extract the total
entropy production distribution in nonequilibrium systems from partial entropy production
measurements. We discuss the significance of the concept of effective temperature in this context and
show how thermodynamic inference provides a unifying comprehensive picture in several none-
quilibrium problems.

1. Introduction

Experiments determine the ultimate fate of scientific theories. Theory must be put to test in experiments, to
check whether predictions are met. Moreover, if a theory survives this initial stage, it will rapidly gain widespread
acceptance if it spurs new experiments, possibly in situations where measurement had been, at first sight, out of
the question. Theories which uncover previously unnoticed connections between observables are especially
suited to this aim and equilibrium statistical mechanics offers important examples: the fluctuation-dissipation
theorem (FDT) and the Onsager reciprocal relations. Both these results highlight a connection between
observables (fluctuation and response in the first case and different transport coefficients in the second) and
both of them are of great practical value. From an experimental perspective the FDT offers two different
strategies to measure susceptibilities: from fluctuations or through a small perturbation. Experimentalists can
freely choose at their convenience. Onsager’s reciprocal relations reduce the number of transport coefficients to
be measured when characterizing a physical system. The practical value of these results is made even higher by
the small number of assumptions on which they rest, essentially the time reversal symmetry of equilibrium
dynamics: it is easy to identify the settings in which they apply.

In the last 20 years several new theoretical relations known as ‘fluctuation relations’ (FRs) have been
discovered. The different FRs apply to different physical situations, but, in general, they connect the probability
of a given trajectory and that of its time-reversed version with the entropy production along the trajectory. Most
importantly for our discussion, the FDT and Onsager reciprocal relations are implied by a FR for entropy
production in steady states [ 1]. At the fundamental level, i.e. considering the system in its full phase space
picture, FRs hold under simple assumptions on the dynamics. For example the Crooks fluctuation relation
(CFR), which applies to irreversible processes between equilibrium states, holds for systems undergoing
Hamiltonian dynamics. Such fundamental and general formulations of FRs may not be directly applicable to
experiments: in most practical cases the system is observed through some coarse-grained configurational

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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variable (e.g. the end-to-end distance of a single molecule). In these cases FRs are valid if the coarse-grained
variables undergoes a Markovian dynamics. The theoretical development of FRs has been accompanied by
intense experimental activity. FRs have shown to hold in different physical systems spanning colloidal particles
in optical traps [2], harmonic oscillators [3], single molecules [4], a periodically excited single defect centerina
diamond [5] or single-electron boxes [6] or quantum systems [7] just to cite a few. Up to now, experiments were
mainly designed to test the validity of FRs in different systems and under different conditions. Now it is
reasonable to assume that, at least for the aforementioned specific systems, FRs do hold. At this point we want to
ask a different question: could FRs be used for measurements of physical quantities that would otherwise be
difficult in non-equilibrium conditions? A first answer to this question comes from the single-molecule field
where FRs are used to measure free energy differences from non-equilibrium pulling experiments. By
manipulating biomolecules at the single-molecule scale, researchers are able to observe rare configurations (e.g.
misfolded configurations) which often are difficult to observe by classical bulk methods. In these cases, FRs
provide a way to measure thermodynamic parameters from non-equilibrium experiments, something which is
impossible by other methods. We shall discuss the state of the art in this kind of measurements in sections 2—4.
In section 5 we will bring the discussion to a more general level and will present a tentative but general strategy to
use FRs in measurements, which we call an inference via the FR. Our starting point will be the following: the
violation of FRs in a given setting is itself an important information since it hints that we are probably missing
some contribution tothe full entropy production. Can the extent of this violation tell us something about the
missing entropy? Can we extract meaningful quantitative information from such violation? These questions are
particularly interesting if a ‘hidden’ entropy source is not directly measurable. This situation is found in many
experiments, e.g. in systems with hidden degrees of freedom [8], systems with incomplete detection [9], systems
with more than one configurational variable [10] and coarse grained systems [ 11]. In section 5 we will show how
this inference works on real experiments performed in a dual-trap optical tweezers setup and generalize our
results to different experimental situations.

2. Equilibrium free energies from nonequilibrium pulling experiments

The measurement of free-energy differences in classical thermodynamics is attained by quasi-statically changing
the control parameter of a given experimental system and measuring the net amount of energy exchanged
between the system and its environment during the process. At macroscopic scales, the experimental output of
the thermodynamic manipulation of a system does not significantly change over different repetitions, even when
experiments are carried out under non-equilibrium conditions. Samples contain a large number N of molecules
and fluctuations in the experimental outcome, which are of the order of 1/+/N, are negligible. When the
experiment is carried out under non-equilibrium conditions the average work (W) evaluated over different
realizations of the same experimental protocol is larger than or equal to the free energy difference between the
initial and the final states of the protocol, i.e. (W) > AG, as stated by the second law of thermodynamics [12].

The situation is starkly different at the microscopic scale. Advances in nanomanipulation carried out during
the last 20 years grant access to events occurring at the single molecule level (N ~ 1). In this microscopic scale,
work measurements are of the same order of magnitude as thermal fluctuations, ~kg T (kg is the Boltzmann
constantand T the temperature of the environment). These systems are typically known as small systems. Here
fluctuations are relevant and different repetitions of the same experimental protocol give different outcomes
[13]. The second law of thermodynamics holds on average, but transient violations can be observed in which the
work performed on the system is smaller than the free energy difference, W < AG. The need to physically
characterize such systems implied a boost in non-equilibrium statistical theories, which favored the
development of stochastic thermodynamics and the appearance of FRs.

In this contribution we focus on work relations, which are FRs that relate non-equilibrium work
measurements with free-energy differences [4, 14, 15]. In this paper we focus on thermodynamic processes
where both pressure and temperature are kept constant. For convention, we will refer always to variations of the
Gibbs free energy, AG. Hence, we first provide an experimental verification of these relations using single
molecule experiments, by pulling a DNA molecule with optical tweezers. Work relations allow us to extract its
free energy of formation AGy, i.e. the free energy difference at zero force between the unfolded and the native
folded state. Next, we show how work relations can be extended in order to gain access to the thermodynamic
characterization of kinetic states. These are metastable states such as molecular intermediate or misfolded states.
They are difficult to observe in full equilibrium conditions, but nevertheless play an important role in many
regulatory reactions inside cells.
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Figure 1. Forward and reversed protocols. Schematic representation of a forward protocol (a) and its reversed (b) in arbitrary units of
time: the control parameter 4 is externally controlled between values 1 and 4, duringa time interval z. The reversed protocol is the
time-reversed of the forward protocol.

