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Abstract
Fluctuation theorems (FTs), such as theCrooks or Jarzynski equalities (JEs), have become an
important tool in single-molecule biophysics where they allow experimentalists to exploit thermal
fluctuations andmeasure free-energy differences fromnon-equilibriumpulling experiments. The
rich phenomenology of biomolecular systems has stimulated the development of extensions to the
standard FTs, to encompass different experimental situations.Here we discuss an extension of the
Crooksfluctuation relation that allows the thermodynamic characterization of kineticmolecular
states. This extension can be connected to the generalized JE under feedback. Finally we address the
recently introduced concept of thermodynamic inference or how FTs can be used to extract the total
entropy production distribution in nonequilibrium systems frompartial entropy production
measurements.We discuss the significance of the concept of effective temperature in this context and
showhow thermodynamic inference provides a unifying comprehensive picture in several none-
quilibriumproblems.

1. Introduction

Experiments determine the ultimate fate of scientific theories. Theorymust be put to test in experiments, to
checkwhether predictions aremet.Moreover, if a theory survives this initial stage, it will rapidly gainwidespread
acceptance if it spurs new experiments, possibly in situationswheremeasurement had been, atfirst sight, out of
the question. Theories which uncover previously unnoticed connections between observables are especially
suited to this aim and equilibrium statisticalmechanics offers important examples: the fluctuation-dissipation
theorem (FDT) and theOnsager reciprocal relations. Both these results highlight a connection between
observables (fluctuation and response in the first case and different transport coefficients in the second) and
both of them are of great practical value. From an experimental perspective the FDToffers two different
strategies tomeasure susceptibilities: fromfluctuations or through a small perturbation. Experimentalists can
freely choose at their convenience. Onsagerʼs reciprocal relations reduce the number of transport coefficients to
bemeasuredwhen characterizing a physical system. The practical value of these results ismade even higher by
the small number of assumptions onwhich they rest, essentially the time reversal symmetry of equilibrium
dynamics: it is easy to identify the settings inwhich they apply.

In the last 20 years several new theoretical relations known as ‘fluctuation relations’ (FRs) have been
discovered. The different FRs apply to different physical situations, but, in general, they connect the probability
of a given trajectory and that of its time-reversed versionwith the entropy production along the trajectory.Most
importantly for our discussion, the FDT andOnsager reciprocal relations are implied by a FR for entropy
production in steady states [1]. At the fundamental level, i.e. considering the system in its full phase space
picture, FRs hold under simple assumptions on the dynamics. For example theCrooksfluctuation relation
(CFR), which applies to irreversible processes between equilibrium states, holds for systems undergoing
Hamiltonian dynamics. Such fundamental and general formulations of FRsmay not be directly applicable to
experiments: inmost practical cases the system is observed through some coarse-grained configurational
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variable (e.g. the end-to-end distance of a singlemolecule). In these cases FRs are valid if the coarse-grained
variables undergoes aMarkovian dynamics. The theoretical development of FRs has been accompanied by
intense experimental activity. FRs have shown to hold in different physical systems spanning colloidal particles
in optical traps [2], harmonic oscillators [3], singlemolecules [4], a periodically excited single defect center in a
diamond [5] or single-electron boxes [6] or quantum systems [7] just to cite a few.Up to now, experiments were
mainly designed to test the validity of FRs in different systems and under different conditions. Now it is
reasonable to assume that, at least for the aforementioned specific systems, FRs do hold. At this point wewant to
ask a different question: could FRs be used formeasurements of physical quantities that would otherwise be
difficult in non-equilibrium conditions? Afirst answer to this question comes from the single-molecule field
where FRs are used tomeasure free energy differences fromnon-equilibriumpulling experiments. By
manipulating biomolecules at the single-molecule scale, researchers are able to observe rare configurations (e.g.
misfolded configurations) which often are difficult to observe by classical bulkmethods. In these cases, FRs
provide away tomeasure thermodynamic parameters fromnon-equilibrium experiments, somethingwhich is
impossible by othermethods.We shall discuss the state of the art in this kind ofmeasurements in sections 2–4.
In section 5wewill bring the discussion to amore general level andwill present a tentative but general strategy to
use FRs inmeasurements, whichwe call an inference via the FR.Our starting point will be the following: the
violation of FRs in a given setting is itself an important information since it hints that we are probablymissing
some contribution tothe full entropy production. Can the extent of this violation tell us something about the
missing entropy? Canwe extractmeaningful quantitative information from such violation? These questions are
particularly interesting if a ‘hidden’ entropy source is not directlymeasurable. This situation is found inmany
experiments, e.g. in systemswith hidden degrees of freedom [8], systemswith incomplete detection [9], systems
withmore than one configurational variable [10] and coarse grained systems [11]. In section 5wewill showhow
this inference works on real experiments performed in a dual-trap optical tweezers setup and generalize our
results to different experimental situations.

2. Equilibrium free energies fromnonequilibriumpulling experiments

Themeasurement of free-energy differences in classical thermodynamics is attained by quasi-statically changing
the control parameter of a given experimental system andmeasuring the net amount of energy exchanged
between the system and its environment during the process. Atmacroscopic scales, the experimental output of
the thermodynamicmanipulation of a systemdoes not significantly change over different repetitions, evenwhen
experiments are carried out under non-equilibrium conditions. Samples contain a large numberN ofmolecules
andfluctuations in the experimental outcome, which are of the order of N1 , are negligible.When the
experiment is carried out under non-equilibrium conditions the averagework 〈 〉W evaluated over different
realizations of the same experimental protocol is larger than or equal to the free energy difference between the
initial and the final states of the protocol, i.e. Δ〈 〉 ⩾W G, as stated by the second law of thermodynamics [12].

The situation is starkly different at themicroscopic scale. Advances in nanomanipulation carried out during
the last 20 years grant access to events occurring at the singlemolecule level (N∼ 1). In thismicroscopic scale,
workmeasurements are of the same order ofmagnitude as thermal fluctuations, ∼k TB (kB is the Boltzmann
constant andT the temperature of the environment). These systems are typically known as small systems. Here
fluctuations are relevant and different repetitions of the same experimental protocol give different outcomes
[13]. The second law of thermodynamics holds on average, but transient violations can be observed inwhich the
work performed on the system is smaller than the free energy difference, Δ<W G. The need to physically
characterize such systems implied a boost in non-equilibrium statistical theories, which favored the
development of stochastic thermodynamics and the appearance of FRs.

