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Abstract

The low temperature Monte Carlo dynamics of an ensemble of linear harmonic oscillators
shows some entropic barriers related to the difficulty of finding the directions in configura-
tional space which decrease the energy. This mechanism is enough to observe some typical
non-equilibrium features of glassy systems like activated-type behavior and aging in the corre-
fation function and in the response function. Due to the absence of interactions the model only
displays a one-step relaxation process. (© 1998 Elsevier Science B.V. All rights reserved.

Slow relaxation processes are widespread in condensed matter physics. These include
magnetic relaxation in spin glasses, transport processes in structural glasses, pinning
effects in superconductors among others. A large class of these systems show what
is commonly referred as aging, i.e. dependence of the response of the system on the
time in which it is perturbed. Aging effects [1] are a signature that the system is far
from thermal equilibriurn and consequently the fluctuation—dissipation theorem is not
valid [2]. It has been realized quite recently that aging is indeed a solution of the
off-equilibrium dynamics in some exactly solvable models [3.4]. Aging appears if re-
laxation to the equilibrium is slow due to the presence of energy barriers in a rugged
free energy landscape as well as in systems with entropy barriers with a quite sim-
ple landscape [5,6]. In this last case, as the system relaxes towards the equilibrium,
the number of directions in phase space where the system can move decreases pro-
gressively. This means that the system needs more time to decorrelate or to forget
the previous configuration. This effect is usually encoded in the two time correlation
function where the C(z,¢') depends on both time indices [7].

From previous considerations it is clear that aging can also be present in extremely
simple relaxing systems without any interaction, the only condition being the
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progressive reduction of available phase space where the energy decreases. This was an
essential ingredient in the Backgammon model recently proposed to explain glassy be-
havior in the absence of energy barriers [5]. Here we consider a simpler example
and analyze the Brownian oscillator. The Brownian oscillator is usually studied in
the Langevin approach. It is described in any textbook of stochastic theory [8]. It is
possible to show that in this case there are no slow processes involved. In fact, the
relaxation turns out to be exponential as expected for the dynamics of a particle in a
single parabolic potential well. Here we consider the Monte Carlo approach and choose
a dynamics based on the Metropolis algorithm [9]. This Monte Carlo approach was
already studied in a disordered model with long-range interactions which turns out
to be nontrivial, at least in the zero temperature limit [10]. The simplest case of an
harmonic oscillator is solvable and we analyze the dynamics here.

In [10] we checked that, after a suitable rescaling of time, the equilibrium Langevin
and Monte Carlo dynamics are equivalent. Also, we showed how the Langevin dy-
namics can be derived from the Monte Carlo dynamics in the limit of small changes.
Here, we will see that the same results are valid. We will obtain the dynamical equa-
tions for the energy, the correlation and the response function. We will also study the
low temperature dynamics, showing the similarities and differences with more realistic
models for glasses.

The harmonic oscillator has an energy,

E= 1K<, (1)

where K is the Hooke constant and x defines the position of the harmonic particle. Let
us consider an ensemble of N independent linear oscillators with total energy E({x;}) =
1K >7.x7. A change of {x;} is proposed {x; — x = x;, + r;/v/N,Vi} where {r;} is
randomly chosen for each oscillator from a Gaussian distribution of zero mean and finite
variance equal to 4°. The change is accepted with probability 1 if the energy decreases,
ie if 0E = E({x/}) — E({x;}) is negative. Otherwise the change is accepted with
probability exp(—fS0E) where f = —IT- is the inverse of the temperature of the heat bath.

Let us sketch the main derivation of the dynamical quantities [10]. We first consider
the probability that a given set of movements {x; — x/ = x; + r;/v/N} changes the
energy in a quantity 6E. This probability is given by,

2

7 N A 2 di i
P(SE) = / b(éE—KZ<%+2r]’V>> (H @exp(—ﬁ)).

—o0

(2)

For simplicity we have considered the case in which the mean position M =
%ZL]@J of the initial condition is zero. The average (---) is done over differ-
ent dynamical histories starting with the same initial condition for the ensemble. Using
the integral representation for the delta function in the thermodynamic limit N — oo
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we obtain,

3)

, OF — KLy
P(3E) = (4nKEA*)2exp (——~( e )

4KEA?