3. CFRs and Jarzynski Equality (JE)

Consider a system initially in thermal equilibrium with a value for the control parameter 4 (0) = 1. An
experimental protocol A () is applied on the system during a time interval 7 by manipulating the control
parameter A. At the end of the protocol, the value of the control parameter is A (z) = 4, (figure 1(a)). The work
measured along one realization of the experiment is:

w= [ o (1)
o dr ai

where H is the Hamiltonian of the system, which depends on configurational variables {x} such as atomic
coordinates and the control parameter 4. When dealing with small systems, the work W measured along the
experimental protocol can be significantly different upon different independent realizations of an identical
protocol because we do not have control over the microscopic configurations explored by the system (i.e.,
variables {x}) and consequently the term dH/0A in equation (1) varies in each trajectory.

Now suppose that the time-reversed experimental protocol is performed: the system is in equilibrium at 4,
and the control parameter varies according to 4 (z — t), until reaching 4, (figure 1(b)). An important work
relation is the CFR, which reads as [14]:

P (W) (W— AG)
—_— = €X] e Y (2)
P (—W) kg T

P: (W) is the probability density function of the work performed along a forward protocol, Pz (—W) is the
probability density function of the work (with opposite sign) performed along the reversed protocol, and
AG = G (A1) — G(4) isequal to the Gibbs free-energy difference between the equilibrium states of the system
at A and A, respectively.

The JE [16] can be obtained by multiplying equation (2) by Pz (—W) and integrating over W. This gives:

w AG
<exp(—kB—T] >F = eXp[—kB—T], (3)

where (...)r denotes the average over forward trajectories. Even though the JE is a corollary of the CFR, it was
derived earlier. A consequence of equation (2) is that the value of the work with identical probability to occur in
the forward and the reversed experimental protocols (i.e, P: (W) = Py (—=W)) is equal to the free-energy
difference AG, and it is always the same no matter how far from equilibrium the system is driven during the
experimental process. Another interesting consequence of both CFR and JE is that they predict the existence of
trajectories where W < AG even though, the work average (W) evaluated over multiple independent
realizations of the experiment is always larger, or equal if the protocol is applied slow enough, to the free-energy
difference, (W) > AG. This result is the second law of thermodynamics for small systems: for systems subject to
stochastic thermodynamics that have few degrees of freedom the second law of thermodynamic is recovered by
taking the average over an infinite number of repetitions of the experiment.

The recovery of free-energy differences from irreversible work measurements is possible by applying the JE
(equation (3)) to unidirectional work measurements or applying the CFR (equation 2) to bidirectional work
measurements (when both the forward and the reversed protocols are feasible). Typically, the combination of
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Figure 2. Single molecule experiments with optical tweezers. (a) The molecule is tethered between two 29-base pairs long dsDNA handles
that act as rigid spacers. Using antidigoxigenin—digoxigenin and biotin—streptavidin bonds, each end of the whole molecular construct
is attached to a micron-sized polystyrene bead. Finally, one bead is immobilized in the tip of a micropipette and the other is captured
in the optical trap. In the mini-tweezers setup the control parameter is the distance between the center of the optical trap and the tip of
the micropipette, which is denoted by . (b) Detail of the sequence for the hairpin used.

Wﬁﬁ :

information from the forward and reversed protocols provides less biased free-energy estimates. However, when
dissipation and hysteresis effects between the forward and the reversed processes are high, the work distributions
in equation (2) separate from each other and a large error is introduced in the free-energy estimate. A theory of
bias is then required to improve results [17].

Applications of FRs include the measurement of the free energy of formation of RNA and DNA hairpins
[18]; the determination of the stability of native domains in proteins [19]; the measurement of mechanical
torque in rotary motors [20]; the conversion of information into work in systems under feedback control [21];
the recovery of free energy landscapes from unidirectional work measurements [22, 23]; the reconstruction of
the free-energy branches for the different molecular states of a system as a function of the control parameter
[24, 25]; the determination of the free energies of formation of kinetic states [25]; and even the measurement of
binding free-energies and equilibrium constants in chemical reactions [26-28].

3.1. Experimental validation of the Crooks equality

Here we experimentally test the CFR as it was done in 2005 by Delphin Collin and collaborators [ 18], which
turned out to be fundamental to establish the basis of how to determine the free energies of formation of
molecules from irreversible work measurements [19, 29-31]. Here, we pull a DNA hairpin using optical
tweezers (figure 2). Pulling experiments consist of unfolding and folding processes. Hereafter, the unfolding
process will be identified with the forward protocol, whereas the folding process will be identified with the
reversed one. The dynamics of molecules during a single molecule experiment can be described through a single
collective variable: the end-to-end distance. the mechanical work performed on the system, defined in

equation (1), can be directly measured without knowing the internal configurations of the different elements of
the experimental system.

In the unfolding process (red-solid trajectory in figure 3(a)), the trap-pipette distance 4 is initially set to A,
where the molecule is fully equilibrated in its folded-native state N. Next, A is increased at a constant pulling
speed vduring a time interval 7 (d4/dt = 4 = v). During this period, the mechanical force applied to the DNA
hairpin also increases. For a given stochastic value of the force, the hairpin can no longer withstand the force and
itunfolds. This is observed as an abrupt drop in force that corresponds to the relaxation of the bead into the
center of the optical trap due to the release of ssDNA associated with the unfolding of the hairpin. Hopping
events between states N and U are occasionally observed along a given trajectory. Regardless of the molecular
state of the hairpin (folded in the native conformation N or unfolded in the stretched conformation U), dA/dt
equals v until the value 4, isreached at t = 7, 1(r) = A1;, where the protocol stops and the molecule remains in
state U. According to equation (1), the work measured along an unfolding trajectory is:

W=[)Tdt vf=/:d/1f, (4)

which corresponds to the area below the force distance curve (FDC; figure 3(a)). Since the force at which the
hairpin unfolds and the number of hopping events changes in each realization of an unfolding protocol, the
value of Wis different in each trajectory.
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Figure 3. Experimental validation of the Crooks fluctuation relation. (a) Example of an unfolding (red-solid) and folding (blue-dashed)
trajectory and measurement of the work value as the area below the FDC (dashed areas). (b) Experimental work distributions, Pr(W)
(red) and P (—W) (blue), measured at two different pulling speeds. The value of the work at which the forward and reversed work
distributions cross is equal to the free-energy difference AGyy (gray square). A total of 224 unfoldin§ and 224 folding trajectories
were measured at 60 nm s~ and 77 unfolding and folding trajectories where measured at 180 nm s~ (c) Logarithm of the ratio
between the probabilities Pr(W) and P (—W ) versus Wand fit to a straight line. The theoretical slope is 1 (equation (6)), and the value
of the work at which log (B (W)/Pr (—W)) = 0 equals AGyy. (d) Matching between the experimental measurement of Pr(W) (solid
squares and solid circles) and of Pz (—W)exp (W — AGny/kg T) (empty squares and circles), obtained by pulling the hairpin at 60
and 180 nm s~* (red squares and blue circles, respectively).