In this contributionwe focus onwork relations, which are FRs that relate non-equilibriumwork
measurements with free-energy differences [4, 14, 15]. In this paper we focus on thermodynamic processes
where both pressure and temperature are kept constant. For convention, wewill refer always to variations of the
Gibbs free energy, ΔG. Hence, we first provide an experimental verification of these relations using single
molecule experiments, by pulling aDNAmolecule with optical tweezers.Work relations allow us to extract its
free energy of formation ΔG0, i.e. the free energy difference at zero force between the unfolded and the native
folded state. Next, we showhowwork relations can be extended in order to gain access to the thermodynamic
characterization of kinetic states. These aremetastable states such asmolecular intermediate ormisfolded states.
They are difficult to observe in full equilibrium conditions, but nevertheless play an important role inmany
regulatory reactions inside cells.
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3. CFRs and Jarzynski Equality (JE)

Consider a system initially in thermal equilibriumwith a value for the control parameter λ λ=(0) 0. An
experimental protocol λ t( ) is applied on the systemduring a time interval τ bymanipulating the control
parameter λ. At the end of the protocol, the value of the control parameter is λ τ λ=( ) 1 (figure 1(a)). Thework
measured along one realization of the experiment is:

∫ λ
λ

= ∂
∂

τ
W t

t

H
d

d

d
, (1)

0

whereH is theHamiltonian of the system,which depends on configurational variables x{ } such as atomic
coordinates and the control parameter λ.When dealingwith small systems, theworkWmeasured along the
experimental protocol can be significantly different upon different independent realizations of an identical
protocol becausewe do not have control over themicroscopic configurations explored by the system (i.e.,
variables x{ }) and consequently the term λ∂ ∂H in equation (1) varies in each trajectory.

Now suppose that the time-reversed experimental protocol is performed: the system is in equilibrium at λ1

and the control parameter varies according to λ τ − t( ), until reaching λ0 (figure 1(b)). An important work
relation is the CFR,which reads as [14]:

Δ
−

= −P W

P W

W G

k T

( )

( )
exp . (2)F

R B

⎛
⎝⎜

⎞
⎠⎟

P W( )F is the probability density function of thework performed along a forward protocol, −P W( )R is the
probability density function of thework (with opposite sign) performed along the reversed protocol, and
Δ λ λ= −G G G( ) (1 0) is equal to theGibbs free-energy difference between the equilibrium states of the system
at λ1 and λ0, respectively.

The JE [16] can be obtained bymultiplying equation (2) by −P W( )R and integrating overW. This gives:

Δ− = −W

k T

G

k T
exp exp , (3)

FB B

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where 〈 〉... F denotes the average over forward trajectories. Even though the JE is a corollary of the CFR, it was
derived earlier. A consequence of equation (2) is that the value of theworkwith identical probability to occur in
the forward and the reversed experimental protocols (i.e, = −P W P W( ) ( )F R ) is equal to the free-energy
difference ΔG, and it is always the same nomatter how far from equilibrium the system is driven during the
experimental process. Another interesting consequence of bothCFR and JE is that they predict the existence of
trajectories where Δ<W G even though, thework average 〈 〉W evaluated overmultiple independent
realizations of the experiment is always larger, or equal if the protocol is applied slow enough, to the free-energy
difference, Δ〈 〉 ⩾W G. This result is the second law of thermodynamics for small systems: for systems subject to
stochastic thermodynamics that have few degrees of freedom the second law of thermodynamic is recovered by
taking the average over an infinite number of repetitions of the experiment.

The recovery of free-energy differences from irreversible workmeasurements is possible by applying the JE
(equation (3)) to unidirectional workmeasurements or applying theCFR (equation 2) to bidirectional work
measurements (when both the forward and the reversed protocols are feasible). Typically, the combination of

Figure 1. Forward and reversed protocols. Schematic representation of a forward protocol (a) and its reversed (b) in arbitrary units of
time: the control parameter λ is externally controlled between values λ0 and λ1 during a time interval τ. The reversed protocol is the
time-reversed of the forward protocol.
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information from the forward and reversed protocols provides less biased free-energy estimates. However, when
dissipation and hysteresis effects between the forward and the reversed processes are high, thework distributions
in equation (2) separate from each other and a large error is introduced in the free-energy estimate. A theory of
bias is then required to improve results [17].

Applications of FRs include themeasurement of the free energy of formation of RNA andDNAhairpins
[18]; the determination of the stability of native domains in proteins [19]; themeasurement ofmechanical
torque in rotarymotors [20]; the conversion of information intowork in systems under feedback control [21];
the recovery of free energy landscapes fromunidirectional workmeasurements [22, 23]; the reconstruction of
the free-energy branches for the differentmolecular states of a system as a function of the control parameter
[24, 25]; the determination of the free energies of formation of kinetic states [25]; and even themeasurement of
binding free-energies and equilibrium constants in chemical reactions [26–28].

3.1. Experimental validation of theCrooks equality
Herewe experimentally test the CFR as it was done in 2005 byDelphinCollin and collaborators [18], which
turned out to be fundamental to establish the basis of how to determine the free energies of formation of
molecules from irreversible workmeasurements [19, 29–31].Here, we pull a DNAhairpin using optical
tweezers (figure 2). Pulling experiments consist of unfolding and folding processes.Hereafter, the unfolding
process will be identifiedwith the forward protocol, whereas the folding process will be identifiedwith the
reversed one. The dynamics ofmolecules during a singlemolecule experiment can be described through a single
collective variable: the end-to-end distance. themechanical work performed on the system, defined in
equation (1), can be directlymeasuredwithout knowing the internal configurations of the different elements of
the experimental system.

In the unfolding process (red-solid trajectory infigure 3(a)), the trap-pipette distance λ is initially set to λ0,
where themolecule is fully equilibrated in its folded-native stateN. Next, λ is increased at a constant pulling
speed v during a time interval τ ( λ λ= =t vd d ˙ ). During this period, themechanical force applied to theDNA
hairpin also increases. For a given stochastic value of the force, the hairpin can no longer withstand the force and
it unfolds. This is observed as an abrupt drop in force that corresponds to the relaxation of the bead into the
center of the optical trap due to the release of ssDNAassociatedwith the unfolding of the hairpin.Hopping
events between statesN andU are occasionally observed along a given trajectory. Regardless of themolecular
state of the hairpin (folded in the native conformationN or unfolded in the stretched conformationU), λ td d
equals v until the value λ1 is reached at τ=t , λ τ λ=( ) 1, where the protocol stops and themolecule remains in
stateU. According to equation (1), theworkmeasured along an unfolding trajectory is:

∫ ∫ λ= =
τ

λ

λ
W t vf fd d , (4)

0 0

1

which corresponds to the area below the force distance curve (FDC;figure 3(a)). Since the force at which the
hairpin unfolds and the number of hopping events changes in each realization of an unfolding protocol, the
value ofW is different in each trajectory.

Figure 2. Singlemolecule experiments with optical tweezers. (a) Themolecule is tethered between two 29-base pairs long dsDNAhandles
that act as rigid spacers. Using antidigoxigenin–digoxigenin and biotin–streptavidin bonds, each end of thewholemolecular construct
is attached to amicron-sized polystyrene bead. Finally, one bead is immobilized in the tip of amicropipette and the other is captured
in the optical trap. In themini-tweezers setup the control parameter is the distance between the center of the optical trap and the tip of
themicropipette, which is denoted by λ. (b)Detail of the sequence for the hairpin used.
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In the refolding process the time-reversed protocol λ τ − t( ) is applied (blue-dashed trajectory in
figure 3(a). Therefore, the trap-pipette distance λ is initially set to λ1, where themolecule is equilibrated in state
U. Next, λ is decreased at the constant pulling speed −v ( λ λ= = −t vd d ˙ ) during the time interval τuntil it
reaches the value λ0, where the protocol ends and themolecule equilibrates in stateN. Along the folding process,
the force applied to theDNAhairpin decreases.When it reaches a sufficiently low value, themolecule folds and a
jump in force is observed. Thework in a given folding trajectory ismeasured as:

∫ ∫ λ= − = −
τ

λ

λ
W t v f fd ( ) d , (5)

0 0

1

which is equal to the area below the FDCwith a negative sign (figure 3(a)). Again, the value ofW is different for
each trajectory.

