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S1 Antibody/antigen conjugation to polystyrene beads

Carboxy-derivatized polystyrene beads of 3 µm and 2 µm diameter (Kisker Biotech

GmbH & Co., Germany) were used for conjugation of antibody and antigen, respectively.

Beads (250 µl/sample) were washed twice with 1 ml of 10 mM NaH2PO4, pH 6 (buffer A).

Following centrifugation at 10000 rpm for 5 min, beads were resuspended in 1 m1 of buffer

A. Then, 2.5 ml of a 90 mM solution of N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide

and 2.5 ml of a 40 mM solution of N-hydroxysuccinimide, both prepared in buffer A, were

added to the bead solution. The mixture was stirred for 20 min at room temperature.

Next, activated beads were centrifuged at 4000 rpm for 5 min and washed once with 1 ml

of 2 mM HCl. Beads were then resuspended in 1.5 ml of 20 mM Na2HPO4/NaH2PO4,

pH 7.5 (buffer B) and 100 µl of serial dilutions of antibody or antigen in buffer B were

added and left to react for 3 h at room temperature. Finally, conjugated beads were

washed three times with 1 ml of buffer C (4000 rpm for 5 min) and stored in 250 µl of

20 mM Na2HPO4/NaH2PO4, 100 mM glycine, pH 7.5, with 3.3 mg/ml BSA and 0.02%

NaN3. In order to avoid multiple binding, the amount of coating antigen/antibody on the

beads was tested at different concentrations until most unbinding events showed single

rupture events. 100 µg of antibody and 250 µg of coating antigen per reaction showed

the best results. The coupling efficiency of the immunoreagents to the polystyrene beads

was checked by measuring the protein content of the supernatant after bioconjugation.

In all cases the bioconjugation yield was between 85 and 90%, indicating a similar

antibody/antigen density on the different biofunctionalized particles.

Antigens consist of low-weight/size estrogens (methyl-boldenone, 17β-boldenone and

testosterone) linked to bovine serum albumin (BSA). Hapten design was carried out

preserving the chemical, electronic and conformational properties of estrogens, while

introducing a spacer arm for the covalent coupling to the BSA protein (Fig. 3a). Haptens

were linked to BSA using the active ester method as previously described1. The use of

BSA is mandatory to reduce electrostatic interactions between polystyrene beads.

S2 Optical tweezers setup

The optical tweezers instrument2 consists of two counter-propagating infrared laser

beams (845 nm) that form a single optical trap. Micron-sized beads can be captured and

manipulated by optical gradient forces. By measuring the change of light momentum

in the deflected beam using position-sensitive detectors (PSD) it is possible to directly

measure the force applied to the bead. The position of the trap can be monitored using
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piezoelectric actuators coupled to a wiggler device that bends the optical fiber of the

lasers. The signal detected by the PSDs is processed by electronic microprocessors and

data is sent to a computer and converted into forces and distances. The data acquisition

frequency is 1 kHz, the force resolution is 0.1 pN and the distance resolution is 0.5 nm.

All experiments are carried out in a microfluidics chamber that can be moved with a

motorized stage. Temperature in the room is kept at 25±1oC.

S3 Removal of multiple interactions

In order to remove multiple bonds that unbind simultaneously we use an extension of a

statistical method proposed by Evans and collaborators3 based on a Poissonian analysis

of rupture forces: from a sample of N experiments we define the binding probability p as

the ratio between the number of successful binding events to N . Next, the probability

to find a given number x of parallel tethers is assumed to follow a Poisson distribution,

P (x) =
e−µµx

x!
. (S1)

It can be shown that µ = − log(1− p) and that the probability to find multiple bonds is

equal to:

Q = P (x > 1) = p− (p− 1) log(1− p). (S2)

Therefore, N × Q gives an estimation of the number of simultaneous multiple binding

events. Tables S1 and S2 show the number N of experiments, the number of successful

binding events and the number of estimated simultaneous binding events N ×Q for the

different polyclonal and monoclonal interactions investigated.

