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Abstract

We investigate the critical behavior of a three-dimensional short-range spin-glass model in
the presence of an external �eld � conjugated to the Edwards–Anderson order parameter. In the
mean-�eld approximation this model is described by the Adam–Gibbs–DiMarzio approach for
the glass transition. By Monte Carlo numerical simulations we �nd indications for the existence
of a line of critical points in the plane (�; T ) which separates two paramagnetic phases. Although
we may not exclude the possibility that this line is a crossover behavior, its presence is direct
consequence of the large degeneracy of metastable states present in the system and its character
reminiscent of the �rst-order phase transition present in the mean-�eld limit. We propose a
scenario for the spin-glass transition at �=0, driven by a spinodal point present above Tc, which
induces strong metastability through Gri�ths singularities e�ects and induces the absence of a
two-step shape relaxation curve characteristic of glasses. c© 2000 Elsevier Science B.V. All
rights reserved.
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Among all di�erent approaches to understand the glass transition the thermodynamic
theory of Adam–Gibbs–Di Marzio (AGM) has deserved a lot of interest during the last
decades [1,2]. The AGM theory predicts the occurrence, at a Kauzman temperature TK ,
of a second-order phase transition for the undercooled liquid where the con�gurational
entropy (also called complexity) vanishes. The validity of the AGM theory for real
glasses has never been demonstrated so the correct description of the glass transition
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still remains open [3]. An alternative dynamical approach (mode-coupling theory here-
after referred as MCT, for review see Ref. [4]) was proposed to describe relaxational
processes in the undercooled liquid regime, experimentally observed in scattering and
dielectric measurements.
Quite recently, it has been realized that spin glasses are models which account for

both the thermodynamic (AGM) and the dynamical (MCT) approaches [5,6]. Although
spin glasses are models with quenched disorder (and structural glasses are not) this is
not an essential di�erence because the existence of a crystal phase in structural glasses
has no dramatic e�ect in the dynamics of the (disordered) undercooled liquid phase.
Unfortunately, up to now this connection between spin glasses and glasses remains only
at the mean-�eld level and it is not clear what happens if one considers short-range
interactions. In fact, concepts such as complexity in AGM or the ergodicity parameter
in ideal MCT are originally mean �eld and it is not clear their relevance in short-ranged
realistic systems.
It has been suggested [7–11] that the e�ect of the complexity could be observed

through numerical simulations in a generic glassy system coupling two replicas by
introducing a term in the Hamiltonian of the type −�q (� being the conjugate �eld
of the order parameter q which is the overlap between the con�gurations of the two
replicas, for introductory text see Refs. [12–14]). The study of an exactly solvable
spin-glass model has revealed the existence of a �rst-order transition line Tc(�) with
a critical end-point [7,8]. This result is a consequence of the fact that the glass tran-
sition for � = 0 (where the complexity vanishes) is a �rst-order phase transition (in
the sense that the order parameter q is discontinuous) and the point Tc = Tc(� = 0) is
a tricritical point. Again, this result has been obtained within the mean-�eld approxi-
mation and it is unclear that to what extent this result is valid in a �nite-dimensional
model. Recent numerical simulations on a short-range version of p-spin Ising spin glass
[15–19] have shown that the mean-�eld discontinuous transition becomes continuous in
�nite dimensions. So the �rst-order character of the transition predicted in mean-�eld
theory dramatically changes in �nite dimensions. Nevertheless, in this work we would
like to show that some features of the mean-�eld approximation, at least in the way
of a crossover behavior, survive in �nite dimensions. This allows to interpret our �nd-
ings in terms of a picture for a continuous spin-glass transition induced by the strong
metastability and driven by the collapse of the complexity or con�gurational entropy
similar to what happens in structural glasses. Furthermore, our results point in the
direction that disordered systems in three dimensions are very well described by a
line of critical points (characteristic of systems at their lower critical dimension) in
agreement with recent numerical simulations in the Edwards–Anderson model in three
dimensions [20]. Nevertheless, we must stress that, from the point of view of numerical
simulations, it remains unclear whether the critical line observed is merely a crossover
regime (in the sense that this line will eventually disappear in the L → ∞ limit).
Also, in this case, the study of a crossover behavior is relevant because it should
induce strong non-equilibrium e�ects. Let us note in passing that the same question
(i.e., to discern between a crossover behavior and a real transition) also arises in
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structural glasses when trying to understand whether the Kauzman singularity indeed
exists beyond mean �eld.
We shall consider a recently introduced short-range p-spin glass model [15–19]

which is de�ned on a d-dimensional hypercubic lattice. On each site of the lattice
there are M spins interacting with the following Hamiltonian