In the refolding process the time-reversed protocol A (z — t) is applied (blue-dashed trajectory in
figure 3(a). Therefore, the trap-pipette distance A is initially set to 4;, where the molecule is equilibrated in state
U. Next, Ais decreased at the constant pulling speed —v (d4/dt = A = —v) during the time interval 7 until it
reaches the value Ay, where the protocol ends and the molecule equilibrates in state N. Along the folding process,
the force applied to the DNA hairpin decreases. When it reaches a sufficiently low value, the molecule folds and a
jump in force is observed. The work in a given folding trajectory is measured as:

w:/OT dt (—v)f= —leﬂf, (5)

which is equal to the area below the FDC with a negative sign (figure 3(a)). Again, the value of Wis different for
each trajectory.

Figure 3(b) shows the experimental B: (W) and Py (—W) measured by pulling the hairpin at two different
pulling speeds. It can be observed that, even though hysteresis effects (and therefore dissipation) increase with
the pulling speed, the work value at which the two distributions cross each other does not depend on v.
According to the CFR, such valueisequal to AG = AGny = Gy (41) — Gy (4¢), since at Ao the molecule is
equilibrated in state N whereas at 4, the system is in equilibrium at state U. The measurement of the crossing
point of work distributions obtained at 60 and 180 nm s gives AGyy = 335 + land 336 + 1 kT,
respectively (figure 3(b)).

A validation of the CFR is shown in figure 3(c), where the logarithm of the ratio between the probabilities
Pz (W)and B (—W) versus W (in kg T units) is represented [32]. The linear fit to the experimental data gives a
slope equal to 0.95 + 0.05, which is in excellent agreement with the theoretical prediction provided by
equation (2),
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(6)

o EW))_ W _ AGnu
BR(-W))  kyT kT’

thatimplies that the slope equals 1. In addition, from this linear fit we can measure AGyy as the value of the
work at which log (PF (W) / P (— W)) = 0, which is essentially equivalent to determining the work value where
P: (W) = Py (—=W).Inthis case, AGyy = 335.3 + 0.5 kpT.

Yet another verification can be obtained by rewriting the CFR as:

(7)

B (W) = PR<—W>exp(W_—AGW).

kg T

Accordingly, if we multiply the experimentally measured reversed work distribution B (—W) by the term

exp ((W — AGny )/kp T) we should get the forward work distribution Pr (W) [10, 17]. This is shown in

figure 3(d) for the work distributions measured at 60 and 180 nm s~ ' (squares and circles respectively). There,
the reversed work distribution obtained at 60 nm s~ (solid blue histogram in figure 3(b)) has been multiplied
by exp (W — AGny )/kgT), with AGyy = 335.7 + 0.5 kg T, thus obtaining the empty squares in figure 3(d)
which are in good agreement with the experimentally measured forward work distribution at 60 nm s ™" (solid
squares in figure 3(d) and solid red line in figure 3(b)). In addition, the term Py (—W)exp ((W — AGny )/kpT)
allows us to infer the shape of the left-most tails of the forward work distribution obtained at 60 nm s~ '. An
identical approach is perform for work measurements obtained at 180 nm s~ ' with AGyy = 335.1 + 0.5 kgT
(circles in figure 3(d)). Noteworthy, both values of AGyy are in good agreement with the two previous
estimators.

Finally, one could describe the work distributions obtained in figure 3(b) as Gaussian functions. However, it
must be stressed that this is a particular result for this hairpin and not a general consequence of non-equilibrium
single-molecule experiments. It can be mathematically proved that Gaussian work distributions satisfying the
CFR (equation (2)) must fulfill the following relation:

W) £ L9 A (8)
T =+ 2 kBT NU>»

where (W) is the average work over trajectories, ¢ is the variance of the work distribution. The signs above (+
in (W) and — in ¢2) are used when extracting the free energy difference AGyy from forward work
measurements, while the signs below (—in (W) and + in 62) are used when extracting A Gy from reverse work
measurements. Using equation (8) we get AGny = 335.1 = 0.5 kgT and AGny = 335 + 5 kpT by fitting to
Gaussian functions the forward work distributions measured at 60 and 180 nm s~ respectively, and

AGny = 3349 + 04 kT and AGny = 336 + 6 kg T by fitting to Gaussian functions the reversed work
distributions obtained at 60 and 180 nm s~ respectively. Again, these results are in good agreement with
previous estimations of AGy.

In order to extract the free energy difference between states Nand U at zero force, AGy, we need to subtract
the elastic contributions due to stretching the handles and the ssDNA, displacing the bead in the optical trap, and
orienting the hairpin double helix. In the example depicted we get AGy = 50 + 4 kg T, in close agreement with
predictions obtained using the nearest-neighbor (NN) model (A G(}\IN =50+ 1 kgT).

4. The extended fluctuation relation (EFR)

Standard work relations allow us to measure free-energy differences between a final state and an initial state of
the system along an experimental protocol. A requirement of standard FRs is that the initial state in both the
forward and the reversed protocols are sampled in full equilibrium conditions. This is a limitation if one wants to
measure free-energy differences between states that are difficult to observe in full equilibrium conditions and
that are only transiently sampled in non-equilibrium experiments, such as intermediates or misfolded
molecular states. The thermodynamic characterization of such states is interesting because of its crucial role in
the fate of many molecular reactions, for instance protein and peptide-nucleic acid binding, specific cation
binding, antigen—antibody interactions, transient states in enzymatic reactions or the formation of transient
intermediates and non-native structures in molecular folders.

Here we show that it is possible to extend the CFR in order to overcome this limitation and recover free
energy differences for kinetic molecular states that can be observed in partial equilibrium conditions along a
non-equilibrium protocol. In what follows, we define a ‘kinetic state’ as a partially equilibrated region S’ of the
configurational space, meaning that configurations inside each region are sampled according to the Boltzmann—
Gibbs equilibrium distribution restricted to such region [ 12]. In contrast, the statistical weights of the different
regions S’ do not necessarily follow an equilibrium distribution. It can be mathematically described as:

6
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where y¢ (x) = 1if x € S’ and zero otherwise, P{4(x) = exp ( - ) / Z, is the Boltzmann-Gibbs

E; (x)
kg T

equilibrium distribution, Z, = z exp ( - ) is the partition function of the system at 4, and Z, s is the

partition function restricted to the region S’ [33]. In the case of biomolecules, the configurational space can be
considered to be partitioned into different molecular kinetic states, such as the native conformation,
intermediate and misfolded states, or the unfolded conformation. As a result, during a pulling experiment we
assume that the molecule follows a sequence of kinetic states that determines its trajectory. Because of thermal
fluctuations and the stochastic nature of small systems, each independent realization of a pulling experiment
may result in a different trajectory. Hence, the molecule does not necessarily follow the same sequence of kinetic
states for different realizations of the identical protocol.