Because the probability distribution P(SE) only depends on the energy itself the
dynamics is then Markovian and simple to solve. Obviously this result is solely due
to the simplicity of the model. According to the Metropolis dynamics the equation of
evolution for the energy is,

0 oo
i—f = /dxxP(x)+/dxxP(x)exp(—ﬁx) 4)
—00 0
which yields
cE a, {1—4EB
5 -7 < o ~f(t)+erfc(oc)) (5)

where o = (K4?/16E)!?2, a. = 1 A’K and

erfe(x) = (2/V/A) [ exp(-x)ds (©)

f(t) = a.p e Pact =2EOR erfe (a(e )AE(1)B — 1)). (N

It is easy to check that the only stationary solution of this dynamical equation corre-
sponds to the equilibrium solution with £ = %T (in agreement with the equipartition
theorem). Eq. (5) is already closed and yields the dynamical evolution of the energy
at all times.

Knowing the evolution of the energy we can calculate the acceptation rate. This is
defined by

0 . ’
A(t) = / dx P(x) + /de(x)e‘ﬁx _ 1 (f(l)
e J

3 W-Ferfc(oc)) . (8)

In equilibrium, we have E,, = %T , and the acceptation rate becomes A, = erfc(a,).

Similarly one can derive equations for the correlation C(7,¢") and response function
G(t,t") (from now on, we will consider the first time ¢ as the smallest one, i.e. ' < t)
defined by

Ct') = % <Z.xi(t,)xi(t)> . 9)

SM (1)
/ — _ ! 10
G(t’t ) (6/1([,});,:0 7 et ( )
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where M(¢) = (1/N) )" (x(t)) is the average position of the ensemble of oscillators.
The response function is computed with the energy £ = %K S.x —hY,x; starting
from an initial condition M = 0 at zero field and taking finally the limit # — 0. In
the case that M(¢r = 0) # 0 the computation is more involved and the equation of
motion for the response function G(4,t') involves also the energy response function
Ge(t,t') = (%)h . It is not difficult to obtain the equations for both correlation

and response functions. Proceeding in a similar way as for the case of the energy we
get

aCEz t') ey, (11)
ot

aG([,[,) . ~ ’ l N /
5 = GG = 2 =), (12)

where (¢) and f(f] were previously defined. The difference in the equations for the
C and G concern only the initial condition. Note that again the Markovian properties
of the dynamics are manifest because the time derivative of the C (or G) depends
solely on the C(z,1") (or G(1.t')) itself and the initial conditions C(¢,t') = 2E(¢')/K,
lim, _(ry- G(1,¢) = 0.

We can easily integrate the equations for the correlation and response functions. We
obtain that they depend on the energy (through the function f(¢)) at all previous times,

cary = £ /fmdx , (13)

G(ii') = —E(—exp / x| @G = 1) (14)

With these exact results we can also calculate the fluctuation—dissipation parameter,

(C(ll) / /
fe(: Pl - 2FE
— ) opy o e explacf( B))

Xty = 7500 ’ erfo((dEf—1)

(13)

where %' = «(¢') ard E/ = E(¢"). Note that X(,1') only depends on the smallest time
¢

It is straightforward to check that in thermal equilibrium both correlation and re-
sponse only depend on the difference of times, the fluctuation-dissipation theorem
TG(t) = —C(¢) is satisfied and the X(z,/') = 1. This is a general consequence of
the detailed balance property inherent to the Metropolis algorithm. With an appropriate
rescaling of time we find also that the equilibrium form of correlation and response
function are the same as in the Langevin case. Egs. (5), (11) and (12) are much dif-
terent from the corresponding ones in Langevin dynamics. In particular, the response
function at equal times is 1 in the Langevin dynamics while in the Monte Carlo case
it is different from 1, even in thermal equilibrium.
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The Langevin case is a limit of the Monte Carlo dynamics. This result has been
demonstrated in the framework of the SK spherical spin-glass model [10] and also
applies here. When the size of the typical movement 4 goes to zero Egs. (5), (11)
and (12) become