Figure 3(b) shows the experimental P W( )F and −P W( )R measured by pulling the hairpin at two different
pulling speeds. It can be observed that, even though hysteresis effects (and therefore dissipation) increase with
the pulling speed, thework value at which the two distributions cross each other does not depend on v.
According to theCFR, such value is equal to Δ Δ λ λ= = −G G G G( ) ( )NU U N1 0 , since at λ0 themolecule is
equilibrated in stateNwhereas at λ1 the system is in equilibrium at stateU. Themeasurement of the crossing
point of work distributions obtained at 60 and 180 nm s−1 gives Δ = ±G 335 1NU and ± k T336 1 B ,
respectively (figure 3(b)).

A validation of theCFR is shown infigure 3(c), where the logarithmof the ratio between the probabilities
P W( )F and −P W( )R versusW (in kBTunits) is represented [32]. The linearfit to the experimental data gives a
slope equal to 0.95 ± 0.05, which is in excellent agreement with the theoretical prediction provided by
equation (2),

Figure 3.Experimental validation of the Crooks fluctuation relation. (a) Example of an unfolding (red-solid) and folding (blue-dashed)
trajectory andmeasurement of thework value as the area below the FDC (dashed areas). (b) Experimental work distributions, PF(W)
(red) and −P W( )R (blue),measured at twodifferent pulling speeds. The value of the work at which the forward and reversedwork
distributions cross is equal to the free-energy difference ΔGNU (gray square). A total of 224 unfolding and 224 folding trajectories
weremeasured at 60 nm s−1 and 77 unfolding and folding trajectories wheremeasured at 180 nm s−1. (c) Logarithmof the ratio
between the probabilities PF(W) and −P W( )R versusW andfit to a straight line. The theoretical slope is 1 (equation (6)), and the value
of thework at which − =P W P Wlog( ( ) ( )) 0F R equals ΔGNU . (d)Matching between the experimentalmeasurement ofPF(W) (solid
squares and solid circles) and of Δ− −P W W G k T( )exp( )R NU B (empty squares and circles), obtained by pulling the hairpin at 60
and 180 nm s−1 (red squares and blue circles, respectively).
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Δ
−

= −
P W

P W

W

k T

G

k T
log

( )

( )
, (6)F

R

NU

B B

⎛
⎝⎜

⎞
⎠⎟

that implies that the slope equals 1. In addition, from this linearfit we canmeasure ΔGNU as the value of the

work at which − =( )P W P Wlog ( ) ( ) 0F R , which is essentially equivalent to determining thework valuewhere

= −P W P W( ) ( )F R . In this case, Δ = ±G k T335.3 0.5NU B .
Yet another verification can be obtained by rewriting theCFR as:

Δ
= −

−
P W P W

W G

k T
( ) ( )exp . (7)F R

NU

B

⎛
⎝⎜

⎞
⎠⎟

Accordingly, if wemultiply the experimentallymeasured reversedwork distribution −P W( )R by the term
Δ−W G k Texp(( ) )NU B we should get the forwardwork distribution P W( )F [10, 17]. This is shown in

figure 3(d) for thework distributionsmeasured at 60 and 180 nm s−1 (squares and circles respectively). There,
the reversedwork distribution obtained at 60 nm s−1 (solid blue histogram infigure 3(b)) has beenmultiplied
by Δ−W G k Texp(( ) )NU B , with Δ = ±G k T335.7 0.5NU B , thus obtaining the empty squares infigure 3(d)
which are in good agreementwith the experimentallymeasured forwardwork distribution at 60 nm s−1 (solid
squares infigure 3(d) and solid red line infigure 3(b)). In addition, the term Δ− −P W W G k T( )exp(( ) )R NU B

allows us to infer the shape of the left-most tails of the forwardwork distribution obtained at 60 nm s−1. An
identical approach is perform forworkmeasurements obtained at 180 nm s−1 with Δ = ±G k T335.1 0.5NU B

(circles infigure 3(d)). Noteworthy, both values of ΔGNU are in good agreement with the two previous
estimators.

Finally, one could describe thework distributions obtained infigure 3(b) as Gaussian functions. However, it
must be stressed that this is a particular result for this hairpin and not a general consequence of non-equilibrium
single-molecule experiments. It can bemathematically proved that Gaussianwork distributions satisfying the
CFR (equation (2))must fulfill the following relation:

σ Δ± ∓ =W
k T

G
1

2
, (8)NU

2

B

where 〈 〉W is the averagework over trajectories, σ2 is the variance of thework distribution. The signs above (+
in 〈 〉W and− in σ2) are usedwhen extracting the free energy difference ΔGNU from forwardwork
measurements, while the signs below (− in 〈 〉W and+ in σ2) are usedwhen extracting ΔGNU from reversework
measurements. Using equation (8)we get Δ = ±G k T335.1 0.5NU B and Δ = ±G k T335 5NU B by fitting to
Gaussian functions the forwardwork distributionsmeasured at 60 and 180 nm s−1 respectively, and
Δ = ±G k T334.9 0.4NU B and Δ = ±G k T336 6NU B by fitting toGaussian functions the reversedwork
distributions obtained at 60 and 180 nm s−1 respectively. Again, these results are in good agreement with
previous estimations of ΔGNU .

In order to extract the free energy difference between statesN andU at zero force, ΔG0, we need to subtract
the elastic contributions due to stretching the handles and the ssDNA, displacing the bead in the optical trap, and
orienting the hairpin double helix. In the example depictedwe get Δ = ±G k T50 40 B , in close agreementwith

predictions obtained using the nearest-neighbor (NN)model (Δ = ±G k T50 10
NN

B ).

4. The extendedfluctuation relation (EFR)

Standardwork relations allow us tomeasure free-energy differences between a final state and an initial state of
the system along an experimental protocol. A requirement of standard FRs is that the initial state in both the
forward and the reversed protocols are sampled in full equilibrium conditions. This is a limitation if onewants to
measure free-energy differences between states that are difficult to observe in full equilibrium conditions and
that are only transiently sampled in non-equilibrium experiments, such as intermediates ormisfolded
molecular states. The thermodynamic characterization of such states is interesting because of its crucial role in
the fate ofmanymolecular reactions, for instance protein and peptide-nucleic acid binding, specific cation
binding, antigen–antibody interactions, transient states in enzymatic reactions or the formation of transient
intermediates and non-native structures inmolecular folders.