Let A and B denote any two kinetic states of a thermodynamic system and let A denote the control parameter.
In a forward process the system starts in partial equilibrium and A varies from A, to 4, during a time z according
to a predetermined protocol A (¢). In the time-reversed process the system is initially set in partial equilibrium
and A varies from 4, to Ay according to the time-reversed protocol A(t) = A(z — t). In this situation, different
kinetic states can be accessed by the system at the beginning of both the forward and the reversed protocols, and
consequently different trajectories connecting different kinetic states can be experimentally observed. For the
trajectories that connect the kinetic state A at the beginning of the forward protocol with the kinetic state Bat the
beginning of the reversed protocol the EFR reads as [24, 25]:

A—B

p PR W) . (W_AGAB)

=e (10)
¢}?<—B P}z{u—B(_W) kBT

where AG g = G (A1) — G4 (4p) is the free energy difference between kinetic states Bat A; and A at A¢;
P#~B (W) and PR ® (= W) denote the partial work distributions for the forward and reversed processes that
start and end at A and B respectively; and ¢ FA_’B and ¢ RA‘_B are the fraction of paths startingin A (or B) at 4, (or
A1) and ending in B (or A) at 4, (or A¢). The EFR implies that the work value at which the forward and the
reversed work histograms cross each other (P£~% (W) = Pg~® (=W)) is no longer equal to the free energy

difference of the system at 4; and Ao butitisequalto AGup + kg T log ((ﬁFA_’B/QS;‘_B).

If equation (10) is multiplied by PZ® (—=W) and the resulting expression is integrated over W one gets an
extended version of the JE for kinetic states,

W — AGus P
<6Xp(_ ks T )>F= = "

F

where (...)r denotes the average over forward trajectories.

There are two main differences between the EFR in equation (10) and the CFR in equation (2). First, the use
of partial work distributions in the EFR implies that from all the measured forward (reversed) trajectories, only
those starting in state A (B) and ending in state B (A) are selected. Second, the presence of the prefactor
(/)If‘_)B / ¢1?‘_B in the EFR introduces the additional correction —kp T log ((/)I?_)B / (l);‘_B ) into the Crooks
estimation of the free-energy difference between kinetic states. Noteworthy, the EFR is a generalization of the
CFR (equation (2)), since equilibrium is a particular case of partial equilibrium: if the forward and reverse
protocols start in full equilibrium at states A and B, respectively, the two fractions ¢ FA_’B and ¢ }f‘_B areequalto 1
and hence the CFRis recovered from equation (10). However, in partial equilibrium conditions the omission of
the prefactor ¢ FA_’B / ¢ 1?‘_3 leeds to systematically biased results for the free-energy differences between different
kinetic states [24]. We emphasize that for the case of kinetic structures that apparently behave reversibly under
the protocol, AG 4p is not just equal to the measured work during the experiment, which is apparently reversible,
since the term kg T log (¢ RA*B / ¢ ;‘_’B ) must be added. Although this correction might be small, it is important
in many situations. For instance, ignoring the prefactor ky T log (¢ " / ¢£7") eveniif very low hysteresis is

obtained between forward and reversed processes in a case where quA‘_B = 0.01and ¢FA_’B = 1would
underestimate by 4.5 ky T  the free energy AG 4p.

4.1. Experimental validation of the EFR
To prove the validity of the EFR we pull a DNA hairpin at two different pulling speeds (60 and 180 nm s~ ') with
optical tweezers. Again, the unfolding process is identified with the forward protocol, whereas the folding
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Figure 4. Application of the extended fluctuation relation. (a) Fraction of forward trajectories ¢ FN ~N (top) and ¢}~V (bottom) asa
function of 1, obtained at the two different pulling speeds. Note that ¢, "~ + ¢ N~V = 1. (b) Partial forward and reversed work
distributions PY~N (W), P{z\] N(—w) (top) and P~V (W), Pé\] <U(=W) (bottom) for work values obtained by integrating the FDC
between 19 = —40 nmand 4; = 10 nm. (c) Free-energy branches for Nand Urelative to AGy (1) obtained by direct application of
the EFR (equation (10)) setting 49 = —40 nm and varying 4;. The vertical dotted line indicates the value of 2* at which states Nand U
have the same free energy, AGnn (1%) = AGyy (4%). Results are shown for two different pulling speeds.

process with the reversed one. Now we set 1 at —40 nm (figure 3(a)), where the molecule is always folded in the
N state either in the forward (unfolding) and reversed (folding) protocols. We then apply the EFR at different
values of 1; in theinterval A; € [—40, 55]nm. We consider the molecule as partially equilibrated for any value
of 1;, and we divide its phase space into two regions identified with states N and U. For each value of 4, we follow
the following steps:

1. We classify the set of forward trajectories into two subsets according to the state of the molecule at the end of
the protocol, where A equals 1;. As a result, one of the subsets contains the trajectories where the molecule
starts at state N at 1o and ends at state N at 4, (hereafter referred to as ‘N — N’ trajectories), and the second
subset contains all the trajectories where the molecule starts at Nand ends at U (trajectories ‘N — U’). Then,

we compute the fractions of forward trajectories ¢ FN ~Nand ¢ FN =V as the ratio of the number of trajectories

N — N and N — U, respectively, and the total number of forward trajectories (gl);\r -y ¢FN V=)

Results at different values of 4, obtained at two different pulling speeds are shown in figure 4(a). Note that for
A1 < 0nmand 4; > 40 nm all forward trajectories end at state N or U, respectively.

2. We classify reversed trajectories according to the state of the hairpin, N or U, at the beginning of the reversed
protocol at A;. At the end of the reversed protocol, at ¢, the hairpin is always at N. Therefore, there are two

types of forward trajectories which are ‘N « N’and ‘N « U’. Under these circumstances,
N<N _ N<U _ U«N _ U<U
R = ¢y = land ¢, Px
value of 4 along a forward protocol is always N.