Parallel tethers should dissociate at large forces. Moreover, the total stiffness mea-

sured in a pulling experiment is the sum of the different stiffnesses of each individual

bond. Therefore, both large rupture forces and high stiffness values might suggest the

presence of multiple tethers. We define the distance d:

d =

√√√√( frupt

fmax
rupt

)2

+

(
kbond

kmax
bond

)2

, (S3)

where frupt and kbond refer to rupture force and bond stiffness respectively, and fmax
rupt

and kmax
bond are the respective maximum values experimentally measured. Finally, from

the set of successful binding events, we remove the N ×Q events with largest values of

d.
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bond N successful binding events multiple bonds (eq. (S2))

Pab-MB-BSA 2674 1080 255
PreI-MB-BSA 1597 212 15
Pab-BSA 386 12 0
PreI-BSA 312 17 0

Table S1: Polyclonal recognition and multiple binding events. Number of exper-
iments N , number of successful binding events, and estimated number of simultaneous
multiple binding events according to the Poisson distribution.

bond N successful binding events multiple bonds (eq. (S2))

Mab-B-BSA 2767 944 183
Mab-T-BSA 3347 756 93
Mab-BSA 2215 414 41

Table S2: Monoclonal recognition and multiple binding events. Number of ex-
perimentsN , number of successful binding events, and estimated number of simultaneous
multiple binding events according to the Poisson distribution.

S4 Bond stiffness

To quantify the flexibility of binding we measure the slope of experimental force-distance

curves (denoted by keff) at the preset force value of 5 pN. keff contains the contributions

of the rigidity of the antibody-antigen bond, kbond, and the rigidity of the optical trap,

kOT ' 0.078 ± 0.005 pN/nm4. The mathematical relation between the three different

rigidities is given by:
1

keff
=

1

kbond
+

1

kOT
(S4)

kbond =
kOT · keff

kOT − keff
. (S5)

S5 Removal of non-specific interactions

From pulling experiments carried out using Mab and the complex B-BSA we compute the

2D probability density function of bond stiffnesses (evaluated at 5 pN) and rupture forces,

p(kbond, frupt) (Fig. 3e in the main text). The set of measured unbinding events contains

not only specific interactions between Mab and B, but also non-specific interactions

between Mab and BSA. It is therefore important to remove the former interactions

to properly characterize the thermodynamics and kinetics of the specific bond Mab-

B. Several methods have been used for this purpose5,6. Most of them focus on one-

dimensional analyses where only rupture forces are taken into account and bond rigidities
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are neglected. Here we develop a 2-dimensional Bayesian inference method to extract

the rupture force distributions of specific binding events, by including both kbond and

frupt in the analysis.

In terms of specific and non-specific binding events, p(kbond, frupt) can be written as:

p(kbond, frupt) = p(kbond, frupt|B)p(B) + p(kbond, frupt|BSA)p(BSA). (S6)

where p(B) and p(BSA) are the probabilities of measuring binding to B or BSA respec-

tively, and satisfy p(B) + p(BSA) = 1; p(kbond, frupt|B) and p(kbond, frupt|BSA) are the

conditional probabilities of bond rigidities and rupture forces given the binding events

Mab-B or Mab-BSA respectively.

The quantity p(kbond, frupt|BSA) can be measured experimentally by carrying out

pulling experiments between Mab- and BSA-coated beads (Fig. 3e in the main text).

However, pulling experiments between Mab- and B-coated beads are difficult due to the

small size of B (see Methods in the main text). In order to evaluate p(kbond, frupt|B) we

define a distance I(k0, f0) between p(kbond, frupt) and p(kbond, frupt|BSA) as:

I(k0, f0) =

∫ f0

0
dfrupt

∫ k0

0
dkbond [p(kbond, frupt)− p(kbond, frupt|BSA)]2 . (S7)

The evaluation of I(k0, f0) for the recognition between Mab and B is shown in Figure

S1a. The profile of I(k0, f0) shows a region (black area in the 2D contour plot, Fig. S1a)

where we can assume that the probability p(kbond, frupt|B) of having specific binding

Mab-B is negligible. Therefore, the probability of having non-specific binding events,

p(BSA) = 1− P (B), can be derived from eq. (S6) as follows:∫ ∫
black area

dfruptdkbond p(kbond, frupt) = (S8)

=

∫ ∫
black area

dfruptdkbond p(kbond, frupt|B)︸ ︷︷ ︸
=0

p(B)+

+

∫ ∫
black area

dfruptdkbond p(kbond, frupt|BSA)p(BSA) = (S9)

=

∫ ∫
black area

dfruptdkbond p(kbond, frupt|BSA)p(BSA) (S10)

p(BSA) =

∫ ∫
black area dfruptdkbond p(kbond, frupt)∫ ∫

black area dfruptdkbond p(kbond, frupt|BSA)
. (S11)

In the case under consideration, we get p(BSA) = 0.90± 0.05.
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Finally, using equation (S6) we obtain the probability p(kbond, frupt|B) associated

only to specific binding events (Fig. S1b). In order to obtain the histogram of specific

rupture forces we integrate over bond rigidities:

p(frupt|B) =

∫
dkbond p(kbond, frupt|B). (S12)

In Figure S1c the histogram of specific rupture forces, p(frupt|B), obtained using

the 2-dimensional Bayesian approach is shown (dotted curve). The histogram is also

evaluated using other approaches where rigidity is not included, like plain subtraction of

rupture force histograms, p(frupt)−p(frupt|BSA) (dashed curve, Fig. S1d)6, or setting a

threshold force to separate specific from non-specific events (dotted curve, Fig. S1d)5. In

the case of the specific interaction between Mab and B we see that different approaches

give similar results.