Here we show that it is possible to extend theCFR in order to overcome this limitation and recover free
energy differences for kineticmolecular states that can be observed in partial equilibrium conditions along a
non-equilibriumprotocol. Inwhat follows, we define a ‘kinetic state’ as a partially equilibrated region ′ of the
configurational space,meaning that configurations inside each region are sampled according to the Boltzmann–
Gibbs equilibriumdistribution restricted to such region [12]. In contrast, the statistical weights of the different
regions ′ do not necessarily follow an equilibriumdistribution. It can bemathematically described as:

6

New J. Phys. 17 (2015) 075009 AAlemany et al



∑

χ=

= −

λ λ
λ

λ

λ
λ

′ ′
′

′
∈ ′

  




P x P x x
Z

Z

Z
E x

k T

( ) ( ) ( ) ,

exp
( )

, (9)
x

,
eq

,

,
B

⎛
⎝⎜

⎞
⎠⎟

where χ =′ x( ) 1 if ∈ ′x and zero otherwise, = −λ λ
λ( )P x Z( ) exp

E x

k T
eq ( )

B
is the Boltzmann–Gibbs

equilibriumdistribution, ∑= −λ
λ( )Z exp

x

E x

k T

( )

B
is the partition function of the system at λ, and λ ′Z , is the

partition function restricted to the region ′ [33]. In the case of biomolecules, the configurational space can be
considered to be partitioned into differentmolecular kinetic states, such as the native conformation,
intermediate andmisfolded states, or the unfolded conformation. As a result, during a pulling experiment we
assume that themolecule follows a sequence of kinetic states that determines its trajectory. Because of thermal
fluctuations and the stochastic nature of small systems, each independent realization of a pulling experiment
may result in a different trajectory. Hence, themolecule does not necessarily follow the same sequence of kinetic
states for different realizations of the identical protocol.

LetA andB denote any two kinetic states of a thermodynamic system and let λ denote the control parameter.
In a forward process the system starts in partial equilibrium and λ varies from λ0 to λ1during a time τ according
to a predetermined protocol λ t( ). In the time-reversed process the system is initially set in partial equilibrium
and λ varies from λ1 to λ0 according to the time-reversed protocol λ λ τ= −t t˜( ) ( ). In this situation, different
kinetic states can be accessed by the system at the beginning of both the forward and the reversed protocols, and
consequently different trajectories connecting different kinetic states can be experimentally observed. For the
trajectories that connect the kinetic stateA at the beginning of the forward protocol with the kinetic stateB at the
beginning of the reversed protocol the EFR reads as [24, 25]:

ϕ

ϕ
Δ

−
=

−→

←

→

←
P W

P W

W G

k T

( )

( )
exp , (10)F

A B

R
A B

F
A B

R
A B

AB

B

⎛
⎝⎜

⎞
⎠⎟

where Δ λ λ= −G G G( ) ( )AB B A1 0 is the free energy difference between kinetic statesB at λ1 andA at λ0;
→P W( )F

A B and −←P W( )R
A B denote the partial work distributions for the forward and reversed processes that

start and end atA andB respectively; and ϕ →
F
A B and ϕ ←

R
A B are the fraction of paths starting inA (orB) at λ0 (or

λ1) and ending inB (orA) at λ1 (or λ0). The EFR implies that thework value at which the forward and the
reversedwork histograms cross each other ( = −→ ←P W P W( ) ( )F

A B
R
A B ) is no longer equal to the free energy

difference of the system at λ1 and λ0 but it is equal to Δ ϕ ϕ+ → ←( )G k T logAB F
A B

R
A B

B .

If equation (10) ismultiplied by −←P W( )R
A B and the resulting expression is integrated overW one gets an

extended version of the JE for kinetic states,

Δ ϕ

ϕ
−

−
=

←

→
W G

k T
exp , (11)AB

F

R
A B

F
A B

B

⎛
⎝⎜

⎞
⎠⎟

where 〈 〉... F denotes the average over forward trajectories.
There are twomain differences between the EFR in equation (10) and theCFR in equation (2). First, the use

of partial work distributions in the EFR implies that from all themeasured forward (reversed) trajectories, only
those starting in stateA (B) and ending in stateB (A) are selected. Second, the presence of the prefactor
ϕ ϕ→ ←

F
A B

R
A B in the EFR introduces the additional correction ϕ ϕ− → ←k T log( )F

A B
R
A B

B into theCrooks
estimation of the free-energy difference between kinetic states. Noteworthy, the EFR is a generalization of the
CFR (equation (2)), since equilibrium is a particular case of partial equilibrium: if the forward and reverse
protocols start in full equilibrium at statesA andB, respectively, the two fractions ϕ →

F
A B and ϕ ←

R
A B are equal to 1

and hence theCFR is recovered from equation (10). However, in partial equilibrium conditions the omission of
the prefactor ϕ ϕ→ ←

F
A B

R
A B leeds to systematically biased results for the free-energy differences between different

kinetic states [24].We emphasize that for the case of kinetic structures that apparently behave reversibly under
the protocol, ΔGAB is not just equal to themeasuredwork during the experiment, which is apparently reversible,

since the term ϕ ϕ← →k T log( )R
A B

F
A B

B must be added. Although this correctionmight be small, it is important

inmany situations. For instance, ignoring the prefactor ϕ ϕ← →k T log( )R
A B

F
A B

B even if very low hysteresis is

obtained between forward and reversed processes in a case where ϕ =← 0.01R
A B and ϕ =→ 1F

A B would
underestimate by 4.5 k TB the free energy ΔGAB.

4.1. Experimental validation of the EFR
Toprove the validity of the EFRwe pull aDNAhairpin at two different pulling speeds (60 and 180 nm s−1) with
optical tweezers. Again, the unfolding process is identifiedwith the forward protocol, whereas the folding
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process with the reversed one.Nowwe set λ0 at−40 nm (figure 3(a)), where themolecule is always folded in the
N state either in the forward (unfolding) and reversed (folding) protocols.We then apply the EFR at different
values of λ1 in the interval λ ∈ −[ 40, 55]1 nm.We consider themolecule as partially equilibrated for any value
of λ1, andwe divide its phase space into two regions identifiedwith statesN andU. For each value of λ1we follow
the following steps:

1. We classify the set of forward trajectories into two subsets according to the state of the molecule at the end of
the protocol, where λ equals λ1. As a result, one of the subsets contains the trajectories where themolecule
starts at stateN at λ0 and ends at stateN at λ1 (hereafter referred to as ‘ →N N ’ trajectories), and the second
subset contains all the trajectories where themolecule starts atN and ends atU (trajectories ‘ →N U ’). Then,
we compute the fractions of forward trajectories ϕ →

F
N N and ϕ →

F
N U as the ratio of the number of trajectories

→N N and →N U , respectively, and the total number of forward trajectories (ϕ ϕ+ =→ → 1F
N N

F
N U ).

Results at different values of λ1obtained at two different pulling speeds are shown in figure 4(a). Note that for

λ < 01 nmand λ > 401 nmall forward trajectories end at stateN orU, respectively.

2. We classify reversed trajectories according to the state of the hairpin,N orU, at the beginning of the reversed
protocol at λ1. At the end of the reversed protocol, at λ0, the hairpin is always atN. Therefore, there are two
types of forward trajectories which are ‘ ←N N ’ and ‘ ←N U ’. Under these circumstances,
ϕ ϕ= =← ← 1R

N N
R
N U and ϕ ϕ= =← ← 0R

U N
R
U U always, since thefinal state of themolecule at the selected

value of λ0 along a forward protocol is alwaysN.

3. We find the partial work distributions →P W( )F
N N , →P W( )F

N U , −←P W( )R
N N and −←P W( )R

N U for each
corresponding set of forward and reversed trajectories. Infigure 4(b)we show results obtained at λ = 101

nm.Now, the point at which →P W( )F
N U and −←P W( )R

N U cross each other does actually depend on the
pulling speed.