= 0 always, since the final state of the molecule at the selected

3. We find the partial work distributions Py~ (W), PA~Y (W), PN (=W) and PY Y (~W) for each
corresponding set of forward and reversed trajectories. In figure 4(b) we show results obtained at A; = 10
nm. Now, the point at which P Y (W) and PY =Y (=W) cross each other does actually depend on the
pulling speed.

4. Byapplying the EFR, we find AGny and AGyyp using the partial work distributions and the prefactors ¢ FN -N
and ¢ p{\j -U,

The free-energy difference AGny or AGyy as a function of the control parameter 4, is usually referred to as
the free-energy branch of state N or U, respectively. In figure 4(c) we show the free-energy branches AGyy (41)
and AGpy (41) obtained using the EFR for the two different pulling speeds. In both cases, the free energy of state
Nat Ay = —40 nm is taken as the reference energy. As expected, the profile of the free-energy branches does not
depend on the speed of the pulling protocol.

For a better visualization, in figure 5(a) we plot the free-energy branches for states N and U taking as the
reference energy the full free energy AG of the system at each value of 1;, defined as:
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Figure 5. Free-energy branches. (a) Free-energy branches for Nand U relative to the full equilibrium free energy,

AAGp = AGnp — AG,where B = N, U, for each value of 1, (equation (12)). The vertical line indicates the value of 1* at which
states N and U have the same free energy, AAGy (1*) = AAGy (1*). (b) Free-energy branches of states N and U relative to the full
equilibrium free energy AG measured using the CFR for pulling experiments performed at two different pulling speeds. The vertical
line indicates the value of A* at which states N and U have the same free energy according to the EFR.

AG = —kgT log lexp(—AGNN) + exp[—AGNU)]. (12)
kgT kgT

Atlow values of 4, the stability of the DNA hairpin is governed by state N, whereas at large values of 1; the most
stable state is U. It can be observed that at ; = A* ~ 10 nm states Nand U coexistas AAGy (1*) ~ AAGy (4%).
Force values of states N and U along the FDC at A* are approximately 15.2 + 0.2 pN and 14.0 + 0.2 pN,
respectively. This gives an average force value equal to 14.6 + 0.7 pN (figure 4(a)). Remarkably, this value is in
good agreement with the coexistence force of the hairpin predicted by the nearest-neighbour model for DNA
thermodynamics (f, = 15.0 &+ 0.4 pN).

To prove the validity of the EFR, we determine the free-energy branches of states N and U obtained without
the prefactor ¢, ~" and ¢," ~V. These are shown in figure 5(b) relative to the full equilibrium free energy
(equation (12)). In this case, free-energy branches depend on the pulling speed, specially for state U. Moreover,
these results suggest that the stability of hairpin is always dominated by state U under pulling experiments (i.e.,
the free-energy branches for Nand U do not cross at any value of 4,). Hence, it is observed that the use of the EFR
and the presence of the prefactors ¢FN_>N/¢ N<Nand ¢va_’U/¢}éN‘_U (with ¢}§]"N =land¢ NV = 1)in

R R
equation (10) are required to properly recover the thermodynamic stabilities of the two states.

4.2. The EFR and feedback protocols
In recent years much attention has been devoted to thermodynamic transformations involving feedback. These
transformations, instead of using a fixed protocol 4 (t), choose among different protocols depending on the
evolution of the system. A simple example of a pulling experiment with feedback performed on a DNA hairpin
would be the following (figure 6): we start at time ¢ = 0 at a low force and with the molecule in state N; we pull ata
constant speed v until time t = ¢,, where 1 = 1,, > Ay, and a measurement is performed on the molecule. If the
molecule is still folded the pulling goes on until A (¢) = A, with the same pulling speed v. If the molecule is
unfolded the pulling speed changes to v > v and the pulling still goes on to the final value of the control
parameter A;. Such experiments can readily be implemented in an optical tweezers setup. The fact that the
pulling speed is raised only if the molecule is found in the unfolded state will prevent temporary refolding events.
Under feedback, we expect JE not to be fulfilled as, on average, we are decreasing the work needed to unfold
the molecule. The EFR gives us a method to quantify the violation of the JE. We will have to consider free-energy
differences for different values of 1 so we extend the previous notation to:

AGup = AGLY" = Gf' — G £, (13)

where AG /%" is the free-energy difference of a system in partial equilibrium in state A at 4o and a system in
partial equilibrium in state Bat A;. For free energies conditioned only on the state at the start (or end) of the
protocol we will use the symbol AG Ao (AG ™). The EFR enables us to consider conditional averages, where
the condition is on the trajectory of the system. We could for example condition the path average, so that the
molecule is in a given state when A = 4,,. This amounts to inserting a term y, (x;, ) in the average, where

x4 (x) = 1if x € A and zero otherwise, and x, denotes the configurational variable at time ¢. As a first exercise we
will consider the standard JE and write it as a sum over contributions conditioned to visiting a given state at time
bt
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Figure 6. Example of a feedback protocol. At time t = 0 the molecule is in full equilibrium in state N. We pull at a constant pulling speed v
until time ¢ = t,, where 1,,. Here we measure the state of the molecule. If the molecule is folded (state N) wee carry on with the
original pulling experiment with the pulling speed v. If the molecule is unfolded (state U) we increase the pulling speed at v/ > v.In
both cases, the pulling goes on to the final value of the control parameter A,.

w w
—A A—-
Woum Wi
—Z¢M< (k;’T)> <exp(—kBTl)> , (14)
F F

where the sum is taken over disjoint sets partitioning all the phase space; W, ; denotes the work performed in the

interval 4;, ;5 ¢ I}}’A is the fraction of trajectories which start at equilibrium at Ay and end in state A at 4,,; and

(.Y ({...YA™") denotes an average conditioned to ending (starting) in state A. Using the EFR (equation (11))
we can compute explicitly the two conditional averages:

AosAm A=

<exp( )> zexp( 464 ]<p(_jfT)> ,
Gl AG jmh
re ()

G/lo A AGﬂo)il
exp Z(pm = exp , (15)
" kg T
A

where we used ¢ A 7. /1 » b, = ltorecover the result of the JE equation (3). In this first exercise we have written

the exponential average of the work as a sum of conditional averages and have then recovered the JE computing
the conditional averages using the EFR. We will now follow a similar strategy to compute the exponential average
of the work under feedback. We consider again the feedback protocol mentioned earlier in this section: up 4,,
the pulling speed will be constant and equal to v, at 1 () = A, we perform a measurement and change the
pulling speed to v, depending on the measurement outcome. We will consider the exponential average of the
work and break it again, as in equation (14) into conditional contributions:

w w
(ool 7)) ={eol 7] Zace
—A A—-
VVO,m Wm,l
_Z¢F/1m< ( kBT]>F <exp[_kBT)>FV. (16)

