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Abstract. We present an extensive simulation on random weighted matchings dealing with 
the possible existence of the breaking of the replica symmetry. Using the so-called post- 
opimal analysis of combinatorial optimization we are able to draw the definite conclusion 
on the replica behaviour for this class of problems by computing the probability distribution 
of the overlaps P ( y )  and through the careful check of OUT sampling of configuration space. 

1. Introduction 

In this paper we discuss the nature of the replica solution of random weighted matching 
problems [ 1,2]. 

We know that the replica symmetry breaking solution for the Sherrington- 

sensible theory. The appearance of ultrametric organization of phase space is one of 
the main features of the replica symmetry-breaking pattern. Even if we do not yet 
know if this behaviour persists in real physical dimensions (although there are some 
numerical simulations whose conclusions seem in agreement with this view [7,8]) its 
existence in infinite dimensions shows a remarkable difference between the 'classical' 
conceptions derived from usual homogeneous king-like models. The behaviour of the 
probability distribution P ( q )  for the overlap, q, between different spin configurations 
at fixed temperature, is, for example, one of the main differences with which it is 
usually possible to determine a spin-glass behaviour. 

It seems very natural, therefore, to discuss the properties of the random weighted 
matching models following the same pattern. We shall be concerned with, essentially, 
two main objects. First of all the aforementioned probability distribution of the overlap 
P ( q ) ,  then with the distribution of the difference between the energy of the ground 
state, which we know exactly for every sample, and the energies of the 'excited' states. 
To have a spin-glass behaviour we should find a P ( q )  with a tail that extends down 
to q = O  even at the thermodynamical limit. This paper, following our previous one 
[3], is its complement by addressing questions left aside in it. 
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Kirkpa!rick mode! (see reprints in [2 ! )  is a necessary step to discuss a physically 
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2. Random matching problems 

We start with a graph whose elements are primarily vertices and links connecting them. 
We shall be concerned with the problem of fully connected and unoriented graphs, 
which means that we have an unoriented link for every pair of vertices. If we put a 
weight to each link our goal is to match vertices only by pairs (it means that on each 
vertex must arrive one and only one link) but with the constraint that the total weight 
of the matching be the least possible (we restrict the discussion to the simple matching 
case, leaving the bipartite case as understood; see however [3]). It is possible to use 
concepts from statistical mechanics to deal with this problem [Z]. We introduce an 
king-like variable n,, symmetric, and whose values label the presence, no = 1 ,  or the 
absence, n,, = 0, of the link connecting vertex i to vertex j in the seeked matching 
(where i, j = 1 , .  . . , 2 N ) .  If we denote by l,, the weight of this link we can write the 
partition function as 

where 

is the Boltzmann weight, but with the configurations of the Ising-like variables subject 
to the constraint 

2N 

1 n,, = 1 ( 3 )  
, = I  

which tells us that only one link should leave from each vertex. It is obviously possible 
to generalize it by putting K ,  a positive integer, instead of 1, which means that from 
each vertex leave K links. 

To deal with the random matching case we can take two roads: we distribute the 
vertices on a unit hypercube or the links with an 'opportune' distribution. In this paper 
we shall deal with the second case leaving the first (otherwise called Euclidean matching 
[4]) to a forthcoming publication. 

The distribution should be taken with care because it should give us a sensible 
thermodynamic limit. This task has been recently discussed by Vannimenus and Mezard 
[5] who said that the correct probability distribution is governed by its behaviour near 
the I = 0 weight, 

P( I )  = I' (4) 

and the right low 'temperature' behaviour, which prevents the entropy dominating the 
whole range of 'temperatures', is obtained with the rescaling 

j7=b'N8 ( 5 )  

where s = l / ( r + I ) .  
It is clear that we face the problem of how to calculate the thermodynamic functions, 

e.g. the free energy, free from sample fluctuations. The theory of disordered systems 
says that the right procedure is to average the free energy over the probability distribu- 
tion for the weights, i.e., 

PF = -&z ( 6 )  

where the overbar means just the average over the { I ) ,  
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The most'important tool utilized in this context is the replica method. It consists 
in computing the above free energy by using the following trick, 

- 
- Z F -  1 
log Z = lim - 

n-0 n (7) 

where Z" is nothing but the partition function of n non-interacting replicas of the 
initial system. Now, it is possible to calculate simply the free energy (see, e.g., [2]), 
and'the conclusion is, for large N, 

where g, = (pp)-'"'' and %, the one-site partition function, is, 

The whole computation reduces to the discussion of the solution of the saddle 

(10) 
where the double brackets means the average over the one site partition function %. 

In the spin-glass case the discussion of the saddlepoint solutions follows in a 
straightforward manner, even in the case of replica symmetry breaking. Now the 
problem is more involved due to the presence of a family of matrices parametrized by 
a finite number (from 1 to n) of indices, not just two as in the spin-glass case. In fact 
it is not obvious which is the breaking pattem. If we restnct ourselves, however, to 
the symmetric solution we can solve the saddlepoint equations in a simple way; in 
fact, we have only one parameter q. independent of any index. 

This replica symmetric solution was studied some years ago (see reprints in [Z]) 
and we also know its corrections to order 1/N. Recently an extensive numerical analysis 
of this problem was presented [3] showing that the theoretical analysis done by Mizard 
and Parisi was really precise. There were obtained the analytical values of the asymptotic 
lengths inside 0.2% of the numerical simulation. It is also the first time that a replica 
prediction has been tested to such high precision. This gives us confidence to test the 
reality of the replica symmetry-breaking ansatz, a question left aside in [3]. 