4. By applying the EFR, we find ΔGNN and ΔGNU using the partial work distributions and the prefactors ϕ →
F
N N

and ϕ →
F
N U .

The free-energy difference ΔGNN or ΔGNU as a function of the control parameter λ1 is usually referred to as
the free-energy branch of stateN orU, respectively. Infigure 4(c)we show the free-energy branches Δ λG ( )NN 1

and Δ λG ( )NU 1 obtained using the EFR for the two different pulling speeds. In both cases, the free energy of state
N at λ = −400 nm is taken as the reference energy. As expected, the profile of the free-energy branches does not
depend on the speed of the pulling protocol.

For a better visualization, infigure 5(a)we plot the free-energy branches for statesN andU taking as the
reference energy the full free energy ΔG of the system at each value of λ1, defined as:

Figure 4.Application of the extended fluctuation relation. (a) Fraction of forward trajectories ϕ →
F
N N (top) and ϕ →

F
N U (bottom) as a

function of λ1 obtained at the twodifferent pulling speeds. Note that ϕ ϕ+ =→ → 1F
N N

F
N U . (b) Partial forward and reversedwork

distributions →P W( )F
N N , −←P W( )R

N N (top) and →P W( )F
N U , −←P W( )R

N U (bottom) forwork values obtained by integrating the FDC
between λ = −400 nm and λ = 101 nm. (c) Free-energy branches forN andU relative to Δ λG ( )N 0 obtained by direct application of
the EFR (equation (10)) setting λ = −400 nm and varying λ1. The vertical dotted line indicates the value of λ* at which statesN andU
have the same free energy, Δ λ Δ λ* = *G G( ) ( )NUNN . Results are shown for two different pulling speeds.
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Δ
Δ Δ

= − − + −G k T
G

k T

G

k T
log exp exp . (12)NU

B
NN

B B

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

At low values of λ1 the stability of theDNAhairpin is governed by stateN, whereas at large values of λ1 themost
stable state isU. It can be observed that at λ λ= ≃* 101 nm statesN andU coexist as ΔΔ λ ΔΔ λ≃* *G G( ) ( )N U .
Force values of statesN andU along the FDC at λ* are approximately 15.2 ± 0.2 pN and 14.0 ± 0.2 pN,
respectively. This gives an average force value equal to 14.6 ± 0.7 pN (figure 4(a)). Remarkably, this value is in
good agreement with the coexistence force of the hairpin predicted by the nearest-neighbourmodel forDNA
thermodynamics ( = ±f 15.0 0.4c pN).

To prove the validity of the EFR, we determine the free-energy branches of statesN andU obtainedwithout
the prefactor ϕ →

F
N N and ϕ →

F
N U . These are shown infigure 5(b) relative to the full equilibrium free energy

(equation (12)). In this case, free-energy branches depend on the pulling speed, specially for stateU.Moreover,
these results suggest that the stability of hairpin is always dominated by stateUunder pulling experiments (i.e.,
the free-energy branches forN andU do not cross at any value of λ1). Hence, it is observed that the use of the EFR

and the presence of the prefactors ϕ ϕ→ ←
F
N N

R
N N and ϕ ϕ→ ←

F
N U

R
N U (with ϕ =← 1R

N N and ϕ =← 1R
N U ) in

equation (10) are required to properly recover the thermodynamic stabilities of the two states.

4.2. The EFR and feedback protocols
In recent yearsmuch attention has been devoted to thermodynamic transformations involving feedback. These
transformations, instead of using afixed protocol λ t( ), choose among different protocols depending on the
evolution of the system. A simple example of a pulling experiment with feedback performed on aDNAhairpin
would be the following (figure 6): we start at time t=0 at a low force andwith themolecule in stateN; we pull at a
constant speed v until time =t tm where λ λ λ= >m 0, and ameasurement is performed on themolecule. If the
molecule is still folded the pulling goes on until λ λ=t( ) 1with the same pulling speed v. If themolecule is
unfolded the pulling speed changes to ′ >v v and the pulling still goes on to thefinal value of the control
parameter λ1. Such experiments can readily be implemented in an optical tweezers setup. The fact that the
pulling speed is raised only if themolecule is found in the unfolded state will prevent temporary refolding events.

Under feedback, we expect JE not to be fulfilled as, on average, we are decreasing thework needed to unfold
themolecule. The EFR gives us amethod to quantify the violation of the JE.Wewill have to consider free-energy
differences for different values of λ sowe extend the previous notation to:

Δ Δ= = −λ λ λ λG G G G , (13)AB AB B A
,0 1 1 0

where Δ λ λGAB
,0 1 is the free-energy difference of a system in partial equilibrium in stateA at λ0 and a system in

partial equilibrium in stateB at λ1. For free energies conditioned only on the state at the start (or end) of the

protocol wewill use the symbol Δ λ λGA·
,0 1 (Δ λ λG B·

,0 1). The EFR enables us to consider conditional averages, where
the condition is on the trajectory of the system.We could for example condition the path average, so that the
molecule is in a given state when λ λ= m. This amounts to inserting a term χ x( )A tm in the average, where
χ =x( ) 1A if ∈x A and zero otherwise, and xt denotes the configurational variable at time t. As afirst exercise we
will consider the standard JE andwrite it as a sumover contributions conditioned to visiting a given state at time
tm:

Figure 5. Free-energy branches. (a) Free-energy branches forN andU relative to the full equilibrium free energy,
ΔΔ Δ Δ= −G G GB NB , where =B N U, , for each value of λ1 (equation (12)). The vertical line indicates the value of λ* at which
statesN andUhave the same free energy, ΔΔ λ ΔΔ λ* = *G G( ) ( )N U . (b) Free-energy branches of statesN andU relative to the full
equilibrium free energy ΔG measured using theCFR for pulling experiments performed at two different pulling speeds. The vertical
line indicates the value of λ* at which statesN andU have the same free energy according to the EFR.
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∑

∑

χ

ϕ

− = −

= − −λ
→

→ →

W

k T

W

k T
x

W

k T

W

k T

exp exp ( ) ,

exp exp , (14)

B F B A
A t

F

A
F

A

B
F

A

B
F

A

,
· 0,m

·
m,1

·

m

m

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where the sum is taken over disjoint sets partitioning all the phase space;Wi j, denotes thework performed in the

interval λ λ,i j; ϕ λ
→

F
A

,
·

m
is the fraction of trajectories which start at equilibrium at λ0 and end in stateA at λm; and

〈 〉→... A· (〈 〉 →... A ·) denotes an average conditioned to ending (starting) in stateA. Using the EFR (equation (11))
we can compute explicitly the two conditional averages:

∑

∑

∑

Δ

Δ
ϕ

Δ

Δ ϕ Δ

− = − −

= − −

= − = −

λ λ

λ λ

λ

λ λ

λ λ

λ

λ λ

→

←

←

W

k T

G

k T

W

k T

G

k T

G

k T

G

k T

G

k T

exp exp exp ,

exp exp ,

exp exp , (15)

B F A

A m
A

A

A
R
A A

A
R
A

·
,

B

,1

B

·

·
,

B
,

· ·
,

B

,

B
,

·
,

B

m

m

m

m

m

0

0 1

0 1 0 1

⎛
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⎞
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⎛
⎝
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⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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wherewe used ϕ ϕ =λ λ
→ →, 1F