By conditioning the trajectory on the state of the system at the moment of the measurement A (¢t) = 1,, we are
able to write the exponential work average in the feedback protocol as a sum of conditional averages with
standard protocols. The only difference with the case of the standard JE is that the second conditional average
now depends on the measurement outcome through the pulling speed, as denoted by the subscript v4. We can
now perform the same steps as in the previous computation (equation (15)) and get:

w AGHoh
(oo{-25)), ool B v
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The symbol ¢ 12/{;;“ denotes the fraction of trajectories starting at equilibrium at 4, and arrivingto A at 4,,ina
reverse protocol with pulling speed v 4. In the previous computations these fractions summed to one: they were
evaluated using the same pulling speed. Here they do not sum to one anymore: each fraction is evaluated using a
different pulling speed which depends on the folding state A. This term quantifies the violation of the JE by
feedback-based protocols. The reader familiar with the theory of fluctuation theorems (FT's) in presence of

feedback will recognize in the above expression the parameter y = Z ;;'VA introduced in [34]. Summing up

A
we have used conditional averages to connect the theory of feedback protocols and that of the EFR, in an effort to
develop unifying concepts in the rapidly expanding field of FRs.

5. From free energy measurements to inference

5.1. Thermodynamic inference

To put the discussion in perspective let us suppose we have two optical traps focused in a microfluidics chamber
filled with water in a dual-trap optical tweezers setup. A DNA molecule is then tethered between two beads
captured in the optical traps forming a dumbbell (figure 7(a)). The molecule is being pulled by moving one
optical trap while the other remains at rest in the reference frame of water. The two optical traps can measure
forces so in principle one could measure the work using the force in either of the two traps. The question is
whether both forces yield equivalent work measurements or not. This problem has been addressed in much
detail in [10] where we combined theory and experiments to demonstrate that the force measured in the moving
trap (with respect to the reference frame of water) is the one that must be used to extract the correct mechanical
work Waccording to the usual definition in stochastic thermodynamics (equation (1)), or its extension in the
presence of a mean flow [35]. In contrast, the force measured in the trap at rest provides an incorrect work
measurement W’ which does not satisfy the FT (figure 7(b)). The difference between the two works,

Wt = W — W’ equals to the energy dissipated by the center of mass of the dumbbell. In the over-damped limit,
which applies to our setup, thisamounts to W+ = y*v*, where y ™ is the hydrodynamic coefficient of the
dumbbell, vis the speed of the moving trap and ¢is the duration of the pull. We will call W” a partial work
measurement because it misses a part (W ™) of the full work exerted W = W’ + W™, and thus a part of the total
entropy production.

Let us now suppose that we are in a situation where we can only measure the work in the trap at rest, W,
rather than W. This is not a purely hypothetical scenario as several dual-trap setups can only measure the work in
the trap at rest due to technical reasons [36—38]. In this case we should not apply the CFR or the JE to extract
free-energy differences. In particular, the CFR would not be satisfied and the JE applied for W’ would
underestimate free-energy differences in apparent violation of the second law. The question remains whether we
can infer the full work distribution P (W) from the partial one, P’ (W"). The answer is positive: for symmetric
dumbbells one can show how by shifting all measured partial work values W’ by a constantA, W = W’ + A, itis
possible to adjust the value of A to infer the P (W) that satisfies the FR figures 6(c) and (d). From the inferred
P (W) we can now extract free energy differences. Moreover the value of A = (W) provides a measure of the
missing dissipation due to the Stokes friction experienced by the dumbbell. From A we can then infer the value of
the hydrodynamic coefficient of the dumbbell, y*, a quantity that can be also extracted by measuring
equilibrium fluctuations of the center of mass of the dumbbell but which requires simultaneous tracking of
beads in both traps. The above example provides a case of thermodynamic inference: by only measuring W’
values we can infer the correct work distribution P (W) and from that the value of AG using FRs (figure 7(c)).
For asymmetric dumbbells the inference procedure is more elaborated but still possible.

5.2. The inference problem

The general setting for the inference problem is illustrated in figure 8 for the case of non-equilibrium steady
states. System A (for Agent) produces a total entropy S, during a time interval ¢. System A is observed via a second
system, e.g. a detector T'such as an optical trap, coupled to A via a noisy channel C. Measurements on T reporta
partial entropy production S, with

Pr($/) = ch(sg|st)PA(st), (18)
St

where P, (S, ) is the probability of the system A to produce a total entropy S;, B (S/|S; ) is the transfer function of
the noisy channel, i.e. the probability of measuring an entropy production as S, given that the total entropy
productionis S, and B (S, ) is the observed distribution of entropy production. The FT holds for S:
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Figure 7. Dual trap measurements and thermodynamic inference. (a) A DNA molecule is tethered between two beads captured in the
optical traps forming a symmetric dumbbell. The molecule is being pulled by moving one optical trap (top) while the other remains at
rest in the reference frame (bottom) of water. (b) Validation of the CFR (equation (2)) by using work values Wand W’ obtained from
the measurements of force in the moving trap (top) and in the trap at rest (bottom), respectively. It can be seen that the first satisfies
the fluctuation theorem while the latter does not. (c) Displacement of the work distribution measured in the trap at rest, P’ (W') by
the constant A. (d) Verification of the CFR (equation (2)) for different values of values of A. Inset:dependence of the slope of the plot of
log P'(W’ — A)/P'(—W' — A)against W' as a function of A. The value at which the slope is 1 gives the value of A that coincides

with W+,

&(&)za@(%J&(—&) (19)

B

but not, in general for S,. The inference problem can be stated as follows: can we infer B, (S, ) froma
measurement of Br (S7 ) under the additional assumption that the former satisfies a FT? As we shall see, in many
practical cases the answer is positive and the inference process does also serve as a mean to characterize the
transfer function Pc of the noisy channel. In what follows and for sake of generality, the inference problem is
formulated in an abstract setting however it applies to several experimental situations in stochastic
thermodynamics. In the case of the dumbbell discussed in the previous section the agent A, producing entropy,
is the trap which is moved with respect to water. The noisy channel is the dumbbell and the detector is the trap at
rest with respect to water. A second setting for the inference problem is the field of molecular motors: in these
systems the total entropy production gets at least two contributions, one from translocation against an applied
force and one from ATP hydrolysis. Modern experimental systems allow measurements of the former

12
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Figure 8. Measurement and inference. System A (for Agent) produces a total entropy S, during a time interval . System A is observed via
asecond system, e.g. a detector T such as an optical trap, coupled to A via a noisy channel C. Measurements on T report a partial

entropy production S/ with Br (S/) = Zst R (S/1S,) Py (Sy).

