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Abstract. – In this note we present an exact solution of the Monte Carlo dynamics of the
spherical Sherrington-Kirkpatrick spin-glass model. We obtain the dynamical equations for a
generalized set of moments which can be exactly closed. Only in a certain particular limit the
dynamical equation of the energy coincides with that of the Langevin dynamics.

There has been in recent years a renewal of the interest in the study of the dynamics in
spin glasses. The main motivation is based upon the fact that real spin glasses (and also real
glasses) are always off equilibrium during the experimental time window, the clearest signature
being the existence of aging [1]. Two main approaches have been put forward very recently
to understand this problem. In the first approach, special emphasis is put on the behaviour
of two-time quantities (like the correlation or the response function at two different times)
for a specific microscopic dynamics [2]. This has been complemented by the study of several
phenomenological models which try to capture the main essentials of the slow dynamical
process [3]. In the second approach, one tries to find the time evolution of some macroscopic
observables (one-time quantities) and, eventually in a latter stage, the evolution of the two-time
quantities [4]. While less ambitious than the first approach, this line of thought allows one to
obtain fairly good results in simple cases.

The major part of these approaches have focused their attention in the solution of the
Langevin or Glauber dynamics [5]. In this letter we analytically solve the Monte Carlo
dynamics in a simple spin-glass model. There are two reasons why this study should be
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of interest. First, there is no special reason to privilege a particular type of dynamics over
others, and it is important to understand why other dynamics may yield different results and
how different these results may be. The second reason is more practical and relies on the fact
that the major part of numerical simulations use the Monte Carlo algorithm. Consequently,
more direct comparisons between theory and numerics can be done.

The model and the dynamics. – The model we are considering is the spherical spin-glass
model with pairwise interaction [6], defined by

E{σ} = −
∑
i<j

Jijσiσj , (1)

where the indices i, j run from 1 to N (N is the number of lattice sites) and the spins σi satisfy
the spherical global constraint,

∑N
i=1 σ

2
i = 1.

The interactions Jij are Gaussian distributed with zero mean and 1/N variance. This model
has been extensively studied in the literature in all its details (the statics and the Langevin
dynamics [7]) and is a useful starting point for our approach.

We will consider the Monte Carlo dynamics with the Metropolis algorithm (another algo-
rithm would yield the same qualitative results). The dynamics is done in this way: we take
the configuration {σi} at time t and we perform a small random rotation of that configuration
to a new configuration {τi} where τi = σi + ri

N3/2 and the ri are random numbers extracted
from a Gaussian distribution p(r) of finite standard deviation ρ,

p(r) =
1√
2πρ2

exp
[
− r2

2ρ2

]
. (2)

This particular choice of the equation of motion makes the dynamics soluble. From that
set of movements {τi}, we will select those that satisfy the spherical constraint. Let us denote
by ∆E the change of energy ∆E = E{τ} − E{σ}. According to the Metropolis algorithm we
accept the new configuration with probability 1 if ∆E < 0 and with probability exp[−β∆E]
if ∆E > 0 where β = 1

T is the inverse of the temperature T .

The joint probability. – P (∆hk,∆E). In what follows, we will work in the diagonal basis
of the interaction matrix Jij . In that basis the energy reads E{σλ} = − 1

2

∑
λ Jλσ

2
λ, where the

σλ are the projections of the configuration {σi} on the diagonal basis and the eigenvalues, Jλ,
are distributed according to the Wigner semicircular law, w(λ) =

√
4− λ2/2π. We also define

the generalized k-moments,

hk =
∑
(i, j)

σi(Jk)ijσj =
∑
λ

Jkλσ
2
λ , (3)

where h0 = 1 (spherical constraint) and h1 = −2E. The basic object we want to compute
is the joint probability P (∆hk,∆E) to have a certain variation ∆hk of the k-moment given
that the energy E has also varied by a quantity ∆E. This is a quantity which gives all the
information about the dynamics. The variation of the quantities hk and E in an elementary
move are given by 

∆E∗ = − 1√
N

∑
λ

Jλσλrλ −
1

2N

∑
λ

Jλ r
2
λ ,

∆h∗k =
2√
N

∑
λ

Jkλ σλ rλ +
1
N

∑
λ

Jkλ r
2
λ.