A
R

A
,

·
,

·
1 0

to recover the result of the JE equation (3). In thisfirst exercise we havewritten

the exponential average of thework as a sumof conditional averages and have then recovered the JE computing
the conditional averages using the EFR.Wewill now follow a similar strategy to compute the exponential average
of thework under feedback.We consider again the feedback protocolmentioned earlier in this section: up λm

the pulling speedwill be constant and equal to v, at λ λ=t( ) m weperform ameasurement and change the
pulling speed to vA depending on themeasurement outcome.Wewill consider the exponential average of the
work and break it again, as in equation (14) into conditional contributions:

∑

∑

χ

ϕ

− = −

= − −λ
→

→ →

W

k T

W

k T
x

W

k T

W

k T

exp exp ( ) ,

exp exp . (16)

A
A t

A
F

A

F

A

F v

A

B FB B
FB

,
· 0,m

B

·
m,1

B
,

·

m

m

A

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

By conditioning the trajectory on the state of the system at themoment of themeasurement λ λ=t( ) m we are
able towrite the exponential work average in the feedback protocol as a sumof conditional averages with
standard protocols. The only difference with the case of the standard JE is that the second conditional average
nowdepends on themeasurement outcome through the pulling speed, as denoted by the subscript vA.We can
nowperform the same steps as in the previous computation (equation (15)) and get:

∑Δ ϕ− = −
λ λ

λ
←W

k T

G

k T
exp exp . (17)

A
R v
A

B FB

,

B
, ,

·
m A

0 1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Figure 6.Example of a feedback protocol. At time t=0 themolecule is in full equilibrium in stateN.We pull at a constant pulling speed v
until time =t tm where λm. Here wemeasure the state of themolecule. If themolecule is folded (stateN) wee carry onwith the
original pulling experimentwith the pulling speed v. If themolecule is unfolded (stateU) we increase the pulling speed at ′ >v v . In
both cases, the pulling goes on to thefinal value of the control parameter λ1.
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The symbol ϕ λ
←

R v
A
, ,

·
m A

denotes the fraction of trajectories starting at equilibrium at λ1 and arriving toA at λm in a

reverse protocol with pulling speed vA. In the previous computations these fractions summed to one: theywere
evaluated using the same pulling speed.Here they do not sum to one anymore: each fraction is evaluated using a
different pulling speedwhich depends on the folding stateA. This termquantifies the violation of the JE by
feedback-based protocols. The reader familiar with the theory of fluctuation theorems (FTs) in presence of
feedbackwill recognize in the above expression the parameter ∑γ ϕ= λ

←

A
R v
A
, ,

·
m A

introduced in [34]. Summing up

we have used conditional averages to connect the theory of feedback protocols and that of the EFR, in an effort to
develop unifying concepts in the rapidly expanding field of FRs.

5. From free energymeasurements to inference

5.1. Thermodynamic inference
Toput the discussion in perspective let us supposewe have two optical traps focused in amicrofluidics chamber
filledwithwater in a dual-trap optical tweezers setup. ADNAmolecule is then tethered between two beads
captured in the optical traps forming a dumbbell (figure 7(a)). Themolecule is being pulled bymoving one
optical trapwhile the other remains at rest in the reference frame ofwater. The two optical traps canmeasure
forces so in principle one couldmeasure thework using the force in either of the two traps. The question is
whether both forces yield equivalent workmeasurements or not. This problemhas been addressed inmuch
detail in [10]wherewe combined theory and experiments to demonstrate that the forcemeasured in themoving
trap (with respect to the reference frame ofwater) is the one thatmust be used to extract the correctmechanical
workW according to the usual definition in stochastic thermodynamics (equation (1)), or its extension in the
presence of ameanflow [35]. In contrast, the forcemeasured in the trap at rest provides an incorrect work
measurementW′which does not satisfy the FT (figure 7(b)). The difference between the twoworks,

= − ′+W W W equals to the energy dissipated by the center ofmass of the dumbbell. In the over-damped limit,
which applies to our setup, this amounts to γ=+ +W v t2 , where γ+ is the hydrodynamic coefficient of the
dumbbell, v is the speed of themoving trap and t is the duration of the pull.Wewill callW′ a partial work
measurement because itmisses a part ( +W ) of the full work exerted = ′ + +W W W , and thus a part of the total
entropy production.

Let us now suppose that we are in a situationwherewe can onlymeasure thework in the trap at rest,W′,
rather thanW. This is not a purely hypothetical scenario as several dual-trap setups can onlymeasure thework in
the trap at rest due to technical reasons [36–38]. In this case we should not apply theCFRor the JE to extract
free-energy differences. In particular, theCFRwould not be satisfied and the JE applied forW′would
underestimate free-energy differences in apparent violation of the second law. The question remains whetherwe
can infer the full work distribution P W( ) from the partial one, ′ ′P W( ). The answer is positive: for symmetric
dumbbells one can showhowby shifting allmeasured partial work valuesW′ by a constantΔ, Δ= ′ +W W , it is
possible to adjust the value ofΔ to infer the P W( ) that satisfies the FRfigures 6(c) and (d). From the inferred
P W( )we can now extract free energy differences.Moreover the value of Δ = 〈 〉+W provides ameasure of the
missing dissipation due to the Stokes friction experienced by the dumbbell. FromΔwe can then infer the value of
the hydrodynamic coefficient of the dumbbell, γ+, a quantity that can be also extracted bymeasuring
equilibrium fluctuations of the center ofmass of the dumbbell butwhich requires simultaneous tracking of
beads in both traps. The above example provides a case of thermodynamic inference: by onlymeasuringW′
valueswe can infer the correct work distribution P W( ) and from that the value of ΔG using FRs (figure 7(c)).
For asymmetric dumbbells the inference procedure ismore elaborated but still possible.

5.2. The inference problem
The general setting for the inference problem is illustrated infigure 8 for the case of non-equilibrium steady
states. SystemA (for Agent) produces a total entropy St during a time interval t. SystemA is observed via a second
system, e.g. a detectorT such as an optical trap, coupled toA via a noisy channelC.Measurements onT report a
partial entropy production ′St with

∑′ = ′( ) ( ) ( )P S P S S P S , (18)T t

S

C t t A t

t

where P S( )A t is the probability of the systemA to produce a total entropy St, ′∣P S S( )C t t is the transfer function of
the noisy channel, i.e. the probability ofmeasuring an entropy production as ′St given that the total entropy
production is St, and ′P S( )T t is the observed distribution of entropy production. The FTholds for St:
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= −( ) ( )P S
S

k
P Sexp , (19)A t

t
A t

B

⎛
⎝⎜

⎞
⎠⎟

but not, in general for ′St . The inference problem can be stated as follows: canwe infer P S( )A t from a
measurement of ′P S( )T T under the additional assumption that the former satisfies a FT?Aswe shall see, inmany
practical cases the answer is positive and the inference process does also serve as amean to characterize the
transfer function PC of the noisy channel. Inwhat follows and for sake of generality, the inference problem is
formulated in an abstract setting however it applies to several experimental situations in stochastic
thermodynamics. In the case of the dumbbell discussed in the previous section the agent A, producing entropy,
is the trapwhich ismovedwith respect towater. The noisy channel is the dumbbell and the detector is the trap at
rest with respect towater. A second setting for the inference problem is thefield ofmolecularmotors: in these
systems the total entropy production gets at least two contributions, one from translocation against an applied
force and one fromATPhydrolysis.Modern experimental systems allowmeasurements of the former