contribution while the latter is not observable at the single molecule level. Is it possible to extract useful
information about the mechano-chemical step by observing translocation and assuminga FT for the total
entropy production? In this case the agent A is the motor that injects power on a substrate through ATP
hydrolysis; the noisy channel C is the mechano-chemical coupling, i.e. the stochastic coupling between entropy
production and translocation; and T is the device used to measure translocation under and applied force, be it an
optical or magnetic trap. Inference problems are possible beyond the single-molecule field: in [45] the authors
consider a situation in which the current flowing through a Quantum Dot is monitored using a capacitively
coupled Quantum Point Contact. These experiments provide another setting for the inference process. More
recently calorimetric work measurements on two-state quantum systems have been considered [9]. Here, work
is estimated through a measurement of photon exchange between the system and the baths. If, as realistic, some
photons remain unrecorded as they are exchanged with baths only a partial work measurement is available. Here
the agent A is the two state system, the channel C is the detection efficiency of photons and the detector T is the
calorimeter, setting the stage for an inference of the total work (or entropy production).

5.3. Inference close to equilibrium: the Gaussian case
Inference is not possible in general: special forms for B (8'|S) are necessary. Close to equilibrium one can
assume the different probability distributions Py (S;), Pr(S,) and B (S/|S; ) to be approximately Gaussian. In

this case:
2
1 SI - <Sl’>
PA(St) = exp —Q , (20)
2707 20;
2
1 S, —(S/)
PT(S{) = exp ( t ,zt ) , (21)
2r6.* 20;
where (S, ), (S, ), 62, 05/2 are the mean and variances of both Gaussian distributions. We also assume that:
2
) ) 1 S =S/ —Ac
B(S/]8:) = RS - 8/) = exp —< - ) (22)
\2r6d 208

We have in mind a situation in which only the distribution of S, is measurable. From equations (18), (20)—(22)
one gets:

<Sz,> =(S) — Ac, (23)

65’2 =0’ + ol (24)

We assume Py (S, ) to satisfy the FT equation (19) and therefore 6 = 2kg (S, ). In contrast P (S, ) does not fulfill
the FT equation (19). In fact if one calculates the ratio Pr (S, )/Pr (=S, ) one gets:
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(25)

Pr(-$;)

Pr(s/) exp(xs;)'

N ke

In this case x6,° = 2k (S, ) with the dimensionless parameter x quantifying how much Py (S/) deviates from the
FT. As we discuss below we will call this an x-FT. The parameter x, quantifying the violation of the FR for S/, also
characterizes the Gaussian noisy channel:

1-x
x

2kgAc + 6= (1 —x)6? = ZkB( )(sg ). (26)

Although equation (26) provides important information on the channel, complete inference of P, (S; ) from
Pr (S;) (i.e. the simultaneous determination of oc and Ac) is not possible. Two limiting cases can be considered
in which the noisy channel affects only the variance or only the mean of the distribution:

(Se) = (S
1—-x,_,
Ac =0 UCZ = 2ks » (S¢) (27)
2 2 2

Os = 05 — 0C»

2 ’2

(1 —x)(f2
2 — s
o-=0 Ac = > 28
¢ ¢ 2kg (28)

(S:) =(8/) + 4c,

Equation (27) correspond to the case in which the noisy channel affects the variance of the probability
distribution but not its mean and vice—versa, equation (28) corresponds to the case in which the mean is affected
but not the variance, a situation physically realized in the dumbell example discussed in the previous section. In
both these cases, measuring the distribution of S, and assuming a FT for S, it is possible to recover the
distribution of S,. In the intermediate cases in which neither the value of A¢ nor that of ¢ is fixed by physical
constraints, inference can still be possible if some more information about the system is available (e.g. the Fano

2
factor of the noisy channel, % ). In [10] we give an experimental example in which equilibrium information on
-

the system is used to complement the inference.

5.4. Inference far from equilibrium

In the previous section we considered inference in a Gaussian setting, where we could quantify the violation of
the FT by a single parameter x. The assumption of a Gaussian P4 (S;) is particularly restrictive, as it is limited
to near-equilibrium macroscopic systems. To address general non-equilibrium settings we must consider
non-Gaussian P, (S;). We will, however, still consider for simplicity a Gaussian noisy channel with transfer
function:

s/ -5V
B(Si]s)) = B(S/ = 8) = == exp (si-s)

N 27ro'C2

| (29)
ZO'C

i.e. a channel affecting the variance of the distribution of entropy production but not its mean. The measured
distribution PBr (S/) and the full entropy production distribution P, (S,) are related by:

Pr(s/) = /dstpc(s; — S)R(s:)

=N(0, 62) = By, (30)

where N (0, 62) is a normal distribution with mean zero and variance 62, equation (29), and * denotes
convolution. As always we will assume P, (S, ) satisfies the FT, equation (19). Using this symmetry we can
evaluate Pr (=S, ):
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—s/ -5V
Pr (=S =\/%6C2/d5texp _ 2;5 ) Py(s)

C e\
=;de[ exp —M PA(—K})

Y
=;/dK, exp —M exp[—?]PA(K})

ZUCZ B

, f =12\
:exp[—s—’+6—é] 1 /theXp _(S, K, — kg ac) PA(Kf)

ks 2k \2m0d 20¢
S/ oé -1 2 2
=exp| - + —= |N (kg ol 6Z) * Pa, (31)
P[ ks | 2k2 ( B OC c)
where K, = =S, and N (ki ‘62, 62)is anormal distribution with mean k' 62 and variance 6. Testing P (S,)

for the fluctuation symmetry yields:

Pr($/) . [i_a_cz] N(0,62) = By
PT(_St/> B P .N.(kB_IGCZ, O'CZ) % PA’

32
ks 2k (32)

which shows that the FT equation (25) is not fulfilled in general, but is recovered in the limit 0C2 — 0,in which
Pr(S) = P, (S)and x = 1. The inference process can be realized in the general case (62 # 0) case defining a one-
parameter family of probability distributions obtained shifting B (—S, — A). Repeating the same computation
asfor Pr(—S/) we get:

PT(S,{) s/ LA e N(O, aé) * Py o)
_—_—mmm eXp —_— _—— .
Pr(=$/ - 4) ks ks 2k | (ki'od - A, 02) x By
The variance 6¢ can now be inferred comparing P; (S, ) with the one-parameter family of probability
distributions Pr (=S, — A)asshown in figure 9. This allows to select a value A = A* such that:
PT S/ S/
Y A o

A E— ke

i.e. the asymmetry function log (PT (S/) /% (=S, — A )) islinear in S, with slope 1/kp. Once A* isknown,
equation (33) implies: UCZ = kpA* = 2k C* (figure 9). Finally, although in this section we used a transfer
function (Pcin equation (29)) with zero mean (A¢ = 0), the discussion can be extended to the case Ac # 0.
Similarly to the Gaussian case, when both 62 and A¢ are different from zero, complete inference is not possible
and one gets A* = 2kpAc + of.