The same procedure is carried out for the recognition between Mab and T. Results

are shown in figure S2.
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Figure S1: Removal of non-specific interactions (related to Figure 4A). (a) 2D
contour plot of I(k0, f0) (eq. (S7)) evaluated for the recognition events between Mab
and the complex B-BSA. (b) 2D contour plot of specific recognition between Mab and
B. (c) Rupture force histogram for the recognition events between Mab and the complex
B-BSA (solid line) and for the specific recognition between Mab and B obtained with
the Bayesian approach (dotted). (d) Specific rupture force histogram for the recognition
between Mab and B, measured using equation (S12) (solid line); by subtracting rupture
force histograms p(frupt) and p(frupt|BSA) (dashed line)6; or by setting a threshold
force to separate specific from non-specific events (dotted line)5.

S-8



d

frupt (pN)

p
(f
ru
p
t|T

)

0.1 0.2 0.3 0.40
0

10

20

30

40

50

0.1 0.2 0.3 0.40
krupt (pN/nm) krupt (pN/nm)

f r
u
p
t

(p
N

)

10

20

30

40

50

0

f r
u
p
t

(p
N

)

c

frupt (pN)

p
(f
ru
p
t)

ba

I (k0, f0) p(kbond, frupt|T)

p(BSA) = 0.92± 0.04

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50

Bayes
Subtraction
Threshold

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50 60

Mab-T-BSA
Mab-T

Figure S2: Specific recognition between Mab and T (related to Figure 4B). (a)
2D contour plot of I(k0, f0) (eq. (S7)) evaluated for the recognition events between Mab
and the complex T-BSA. (b) 2D contour plot of specific recognition between Mab and
T. (c) Rupture force histogram for the recognition events between Mab and the com-
plex T-BSA (black) and for the specific recognition between Mab and T obtained with
the Bayesian approach (red). (d) Specific rupture force histogram for the recognition
between Mab and T, measured using equation (S12) (red line); by subtracting rupture
force histograms p(frupt) and p(frupt|BSA) (green line)6; or by setting a threshold force
to separate specific from non-specific events (blue line)5.
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S6 Force-induced breakage of molecular bonds

Mechanical bond dissociation is a statistical process that can be described with a master

equation for the survival probability P (f) (being the probability of the bond to remain

intact at force f)5,7,8. For an applied force that increases linearly with time, f(t) = rt,

the master equation is given by:

dP (f)

df
= −k(f)

v
P (f), (S13)

where v is the loading rate in pN/s and k(f) is the force-dependent rate of bond dis-

sociation. It mostly depends on the shape of the free energy landscape (FEL) of the

interaction9. Using a proper model for k(f) it is possible to obtain key features of the

FEL of the bond from force-spectroscopy measurements. Most well-accepted models are

summarized below.

S6.1 Bell-Evans model

The simplest approach is given by the phenomenological Bell-Evans (BE) model10, where

k(f) is equal to:

k(f) = k0 exp

(
fx†

kBT

)
, k0 = ω0 exp

(
−∆G†

kBT

)
. (S14)

k0 is the kinetic rate of bond dissociation at zero force; ∆G† the height of the kinetic

barrier; x† is the distance between the bonded and the transition state; kB is the Boltz-

mann constant; and T is the temperature (taken equal to 298 K)3,5,8,11. The attempt

rate of the bond ω0 has been estimated previously for DNA and RNA hairpins, and

values in the range 105 − 107 s−1 have been obtained12–14.

By introducing equation (S14) into (S13) we can analytically solve the resulting

differential equation and obtain:

log (−v logP (f)) = log

(
k0kBT

x†

)
+ log

[
exp

(
fx†

kBT

)
− 1

]
. (S15)

Next, by taking the derivative of P (f) respect to force f we obtain an analytical

expression for the probability density function of the rupture force, p(frupt):

p(frupt) =
k0

v
exp

(
fruptx

†

kBT

)
exp

{
−k0kBT

vx†

[
exp

(
fruptx

†

kBT

)
− 1

]}
(S16)
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Finally, using p(frupt) we can calculate the most probable rupture force 〈frupt〉 and

the standard deviation σf , which in the case of the BE model are equal to:

〈frupt〉 =
kBT

x†
log

(
x†v

k0kBT

)
(S17)