Figure 7.Dual trapmeasurements and thermodynamic inference. (a) ADNAmolecule is tethered between two beads captured in the
optical traps forming a symmetric dumbbell. Themolecule is being pulled bymoving one optical trap (top)while the other remains at
rest in the reference frame (bottom) of water. (b) Validation of theCFR (equation (2)) by usingwork valuesW andW′ obtained from
themeasurements of force in themoving trap (top) and in the trap at rest (bottom), respectively. It can be seen that the first satisfies
the fluctuation theoremwhile the latter does not. (c) Displacement of thework distributionmeasured in the trap at rest, ′ ′P W( )by
the constantΔ. (d) Verification of theCFR (equation (2)) for different values of values ofΔ. Inset:dependence of the slope of the plot of

Δ Δ′ ′ − ′ − ′ −P W P Wlog ( ) ( ) againstW′ as a function ofΔ. The value at which the slope is 1 gives the value ofΔ that coincides
with +W .
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contributionwhile the latter is not observable at the singlemolecule level. Is it possible to extract useful
information about themechano-chemical step by observing translocation and assuming a FT for the total
entropy production? In this case the agent A is themotor that injects power on a substrate throughATP
hydrolysis; the noisy channel C is themechano-chemical coupling, i.e. the stochastic coupling between entropy
production and translocation; andT is the device used tomeasure translocation under and applied force, be it an
optical ormagnetic trap. Inference problems are possible beyond the single-molecule field: in [45] the authors
consider a situation inwhich the currentflowing through aQuantumDot ismonitored using a capacitively
coupledQuantumPoint Contact. These experiments provide another setting for the inference process.More
recently calorimetric workmeasurements on two-state quantum systems have been considered [9]. Here, work
is estimated through ameasurement of photon exchange between the system and the baths. If, as realistic, some
photons remain unrecorded as they are exchangedwith baths only a partial workmeasurement is available.Here
the agent A is the two state system, the channel C is the detection efficiency of photons and the detector T is the
calorimeter, setting the stage for an inference of the total work (or entropy production).

5.3. Inference close to equilibrium: theGaussian case
Inference is not possible in general: special forms for ′∣P S S( )C are necessary. Close to equilibriumone can
assume the different probability distributions ′P S P S( ), ( )A t T t and ′∣P S S( )C t t to be approximately Gaussian. In
this case:

πσ σ
= −

−
( )

( )
P S

S S1

2
exp

2
, (20)A t

s

t t

s
2

2

2

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

πσ σ
′ =

′
−

′ − ′
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where 〈 〉St , 〈 ′〉St , σs
2, σ′s

2 are themean and variances of bothGaussian distributions.We also assume that:

πσ

Δ

σ
′ = − ′ = −

− ′ −
( ) ( )
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2
exp
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Wehave inmind a situation inwhich only the distribution of ′St ismeasurable. From equations (18), (20)–(22)
one gets:

Δ′ = −S S , (23)t t C

σ σ σ′ = + . (24)s s C
2 2 2

Weassume P S( )A t to satisfy the FT equation (19) and therefore σ = 〈 〉k S2s t
2

B . In contrast ′P S( )T t does not fulfill
the FT equation (19). In fact if one calculates the ratio ′ − ′P S P S( ) ( )T t T t one gets:

Figure 8.Measurement and inference. SystemA (for Agent) produces a total entropy St during a time interval t. SystemA is observed via
a second system, e.g. a detectorT such as an optical trap, coupled toA via a noisy channelC.Measurements onT report a partial
entropy production ′St with ∑′ = ′∣P S P S S P S( ) ( ) ( )T t S C t t A t

t
.
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In this case σ′ = 〈 ′〉x k S2s t
2

B with the dimensionless parameter x quantifying howmuch ′P S( )T t deviates from the
FT. Aswe discuss belowwewill call this an x-FT. The parameter x, quantifying the violation of the FR for ′St , also
characterizes theGaussian noisy channel:

Δ σ σ+ = − ′ = − ′k x k
x

x
S2 (1 ) 2

1
. (26)C C tB

2 2
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⎝
⎞
⎠

Although equation (26) provides important information on the channel, complete inference of P S( )A t from
′P S( )T t (i.e. the simultaneous determination of σC and ΔC) is not possible. Two limiting cases can be considered

inwhich the noisy channel affects only the variance or only themean of the distribution:
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Equation (27) correspond to the case inwhich the noisy channel affects the variance of the probability
distribution but not itsmean and vice–versa, equation (28) corresponds to the case inwhich themean is affected
but not the variance, a situation physically realized in the dumbell example discussed in the previous section. In
both these cases,measuring the distribution of ′St and assuming a FT for St it is possible to recover the

distribution of St. In the intermediate cases inwhich neither the value of ΔC nor that of σC
2 isfixed by physical

constraints, inference can still be possible if somemore information about the system is available (e.g. the Fano

factor of the noisy channel,
σ
Δ

C

C

2

). In [10] we give an experimental example inwhich equilibrium information on

the system is used to complement the inference.

5.4. Inference far from equilibrium
In the previous sectionwe considered inference in aGaussian setting, wherewe could quantify the violation of
the FTby a single parameter x. The assumption of aGaussian P S( )A t is particularly restrictive, as it is limited
to near-equilibriummacroscopic systems. To address general non-equilibrium settingswemust consider
non-Gaussian P S( )A t .Wewill, however, still consider for simplicity aGaussian noisy channel with transfer
function:

πσ σ
′ = ′ − = −

′ −
( ) ( )

( )
P S S P S S

S S1

2
exp

2
, (29)C t t C t t

C

t t

C
2

2

2

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

i.e. a channel affecting the variance of the distribution of entropy production but not itsmean. Themeasured
distribution ′P S( )T t and the full entropy production distribution P S( )A t are related by:

∫
σ

′ = ′ −

= ∗
( ) ( ) ( )

( )

P S S P S S P S

P

d

0, , (30)

T t t C t t A t

C A
2

where σ (0, )C
2 is a normal distributionwithmean zero and variance σC

2, equation (29), and ∗ denotes
convolution. As always wewill assume P S( )A t satisfies the FT, equation (19). Using this symmetry we can
evaluate − ′P S( )T t :
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where = −K St t and σ σ− k( , )C CB
1 2 2 is a normal distributionwithmean σ−k CB

1 2 and variance σC
2. Testing ′P S( )T t

for thefluctuation symmetry yields:
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which shows that the FT equation (25) is not fulfilled in general, but is recovered in the limit σ → 0C
2 , inwhich

=P S P S( ) ( )T A and x=1. The inference process can be realized in the general case (σ ≠ 0C
2 ) case defining a one-

parameter family of probability distributions obtained shifting Δ− ′ −P S( )T t . Repeating the same computation
as for − ′P S( )T t we get:
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The variance σC
2 can nowbe inferred comparing ′P S( )T t with the one-parameter family of probability

distributions Δ− ′ −P S( )T t as shown in figure 9. This allows to select a value Δ Δ= * such that:

Δ

′

− ′ −
=
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−

*
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k
Clog , (34)
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i.e. the asymmetry function Δ′ − ′ − *( )P S P Slog ( ) ( )T t T t is linear in ′St with slope k1 B. Once Δ* is known,

equation (33) implies: σ Δ= =* *k k C2C
2

B B (figure 9). Finally, although in this sectionwe used a transfer
function (PC in equation (29)) with zeromean (Δ = 0C ), the discussion can be extended to the case Δ ≠ 0C .
Similarly to theGaussian case, when both σC

2 and ΔC are different from zero, complete inference is not possible
and one gets Δ Δ σ= +* k2 C CB

2.