CE  KA? .

ac(nry  Kpa? , .

oG(,t'y  KpA® , 1 , ,
5 =5 (G(t,t ) — Eo(r —t )) (18)

with initial conditions C(¢,¢') = %KE(Z’) and lim,_,- G(¢'.¢') = 0. These are the
same equations as in the Langevin dynamics with uncorrelated white noise with vari-
ance 27 if the time is rescaled by the quantity %AZI)’. This means that both dynamics
are essentially equivalent in case the rescaling factor %Azﬁ is finite. The interesting
case corresponds to the low temperature limit f — oc for A4 fixed. In this case a new
relaxational dynamics driven by a low acceptance rate is found. Linearization of Eq.
(5) around the equilibrium solution yields a relaxation time which diverges at low
temperatures like 7 ~ f!/? exp(KA?f/8). This implies a divergence of the relaxation
time of an activated type.

At very low temperatures the harmonic oscillator wants to relax to a configuration of
very small entropy (indeed, because the oscillator is classical, the entropy diverges like
log(T') at low temperatures). In this situation the oscillator spends the major part of
time looking for the groand state configuration. In some sense, the dynamics generates
itself entropy barriers in a single potential well. This means that if we perform a cooling
experiment, decreasing and increasing the temperature at a fixed rate, we expect that
the system fails to relax to the equilibrium energy (see Fig. 1). This is a typical feature
of glassy systems.

Let us consider the evolution of the energy at zero temperature. In this case, only
those changes {dx;} which decrease the energy are accepted. Close to the equilibrium
point x = 0 the system will relax very slowly, mainly because the largest part of the
movements are rejected. The relaxation of the energy at zero temperature is given by

°E KEA*\'? . KA
%;:—< = ) exp(—) + ——erfe() (19)

To obtain the long time behavior we expand the error function in the limit & — oc,

éE 64 \'"* ., KA

We should note that previous equation is extremely similar to that derived in the
Monte Carlo dynamics of the Sherrington—Kirkpatrick spherical model in the adiabatic
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Fig. 1. Cooling experiment. Values of the energy when we decrease and increase the temperature of the
system at different ratios. From top to bottom, ratios 0.1,0.01,0.001 and 0.0001.

approximation at zero temperature. In terms of the parameter « (defined after Eq. (5))
Eq. (20) can be written in the simple form

dx exp(—s?)
a- JE (21)

For large times, the parameter & grows logarithmically in time,

12
aft) >~ (log(h/\/ﬁ) + %10g(log(21/\/ﬁ)) (22)

the acceptation rate Eq. (8) decays like

1 ,
A(t) > —————= 23
) = og2i/v/m) (23)
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Fig. 2. Correlation function fo: different waiting times. From top to bottom, ¢/ = 3 x 10%, 1 x 10°, 1 x 104,
1 x 103, The short lines show the calculated asymptotic behavior of Eq. (26).

plus subdominant logarithmic corrections. The energy also decays logarithmically in
time
KA? 1

E(t) ~ 16 log( )+ Log(log(2t/ /1)) .

Similarly, the correlation function satisfies the equation

acry (KA ) KA?
ot (_47z_> ,/E(t)eXp <_16E(z)) ' (25)

The same equation is fulfilled for the response function. Using the asymptotic dif-
ferential equations for the energy (20), the correlation (25) and the response function,
we can show that the correlation function for long times (Fig. 2) displays a solution
of the type C(t.') ~ (2E(¢')/K)[g(¢)/g(t)] and G(t,t') ~ [20(:")]/(v/7K)g(t), being
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g(1) = exp(—a?). Using the asymptotic expression for the energy (24) we get