(4)
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The joint probability P (∆hk,∆E) is

P (∆hk,∆E) =
∫
δ(∆hk −∆h∗k)δ(∆E −∆E∗)δ(∆h0)

∏
λ

(
p(rλ)drλ

)
, (5)

where the last delta-function in the integrand accounts for the spherical constraint and the
variations ∆h∗k,∆E

∗ are given in eq. (4).
Using the integral representation for the delta-function, δ(x) = 1

2π

∫∞
−∞ exp[iαx]dα, and

substituting in (5) we get

P (∆hk,∆E) =
∫

dα dµ dη exp
[
iα∆hk + iµ∆E − ρ2

2N

∑
λ

σ2
λγ

2
λ

(1− iγλρ2

N )
− 1

2

∑
λ

log(1− iγλρ
2

N
)
]
,

where γλ = −2αJkλ +µJλ+2η. Expanding the exponent and retaining the first 1/N correction
we get (after some manipulations) P (∆hk,∆E) = P (∆E)P (∆hk|∆E), where

P (∆E) =
1√

2πρ2B1

exp
[
− (∆E + ρ2E)2

2ρ2B1

]
,

P (∆hk|∆E) =
1√

8πρ2(Ck − (B2
k/B1))

×

× exp
[
−

(∆hk + ρ2(hk − 〈〈Jk〉〉) + 2BkB1
(∆E + ρ2E))2

8ρ2(Ck −B2
k/B1)

]
(6)

with Ck = h2k − h2
k; Bk = hk+1 + 2Ehk and 〈〈f(J)〉〉 =

∫ 2

−2
dλw(λ)f(λ). Before showing the

dynamical equations for the moments we will prove that equilibrium is a stationary solution
of the Monte Carlo dynamics. The equation for the energy is obtained by considering the
average variation of energy in an elementary move,

∆E =
∫ 0

−∞
∆E P (∆E)d∆E +

∫ ∞
0

∆E exp[−β∆E]P (∆E)d∆E . (7)

A direct calculation shows that this variation is zero when B1 = h2 − 4E2 = −2ET . It can
be easily shown (using standard static calculations [8]) that this is the condition satisfied at
equilibrium.

Also one can compute the acceptance rate as a function of time, which is given by

A(t) =
∫ 0

−∞
P (∆E)d∆E +

∫ ∞
0

exp[−β∆E]P (∆E)d∆E . (8)

In what follows we will consider the zero-temperature case (computations at finite tempera-
ture will be shown elsewhere [9]). A straightforward computation shows that A(t)=(Erf(α))/2,
where Erf(α) is the error function Erf(α) = 2√

π

∫∞
α

dx exp[−x2] and the parameter α is given
by α = −ρE/

√
2B1. Now we can understand qualitatively how the dynamics goes on. Suppose

we start at zero temperature with a random initial configuration σi = ±1/
√
N such that

E(t = 0) = 0 and B1(t = 0) = 1. The energy monotonically decreases to the ground-state
energy E = −Jmax/2 = −1 while B1 decreases to zero too. In the large time limit α diverges
and the acceptance rate goes to zero (we are at zero temperature). There are two different
regimes in the dynamics. The first one is an initial regime where α is small and the acceptance
rate is nearly 1/2. This corresponds to a Gaussian P (∆E) (eq. (6)) with width ρ

√
B1 larger

than the position of its centre (ρ2E). In this case, the changes of configuration which increase
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Fig. 1. – Relaxation of the internal energy as a function of time for three different values of ρ (0.1
(rhombs), 0.01 (crosses), 0.001 (boxes)) at zero temperature compared to the analytic prediction
eq. (13).

or decrease the energy have the same probability. The energy decreases fast in this regime
because the acceptance is large. The second regime appears when B1 is so small in order that
α becomes large. In this case the acceptance is very small (it goes like exp[−α2]/α) and the
dynamics is strongly slowed down.