5.5. The x-FT and the effective temperature
Let us go back to our near-equilibrium inference example and let us consider the partial entropy production
distribution ′P S( )T t (equation (21)). Being aGaussian distributionwe have already shown in equation (25) that
it fulfills the following relation:

′

− ′
=

′( )
( )

P S

P S

xS

k T
exp , (35)

T t

T t

t

B

⎡
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⎤
⎦⎥

with x being the previously introduced dimensionless parameter fulfilling σ′ = 〈 ′〉xk S2s t
2

B . For reasons thatwill
become clear soonwewill call x thefluctuation ratio. For x=1we get the standard FTwhile in themost general
case where x is different from1wemight better speak of an x-FT.What is the physicalmeaning of the x-FT? In
our example, x characterizes the noisy channel throughwhichwe are observing agent A:measuring a violation of
the FT (equation (35)) yields quantitative information about the system.

Thefluctuation ratio x could be also interpreted as an effective temperature. To better understand this let us
consider the special case of theDNAmolecule tethered between two beads captured in two optical traps
discussed in section 5.1 (figure 7(a)). Under a pulling cycle protocol Δ =G 0 so the dissipationWdis (measured
in themoving trap) equals the full workW and = ′ + +W W Wdis with ′ +W W, the partial and themissingwork
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respectively. In the linear dissipative regimewhere theDNAmolecule is not pulled too fast (the dissipatedwork
varying linearly with the pulling speed) all work distributions areGaussian to a very good approximation. The
partial work distribution ′ ′P W( ) then satisfies a FR equivalent to equation (35),

′ ′
′ − ′

= ′ = ′P W

P W

xW

k T

W

k T

( )

( )
exp exp , (36)

BB eff

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where =T T xeff has the dimensions of a temperature often referred to as the effective temperature. Here, x is
equal to the fraction of the average total dissipatedwork along a cycle 〈 〉W captured by the partial work
measurement. If x= 1we recover the standard FTwith =T Teff . Both x and the effective temperatureTeff carry
the same information about the inference process: they quantify the fraction of entropy productionmissed in
themeasurement of a nonequilibriumprocess.We can summarize this by saying that the standard FT
equation (2) holds for the full dissipationW but does not holdwhen only a part of the total dissipation,W′, is
measured. In this case, an x-FTmay hold generally with a value of the effective temperature typically higher than
T ( < <x0 1). Our discussion has been focused on theGaussian case. For the general non-Gaussian case the x-
FT (equation (35))may hold asymptotically for sufficiently long times t in a given sector of entropy production

rate values i.e. <′
p

S

t
t with p of order 1. This result would be in the line of heat FT [41, 42], where a similar

conclusion has been reached. The x-FT scenario is realized, for example, inweakly ergodic aging systems, as
recently shown in [44]. In this case ′St is equal to the so-called exclusive workwhich is thework delivered by an
externalfield h applied to an aging system, Δ′ =S h At , with ΔA equal to the change during time t of the
observable conjugated to the field h. As shown in [44], the distribution ′P S( )t shows a crossover at a
characteristic value *S . Below *S , ′P S( )t satisfies the standard FT equation (19) just as an equilibrium system.
Above *S a crossover to an x-FT (equation (25)) is observed. Also in this case the parameter x can be given a clear
physicalmeaning. In aging systems the effective temperature and the fluctuation ratio are used to quantify
violations of the FDT that relates correlations and responses [43]. In [44] it was demonstrated that, inweakly
ergodic aging systems in a scenario of entropy driven relaxational dynamics, either the x defined from the x-FT
and from the FDT are equal. In spin-glass theory the physicalmeaning of x is related to the presence of frozen
degrees of freedom that cannot relax over the observable timescales. The parameter x is also related to the Parisi
replica symmetry breaking parameter introduced in the static solution ofmean field spin glasses. Themeaning of
x then appears quite similar to that provided by thermodynamic inference: x quantifies themissing entropy
production or dissipation due to the presence of frozen degrees of freedom in the system.

Figure 9. Inference far fromequilibrium. (a)Amodel entropyproductiondistribution, ∝ − ∗ +P Sexp( 3 )A t
S4
2

t , fulfilling thefluctuation

symmetry (equation (19)). (b)TheGaussian transfer functionPC (Δ σ= =0, 1C C
2 ). (c)Themeasured entropyproduction

= ∗P P PT C . (d)Graphical illustrationof the inference process: Δ* is inferred as that value ofΔ forwhich Δ′ − ′ − *( )P S P Slog ( ) ( )T t T t

is linearwith slope −kB
1 (Δ = 1, red curve, as also reported in the table). Equation (33) then implies: σ Δ= *kC

2
B .
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6. Conclusions

Over the past 20 years we havewitnessed a fast development of theoretical concepts and experimental tools that
have contributed to our understanding of energy processes in non-equilibrium small systems. FTs are nowadays
widely used to recover, from irreversible workmeasurements, the free energy of formation of nativemolecular
states of proteins and nucleic acids. However, amajor requirement to correctly apply standard FRs is that at the
beginning of the forward and reversed experimental protocols the system is fully equilibrated. Thismakes it
difficult to characterize both intermediate andmisfolded states with standard FRs. EFRswere bornwhen full
equilibriumwas replaced by partial equilibrium at the beginning of both forward and reversed experimental
protocols. This introduces a pre-factor in theCFRwhich accounts for the fraction experimental trajectory
observed between two partially-equilibratedmolecular states. The use of EFRs paves theway to investigate the
thermodynamic properties (such as the free-energy branches or the free energy of folding) of not only native
states, but also intermediate,misfolded, and even intermolecular-bound states, whichmight be difficult to study
under equilibrium and become accessible in partial equilibrium conditions. In recent years there has been a
growing interest in the use of thermodynamic transformations involving feedback. In these case the
experimental protocol is stochastic and depends on the trajectory of the system. FRs in the presence of feedback,
then, need to take into account and quantify the information extracted from the system.Using conditional
averages on themicroscopic trajectories we have demonstrated how the theory of feedback control and that of
EFRs are equivalent. Finally, we have shown howFTs are applicable to extract useful information form a variety
biological and physical systems. The recent extension of FTs to thermodynamic inference opens exciting new
perspectives. The fact that in complex systems only a partial amount of information is accessible through direct
experimentalmeasurements calls for a completely new approach. The list of examples where thermodynamic
inference could be applied is large: characterizing themechano-chemical cycle ofmolecularmotors, inferring
work distributions in quantum systems, unravelling feedback effects in autonomous systems, quantifying
heterogeneity inmolecular ensembles and investigatingmolecular evolution inmutational ensembles.
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