σf = 0.96
kBT

x†
(S18)

S6.2 Dudko-Hummer model

In the Dudko-Hummer (DH) model the kinetic rate k(f) is evaluated from the Kramers

theory of mean first passage times, which gives15:

k(f) = k0

∫ x†
−∞ dxe

−∆G(x)+fx
kBT

∫ x
−∞ dye

∆G(y)−fy
kBT∫ x†

−∞ dxe
−∆G(x)
kBT

∫ x
−∞ dye

∆G(y)
kBT

, (S19)

where k0 is the kinetic rate of bond dissociation at zero force, ∆G(x) is the analytical

expression of the FEL along the reaction coordinate x, and x† is the position of the kinetic

barrier. Therefore, by assuming an expression for ∆G(x) it is possible to compute k(f).

In the Dudko-Hummer model the FEL is model with a single escape barrier lo-

cated at x†. Two different mathematical expressions are proposed: the parabolic po-

tential ∆G(x) = ∆G†(x/x†)2 (x < x†), or the cubic potential ∆G(x) = 3
2∆G†x/x† −

2∆G†(x/x†)3 16,17.

A unified expression for k(f) can be obtained when solving equation (S19) with the

aforementioned potentials:

k(f) = k0

(
1− γ fx

†

∆G†

)1/γ−1

exp

{
∆G†

kBT

[
1−

(
1− γ fx

†

∆G†

)1/γ
]}

. (S20)

γ is a parameter related to the shape of the FEL: γ = 1/2 corresponds to the parabolic

potential whereas γ = 2/3 corresponds to the cubic potential. For γ = 1 the expression

from the Bell-Evans model (eq. (S14)) is recovered.

Again, the differential equation obtained by introducing equation (S20) into (S13)

can be analytically solved:

log (−v logP (f)) = log

(
k0

x†

)
+log

{
exp

[
∆G†

kBT

(
1−

(
1− γ fx

†

∆G†

)1/γ
)]
− 1

}
. (S21)

From the derivative of P (f) as a function of force we get the probability density
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function of the rupture force, p(frupt):

p(frupt) =
k0

v

(
1− γ fruptx

†

∆G†

)
exp

{
∆G†

kBT

[
1−

(
1− γ fruptx

†

∆G†

)1/γ
]
−

− k0kBT

vx†

e∆G†
kBT

[
1−
(

1−γ fruptx
†

∆G†

)1/γ
]
− 1

}. (S22)

Finally, we can calculate the most probable rupture force 〈frupt〉 and the standard devi-

ation σf :

〈frupt〉 =
∆G†

γx†

1−

 kBT

∆G†
log

k0kBTe
∆G†
kBT

+0.577

x†v

γ (S23)

σf =
kBTπ√

6x†

 kBT

∆G†
log

k0kBTe
∆G
kBT

+1.064

x†v

γ−1

(S24)

S7 Force spectroscopy analysis

Taking into account that the FEL of the Mab-B bond can be described with a single

escape barrier we performed a more detailed analysis of rupture forces. We carry out

pulling experiments between Mab-coated beads and B-BSA-coated beads at three dif-

ferent pulling speeds (v ∼20, 70 and 140 nm/s) and remove non-specific interactions

that take place between Mab and BSA (Section S5). In figure S3 we show the obtained

histograms of frupt (panel a), most probable rupture forces 〈frupt〉 and standard devi-

ations σf as a function of the pulling speed v (panel b, top and bottom respectively).

Using equations (S17) and (S18) for the BE model and equations (S23) and (S24) for

the DH model simultaneous fits can be carried out to both magnitudes. Results, shown

in Figure S3 (right) and summarized in Table S3, are in good agreement within error

bars with previous estimations (Table 1).
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Figure S3: Pulling and force jump experiments for the specific bond Mab-B.
(a) Pulling rate dependence of the specific rupture force histogram for the interaction
Mab-B measured in pulling experiments (left) (b) loading rate dependence of the av-
erage rupture forces (right top) and standard deviations (right bottom) for Mab-B.
Simultaneous fits using the BE (solid blue line) and the DH (dashed red for γ=1/2 and
dashed-dotted green for γ=2/3) models (Supplementary Information, section S1)

Table S3: Free-energy landscape parameters for Mab-B. Estimations of x†, k0

and ∆G† obtained from pulling experiments using the BE and the DH fits of 〈frupt〉 and
σf as a function of the pulling speed v (Fig. S3b).

FEL model x† (Å) k0 (s−1) ∆G† (kBT )

BE 5.0±0.3 0.008±0.002 –
Parabolic 8.0±1.0 0.0002±0.0001 13±4
Cubic 7.0±1.0 0.0002±0.0001 12±3
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