To this end we can calculate analytically the probability distribution for the overlaps 
of the system, defined by 

points equations, 

qm, ~~ = zgp((e-'l"~l+ + A -  9 ' )) 

where ((.  ))lz) means the thermodynamical average over two real non-interacting iden- 
tical copies of the system (i.e. with the Boltzmann weight II, ( Tj)",, II,, (T,,,,)"flf>, and 
with the same distribution of the lengths of the links). It is easy to calculate it directly, 
and for p = m, we get 

P ( q )  = S ( q ( P  =m) - 1). (12) 
This behaviour is typical for a system which is not in the spin-glass phase and the 

challenge is to test with a numerical simulation if this is the real behaviour for random 
matchings. If not, we should find, in the thermodynamical limit, a continuous part for 
P ( q )  that extends down to zero overlap as in the SK model [Z]. 
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3. Numerical analysis 

From the above it is clear that we are interested in the behaviour of the system at zero 
‘temperature’. We can take two roads; the first is to use some kind of annealing 
procedures, trying to be careful near the transition point, and then extrapolate the 
results down to zero ‘temperature’. The second road is made possible by the com- 
binatorial nature of the matching problems and seems the most natural and reliatile 
one. We have obviously chosen the second and this numerical simulation makes use 
of the same routines [6] of our previous work [3] to which we address the reader for 
more information. 

Our goal is to show the behaviour of P ( q )  and for that purpose we need two 
different configurations of the same system. The configuration space for matching 
problems consists of a unit hypercube in 2 N  dimensions whose vertices are labelled 
by the configurations { n v }  of the feasible solutions. The algorithm we use will give us 
only the optimal (ground state) solution of the problem, so we have to find a technique 
to get new configurations from phase space that minimize the energy at zero ‘tem- 
perature’, 

with the constraint of (3). 
Fortunately, in combinatorial optimization, this technique is well known and goes 

under the name of post-optimal analysis. For matching problems the simplest technique 
is to choose one configuration {n , , } ,  usually the optimal one, and then by fixing to a 
very iarge vaiue, nameiy infinity, one of its iinks we soive from scratch iSj this new 
problem obtaining an a priori new configuration { n ; } .  This is then used to calculate 
the overlap through 

It is then easy to follow this pattern and to generate other configurations and to 
calculate new overlaps with which we formed the histograms whose results are shown 
in the figures 2 and 4, which represent the bbehaviour for, respectively, simple matching 
with r = 0 and r = I t  (for all the simulations we take N = 20, SO, 100, 200 points with, 
respectively, 1000,500,300,200 samples). They are in agreement in the thermodynami- 
cal !imit5 with the ansatz whose result is shown in (12). In fact, it is evident that they 
lack the continuous part which is present in the form of P ( q )  and is the main feature 
of the reality of a broken replica-symmetry solution. It seems, therefore, that in the 
random matching problems the symmetrical ansatz is correct. 

To be sure that we are correctly sampling the configuration space, we look for the 
difference between the energy per site of the ground state E,, and that of the ‘excited’ 
one, EEXC. We know from the theory of spin-glass that down to zero temperature there 
are, at least, two possible behaviours, 

EEXC- EGS=O(I/ N)  (15) 

t 
hipanile case is very similar. 

sharp peaks in the figures are due to the integer discretization of the overlaps. The behaviour for the 
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Figure 1. Distribution of the differences of energy between the ground state E,,= Eo and 
the excited states E,,,= E for the r = O  simple matching case. 0, N =2W; +, N =  LOO, 
0, N = 5 0 ;  x,  N = 2 O .  

4 

Figurel. Probability distribution ofthe overlaps for the I =  Osimple matching case. Symbols 
as in figure 1. 

or, otherwise, 

E E X C - & s = O ( l )  (16) 
corresponding to pure states in the first case and to metastable states in the second. 

If post-optimal analysis leads us to possible candidates for new pure states, we 
expect to find the first behaviour for the energies of the excited states. This difference, 
together with the progressive sharpness of the P ( q ) ,  confirms that the number of stable 
configurations with nearest energy to the ground state, and overlap with it laying inside 
the tail of the P ( q ) ,  decrease as we go towards the thermodynamical limit. This seems 
to indicate that we have, with zero probability in the thermodynamical limit, optimal 
configurations with overlaps with the ground state different from q = 1. In other words, 
as N goes to infinity, ‘excited’ states concide with the ground state. 
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Figure 3. Distribution of the differences of enegy between the ground state E,, = Eo and 
the excited states Eexc= E for the r = I simple matching case. Symbols as in figure 1. 

0 

Flpure 4. Probability distribution of the overlaps for the r = I simple matching case. Symbols 
as in figure 1. 

The result of the simulations are showed in figures 1 and 3 (which represent the 
behaviour for, respectively, simple matching with r = 0 and r = 1 t) and, once again, 
show agreement with our expectation, i.e., they are distributed as rapidly size-growing 
functions whose maximum at zero give us confidence on a good sampling of ‘excited’ 
states. 

4. Conclusions 

We present a large numerical simulation of random weighted matching problems by 
dealing with the nature of the replica symmetry. The simulation is in agreement with 

t The same has been obtained for bipanite matching. 
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the absence of the breaking, as suspected earlier 131, by showing, mainly, the behaviour 
of the distribution of probability for the overlap, P ( q ) .  One can speculate about the 
connection between the algorithmic complexity and the triviality of the phase space. 
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