5.5. The x-FT and the effective temperature
Let us go back to our near-equilibrium inference example and let us consider the partial entropy production
distribution Pr (S;) (equation (21)). Being a Gaussian distribution we have already shown in equation (25) that

it fulfills the following relation:
Pr S/ S/
ﬂ:exp[x t:|, (35)

PT(_S[/> kBT

with x being the previously introduced dimensionless parameter fulfilling !> = 2xkg (S, ). For reasons that will
become clear soon we will call x the fluctuation ratio. For x = 1 we get the standard FT while in the most general
case where x is different from 1 we might better speak of an x-FT'. What is the physical meaning of the x-FT? In
our example, x characterizes the noisy channel through which we are observing agent A: measuring a violation of
the FT (equation (35)) yields quantitative information about the system.

The fluctuation ratio x could be also interpreted as an effective temperature. To better understand this let us
consider the special case of the DNA molecule tethered between two beads captured in two optical traps
discussed in section 5.1 (figure 7(a)). Under a pulling cycle protocol AG = 0 so the dissipation Wy;s (measured
in the moving trap) equals the full work Wand Wy = W’ + W with W', W+ the partial and the missing work
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Figure 9. Inference far from equilibrium. (a) A model entropy production distribution, Py « exp (-3 * S, + %), fulfilling the fluctuation
symmetry (equation (19)). (b) The Gaussian transfer function P (A¢c = 0, acz = 1). (¢) The measured entropy production
Pr = B- * P.(d) Graphical illustration of the inference process: A* is inferred as that value of A for which log (1% (/) / B(-S - A*))

islinear with slope k5! (A = 1, red curve, as also reported in the table). Equation (33) then implies: 62 = kgA*.

respectively. In the linear dissipative regime where the DNA molecule is not pulled too fast (the dissipated work
varying linearly with the pulling speed) all work distributions are Gaussian to a very good approximation. The
partial work distribution P’ (W’) then satisfies a FR equivalent to equation (35),

P/(W,) — ex XW’ — ex W, (36)
P—w) P kT | TP ke |

where Tog = T/x has the dimensions of a temperature often referred to as the effective temperature. Here, x is
equal to the fraction of the average total dissipated work along a cycle (W) captured by the partial work
measurement. If x= 1 we recover the standard FT with Toe = T. Both x and the effective temperature Ty carry
the same information about the inference process: they quantify the fraction of entropy production missed in
the measurement of a nonequilibrium process. We can summarize this by saying that the standard FT

equation (2) holds for the full dissipation Wbut does not hold when only a part of the total dissipation, W’, is
measured. In this case, an x-FT may hold generally with a value of the effective temperature typically higher than
T (0 < x < 1). Our discussion has been focused on the Gaussian case. For the general non-Gaussian case the x-
FT (equation (35)) may hold asymptotically for sufficiently long times ¢ in a given sector of entropy production
rate values i.e. 7 < p with p of order 1. This result would be in the line of heat FT [41, 42], where a similar
conclusion has been reached. The x-FT scenario is realized, for example, in weakly ergodic aging systems, as
recently shown in [44]. In this case S, is equal to the so-called exclusive work which is the work delivered by an
external field h applied to an aging system, S, = hAA, with AA equal to the change during time # of the
observable conjugated to the field h. As shown in [44], the distribution P (S, ) shows a crossover ata
characteristic value S*. Below $*, P (S, ) satisfies the standard FT equation (19) just as an equilibrium system.
Above S* a crossover to an x-FT (equation (25)) is observed. Also in this case the parameter x can be given a clear
physical meaning. In aging systems the effective temperature and the fluctuation ratio are used to quantify
violations of the FDT that relates correlations and responses [43]. In [44] it was demonstrated that, in weakly
ergodic aging systems in a scenario of entropy driven relaxational dynamics, either the x defined from the x-FT
and from the FDT are equal. In spin-glass theory the physical meaning of x is related to the presence of frozen
degrees of freedom that cannot relax over the observable timescales. The parameter x is also related to the Parisi
replica symmetry breaking parameter introduced in the static solution of mean field spin glasses. The meaning of
x then appears quite similar to that provided by thermodynamic inference: x quantifies the missing entropy
production or dissipation due to the presence of frozen degrees of freedom in the system.
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6. Conclusions

Opver the past 20 years we have witnessed a fast development of theoretical concepts and experimental tools that
have contributed to our understanding of energy processes in non-equilibrium small systems. FT's are nowadays
widely used to recover, from irreversible work measurements, the free energy of formation of native molecular
states of proteins and nucleic acids. However, a major requirement to correctly apply standard FRs is that at the
beginning of the forward and reversed experimental protocols the system is fully equilibrated. This makes it
difficult to characterize both intermediate and misfolded states with standard FRs. EFRs were born when full
equilibrium was replaced by partial equilibrium at the beginning of both forward and reversed experimental
protocols. This introduces a pre-factor in the CFR which accounts for the fraction experimental trajectory
observed between two partially-equilibrated molecular states. The use of EFRs paves the way to investigate the
thermodynamic properties (such as the free-energy branches or the free energy of folding) of not only native
states, but also intermediate, misfolded, and even intermolecular-bound states, which might be difficult to study
under equilibrium and become accessible in partial equilibrium conditions. In recent years there has been a
growing interest in the use of thermodynamic transformations involving feedback. In these case the
experimental protocol is stochastic and depends on the trajectory of the system. FRs in the presence of feedback,
then, need to take into account and quantify the information extracted from the system. Using conditional
averages on the microscopic trajectories we have demonstrated how the theory of feedback control and that of
EFRs are equivalent. Finally, we have shown how FT's are applicable to extract useful information form a variety
biological and physical systems. The recent extension of FT's to thermodynamic inference opens exciting new
perspectives. The fact that in complex systems only a partial amount of information is accessible through direct
experimental measurements calls for a completely new approach. The list of examples where thermodynamic
inference could be applied is large: characterizing the mechano-chemical cycle of molecular motors, inferring
work distributions in quantum systems, unravelling feedback effects in autonomous systems, quantifying
heterogeneity in molecular ensembles and investigating molecular evolution in mutational ensembles.
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