Hp({�}) =−
Ld∑

〈i1 ;:::; ip〉

M∑
l1 ;:::; lp=1

J l1 ::: lpi1 ::: ip �
l1
i1 · · ·�

lp
ip : (1)

By
∑Ld

〈i1 ;:::; ip〉 we sum over all sites of the lattice all possible groups of p spins
that can be formed between spins on the same site and spins of adjacent sites. In this
work, we consider Ising spin variables. By �lrir we denote the l

th
r spin of site ir with

the index lr running from 1 to M . For p = 2 Eq. (1) corresponds to the Edwards–
Anderson model. Although this model may seem quite arti�cial it has the advantage of
including multispin interactions in a lattice without introducing new symmetries which
may change the degeneracy of the ground state [21].
Here we consider two identical coupled models (each de�ned through Eq. (1)) via

the following Hamiltonian

H2
p ({�}; {�}) =Hp({�}) +Hp({�})− �Vq ; (2)

where V = L3 is the volume and Vq =
∑V

i=1 �i�i de�nes the order parameter. Note
that, for two coupled systems the order parameter space is larger than we suppose
here. Actually, a complete study of all possible phases requires the knowledge of the
overlaps 〈�ai �bi 〉 as well as 〈�ai �bi 〉 where a; b stand for replica indices in the usual sta-
tistical mechanics approach to disordered systems [12–14]. Mezard [11] has presented
a detailed study of all the possible phases of the mean-�eld p-spin model with two
coupled replicas. For small values of � there is a transition between a correlated glass
phase and an uncorrelated liquid while for larger values of � the transition occurs to a
correlated liquid phase (also called molecular liquid). Actually, for �→ ∞ there must
be a transition at a temperature 2Tc(� = 0) because in that case �i = �i. Here we will
analyze the case of a small value of the coupling �, well below the temperature where
a transition to a molecular liquid occurs. Because the �= 0 transition in this model is
continuous we naively expect that (similarly to what happens in the Edwards–Anderson
model) there is no phase transition for � 6= 0. In mean-�eld models with a one-step
replica broken phase there is a transition line which separates two paramagnetic phases
with a �nite latent heat (which vanishes at the critical endpoint) [7–11]. The two
possible phases (glass and liquid) are depicted in Fig. 1. The �gure is a simpli�ed
representation of the di�erent phases of the model where the molecular liquid has not
been included (this would require to introduce more order parameters enlarging the
dimensionality of the phase diagram). 1 The Edwards–Anderson order parameter qEA
(de�ned as the in�nite-time limit of the equilibrium autocorrelation function [12–14])

1 We are grateful to M. M�ezard for calling our attention on this point.
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Fig. 1. �–T phase diagram for the Edwards–Anderson model (above) and the short-range p-spin model
(below). In the former case there is a single paramagnetic phase, in the latter two di�erent paramagnetic
phases divided by a critical line which connects a tricritical point (TCP) and a critical endpoint (CE) (for
p even the line TP − CE exists also for �¡ 0).

displays a �nite jump across the line Tc(�) which vanishes at the critical endpoint.
Here we �nd strong indications, through Monte Carlo simulations, that this �rst-order
line Tc(�) persists in �nite dimensions (at least as a crossover behavior) but becomes a
line of critical points. So, in �nite dimensions the �rst-order line becomes continuous
(i.e., qEA is continuous when crossing the transition line and there is no latent heat),
the critical endpoint displaying a higher-order singularity.
In this paper we will focus our research of Eq. (1) for case M =3, p=4 in D=3.