Crom(t, 1) = C(,t') Nﬁ(w)m

2E(K T 1\ log(2t/ /) (26)
/ / 1 ’ 12
Gty = 1 | log(2t'//m) + 5log(log(2t'/ /7)) . 7
Kt '\ log(2t/+/m)

This approximation is valid in the asymptotic limit of large values of ¢/. The nor-
malized correlation function shows aging behavior with a simple scaling form ¢/t plus
some logarithmic corrections. Apparently the response function (27) does not show
aging because it doss not depend on a ratio of functions depending on ¢ and '. But
this is an artifact of the normalization factor necessary to make the response function to
take a finite value at equal times. In fact, the leading behavior of the response function
decays to zero for large values of ¢ and an appropriate normalization of the response
function at equal times is necessary (in the same way as has been done for the cor-
relation function). Mote that for Langevin dynamics the normalization of the response
function is not necessary since the G(t,¢") at equal times already takes a finite value
by definition (e.g., lim, ;- G(t,¢’) = 1). The normalized response function takes the
simpler form

Gnorm(t» t,) et

Gty (log(Zt’/ﬁ))m 28)

G +0,¢) — t \ log(2t//7)

which displays aging with the same leading behavior as the normalized correlation
function. We can obtain information about the dynamics (and in particular, about the
response function) from the remanent magnetization [11]. In the present model the
magnetization corresponds to the average position of the ensemble of oscillators (de-
fined after Eq. (10)). The main Eqs. (5), (11) and (12) have been derived in the
absence of external field and starting with zero initial magnetization. In this case it is
natural to compute the zero-field cooled magnetization. In this procedure the system is
suddenly cooled down to a given temperature and after a waiting time #, a small step
field A(") = hO(t' —t,) is applied. If the value of % is small enough then we are in
the linear response regime. The magnetization starts to grow according to the relation

7 f

Mzpe = / G, Ot dt = h/ G(t,t')dt = hi(t,.1). (29)

— 00 %

The quantity /(t,.,1) = fr" G(1,¢')dt’ defines the integrated response function. From
the exact expression obtained for the response function (14) we get, for the integrated
response function,

1

I{ty,t) = e 1—exp| — /f(t’)dt’ i (30)
f
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In the large time limit # — oc the zero-field cooled magnetization converges to its
equilibrium value, the field-cooled magnetization Mgc. It is easy to check, from Egs.
(29) and (30) that Mgc is given by Mrc = h/K, i.e., the equilibrium linear magnetic
susceptibility yo = Mpc/h = 1/K is independent of the temperature.

Another interesting quantity to be calculated is the anomaly in the response function
[12], defined as

t [e’e]
7= ,lim /dt' G(t,t') — /Geq(r)dt 1)
0 0
= lim 7(0,) — %o (32)
t—oc
::__%eprffxfuumﬂ, (33)
Geq(r)=llim Gty tw + 1) . (34)

For a finite value of f3, the system decays to equilibrium in a finite time and for
long times the integral fot dt’ f(¢') behaves as f.,t. This implies that the magnetization
relaxes exponentially to zero, showing no aging for large values of #,, and the ‘anomaly’
relaxes exponentially to zero too. The behavior of the anomaly and the zero-field cooled
magnetization is more interesting at zero temperature. In that case it can be shown that
the leading behavior of the anomaly decays algebraically (as 1/Kt) to zero. Using the
asymptotic behavior of the energy Eq. (24), it is easy to check that the zero-field
cooled magnetization goes like

Muc |t (/log(2tw/\/ﬁ) 12
. log(2t//m) '

Mpc - t
Using the linear response relation Mzrc + My = Mpe where Mgy is the thermo-
remanent magnetization obtained by quenching the system in an (small) applied field
and removing it at t,,, we get

MTRM ~ tw g:(zhv’// \/E) i
log(2t/+/m)

Mrc Tt

Both Mzrc and Mpy show aging with the leading #/7, scaling behavior. In
Fig. 3 we show the thermo-remanent magnetization for the oscillator model for different
values of ¢,.