Analytical solution of the hierarchy. – In order to obtain the dynamical evolution of the
k-moments hk we have to compute its average variation in a Monte Carlo step over the accepted
changes of configuration:

∂hk
∂t

= ∆hk =
∫ ∞
−∞

d∆hk∆hk
(∫ 0

−∞
P (∆E,∆hk)d∆E +

∫ ∞
0

exp[−β∆E]P (∆E,∆hk)d∆E
)

For simplicity we will consider the zero-temperature case. In this case one Monte Carlo step
corresponds to N elementary moves. In the thermodynamic limit we can write the continuous
equations

∂hk
∂t

= −ρ
2(hk − 〈〈Jk〉〉)Erf(α)

2
− 2√

π
α
Bk
E

exp[−α2] . (9)

In particular one gets, for k = 0, ∂h0
∂t = 0 which is the spherical constraint. For the energy

E = −h1
2 we get the equation

∂E

∂t
=
B1

E
K(α) , (10)

whereK(α) = α exp[−α2]/
√
π−α2 Erf(α). In the first dynamical regime (α small) we get ∂E∂t =

−ρ
√
B1/
√

2π and in the slow dynamical regime (α large) we find ∂E
∂t = B1 exp[−α2]/2Eα

√
π.

In the last case, if we redefine the time τ = tA(t) then we obtain the expression ∂E
∂τ = B1

E =
−B1 (because E = −1 for large enough times). In this limit we get the equation for the energy
in the Langevin dynamics [9].
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Let us introduce a generating function:

g(x, t) =
∑
(i, j)

σi (exJ )ij σj =
∑
λ

eλxσ2
λ(t) =

∑
n=0

1
n!
hnx

n. (11)

This function yields all the moments hk =
(
∂kg(x,t)
∂xk

)
x=0

.

It is easy to check that g(x, t) satisfies the following differential equation:

∂g(x, t)
∂t

= a(t)
∂g(x, t)
∂x

+ b(t)g(x, t) + c(x, t) , (12)

where the coefficients are given by a(t) = − 2α e−α
2

E
√
π
, b(t) = −( 1

2ρ
2 Erf(α) + 4α√

π
exp[−α2]) and

c(x, t) = 1
2ρ

2〈〈exJ 〉〉Erf(α) (and a(t) is a positive quantity), by contrast with the Langevin
dynamics in which a(t) = 2, b(t) = 4E, c(x, t) = 0 [9]. The solution of this partial differential
equation with the initial conditions g(0, t)=1 and g(x, 0) = 〈〈exp[xλ]σ2(λ, t = 0)〉〉 is

g(x, t) = 〈〈exp
[
λ
(
x+

∫ t

0

a(t′)dt′
)]
σ2(λ, t = 0)〉〉 exp

[ ∫ t

0

b(t′)dt′
]

+

+
∫ t

0

dt′c
(
x+

∫ t

t′
a(t′′)dt′′, t′

)
exp

[ ∫ t

t′
b(t′′)dt′′

]
. (13)

From this function we can readily obtain all moments as a function of time. We show in
fig. 1 the energy obtained (at zero temperature) in a real Monte Carlo simulation as a function
of time compared to the theoretical prediction obtained from the previous equation. The
simulation was done for one sample and N = 2000 (we have carefully checked that the results
are independent of the size of the system and the realization of the disorder). For details about
simulations see [9].

We note the following differences between Monte Carlo and Langevin dynamics. In the
Langevin dynamics one can show that the time evolution of all k-moments is completely
determined by the energy (the first moment). In the Monte Carlo case we have seen that the
time evolution of the moments is determined by the energy E and the second cumulant, as
shown in eq. (13). In this sense the dynamics is slightly more complicated than the Langevin
case but simple enough to be governed by two (time-dependent) quantities.

Now we can summarize our results. We have analytically solved the Monte Carlo dynamics
of a simple spin-glass model (without replica symmetry breaking). The method consists in
constructing the joint probability eq. (5) of having a certain change of the generalized moments
hk for a given change ∆E of energy. Once this probability is constructed, it is possible to derive
the dynamical evolution equations for all moments. The hierarchy of equations can be closed
by introducing the generating functional g(x, t). While we have applied this method in a
very simple case we expect it to be applicable to other more interesting cases where replica
symmetry is broken. It would also be interesting to try to derive the correlation functions and
the response function in this framework.

***
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