It has been suggested that the X (¢,¢') could be interpreted as an effective temperature
[14,15]. If we define 7/(¢") = X(#,¢')/T then, from Eq. (15), the fluctuation-dissipation
theorem is obeyed with the effective temperature 74(¢'). While this is a formal relation
it would be interesting if the effective temperature derived in this way had some deep
physical meaning. On the other hand, a well-founded physical interpretation of the
violation of the fluctuation-dissipation relation, to our knowledge, does not exist. Note
that it is possible to define different fluctuation-dissipation ratios (for instance, X(,t') =

(35)

(36)
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Fig. 3. Thermo-remanent raagnetization for different waiting times obtained from Eq. (36). From left to right,
e = 10,10%,10%,10%,10°.

—TG/(8C/ct)) all giving X(4,¢') = | in equilibrium. The definition here adopted is
the conventional one which allows to obtain a closed expression for the integrated
response function in case the function X is solely function of the correlation C(t,¢")
{3,4]. On general physical grounds one would expect an effective temperature larger
than the temperature of the bath. To raise the temperature should contribute (by the
equipartition theorem) those degrees of freedom which, during the process of relaxation
towards the equilibrium, still are not frozen. For the simple model considered here
such an interpretaticn seems to work. From equation (15) it can be shown that the
effective temperature for a system relaxing at zero temperature is given by the relation
Tr(t'y — 2E(¢"). Consequently the effective temperature and the dynamical energy in
the off-equilibrium regime are related by the thermodynamic relation suggesting that
some kind of adiabatic theorem holds for this simple system in the long time limit.
One can then ask if the whole time dependent probability distribution p,({x;}) in the
long-time limit is of the Boltzmann type but dependent on an effective temperature
Te(t), ie. p{xi}) ~ exp(—E({x;})/T;(2)). It is easy to check that such a result is
not possible [17] and equipartitioning is valid only for some finite moments of the
probability distribution (for instance the second moment, i.e. the energy).

In conclusion, we have studied the Monte Carlo dynamics of an ensemble of linear
harmonic oscillators. The extreme simplicity of this model makes it exactly solvable
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without loosing the interesting features of the non-equilibrium dynamics driven by
entropic barriers. In this way, we are able to gather quite a lot of information and
derive all relevant dynamical quantities with reasonable analytical effort.

We find a very slow relaxation near zero temperature, driven by a low acceptance
rate, similar to that found in the Backgammon model [5], models of adsorption [18] as
well as models for compaction of dry granular media [19]. In these cases, the origin
of the slow relaxation is the existence of entropic barriers, although they are set up
by different mechanisms. Note that the notion of entropic barrier or entropic trap is
quite similar to the concept of effective volume in free volume theories. In our case
this manifests as a inverse logarithmic law decay of the energy Eq. (24) while in
compaction of granular media this decay is found for the density of compaction. The
model has also in common with models for glasses aging in the correlation function
for long times. The correlation function C(z,¢') presents a #'/t behavior with some
logarithmic corrections (with ¢ the smallest time in the correlation function). It is
interesting to note that this corrections appear also in the Backgammon model [16]
(and presumably also in adsorption models [18] and models for compaction of dry
granular media [19]) but do not appear in models with Langevin dynamics [20,21]).
We have found also aging in the magnetization (the integrated response function).
This behavior appears associated to the algebraical decay of the ‘anomaly’ as ¢ goes to
infinity. Due to the zero value of the anomaly we expect a finite value of the overlap
between two replicas [13] in the large ¢ limit if putted in the same configuration at ¢,
(cloning procedure). This expectation stems from the simplicity of the landscape in this
model (a single parabolic well). Consequently. this model falls into the first dynamical
category (class 1) proposed in [13]. However this model shares some features of the
p-spin model (with p > 2, belonging to class II) like aging in the integrated response
function. Furthermore, this simple model lacks a fast process decaying to a plateau
and also a two time dependence of the fluctuation-dissipation parameter, which only
depends on the smallest time. This is probably due to the absence of a cooperative
behavior.
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