Measurements of the spin-glass susceptibility for Eq. (1) show that this model has a
continuous �nite-temperature phase transition at Tc ' 2:6 with a divergent spin-glass
susceptibility and a small negative speci�c heat exponent [15–17]. To evidenciate a
phase transition for �nite � which separates two di�erent paramagnetic phases we have
done a detailed Monte Carlo study of the Binder parameter as a function of both the
coupling � and the temperature in the paramagnetic region. 2 The Binder parameter is
usually de�ned through the relation,

g(�; T ) =
1
2

(
3− (q− 〈q〉)4

((q− 〈q〉)2)2
)
; (3)

where 〈· · ·〉 stands for statistical average and (·) for disorder average. Concerning the
Binder parameter we expect it should vanish everywhere in both paramagnetic phases

2 Monte Carlo simulations use the parallel tempering algorithm with 14 temperatures in the temperature
range 3.0–5. We simulated four di�erent lattice sizes L = 3; 4; 5; 6 with 100, 100, 100, 50 samples and
214; 217; 219; 220 thermalization steps, respectively. Statistics was collected in a time window four times the
previous thermalization times.
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Fig. 2. Binder parameter as a function of � at temperature T = 3:2 for di�erent sizes (L= 3 empty squares,
L = 4 �lled circles, L = 5 empty circles, L = 6 �lled squares). The same plot for the Edwards–Anderson
model (inset) with T = 1:3; 1:4; 1:5 (Tc ' 1:2 [22]) shows a completely di�erent behavior compared to the
p = 4 model.

except at the critical line where it should be �nite. So, if we �x � (or, equivalently
the temperature) and vary the temperature (equivalently �) we expect the presence of
a maximum approximately located on the transition line at a temperature Tc(L; �). The
results for g(�; T ) are shown in Fig. 2 for T = 3:2 and di�erent sizes. Note that the
Binder parameter shows a maximum located at �=0:05. As a comparison we also show
simulations for the Edwards–Anderson model in three dimensions above Tc by coupling
two replicas which evidenciate the absence of a maximum in that case. So the presence
of a maximum in g(�; T ) already for small sizes is a main feature of this model. For
L=3; 4; 5 �nite-size corrections appear to be quite strong (this was already observed in
Refs. [15–17] by measuring the P(q)) and the position of the maximum of the Binder
parameter as well as its value both shift with L. Nevertheless, the maximum of the
Binder parameter for L= 6 superimposes with the maximum for L= 5 and the Binder
parameter, as L increases, goes to zero far from the maximum. This result indicates the
presence of a critical line which separates two paramagnetic phases. A more stringent
test of this result requires simulating larger sizes than those we did. Unfortunately, for
L=7 the thermalization time is much larger than what we can a�ord with the present
numerical methods. Actually, a test of the needed thermalization time shows that it
grows dramatically with L and for L= 7 and T = 3:2 this may be larger than several
hundreds of million of Msteps for a nonvanishing fraction of disorder realizations. The
impossibility to study larger sizes does not allow us to exclude the possibility of a
crossover behavior. As we will discuss later, this strong size-dependent thermalization
time is consequence of the large metastability and the highly corrugated landscape
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Fig. 3. Binder parameter plotted as a function of �(T − 2:6)−2 in the range 0:016�60:09; 3:06T64:0 for
L = 6. In the inset we show the estimated critical line (see the text) compared to the points for L = 5; 6
where appears a maximum of g in the plane (�T ).

characteristic of this model which induces the existence of this critical line (which, on
the other hand, is not found in the Edwards–Anderson model). Note that the fact that
the maximum value of g along the critical line is smaller than one (approximately 0.2)
is an indication that the transition should be continuous in q (if there were a �nite
jump in q the maximum value of g should be unity). Moreover, our data do not show
any indication of a jump in the value q(�) as a function of the temperature (or q(T )
as a function of �) in the vicinity of the region where there is the maximum of g.
In what follows we try to estimate the shape of this critical line using �nite-size

scaling techniques. A detailed investigation of its shape as well as its critical expo-
nents is presently out of reach due to the smallness of the sizes studied. Still we can
approximately determine them. Let us suppose (as data of Fig. 2 suggest) that there
is a critical line � ∼ C(T − Tc)� where C; �¿ 0 and Tc ' 2:60. Assuming the validity
of the scaling hypothesis we may write g(T; �) ≡ ĝ(�(T − Tc)−�). In Fig. 3 we plot
the scaling behavior within the scaling region for di�erent values of T and � for the
largest size L= 6. The scaling is quite good and proves two results: (1) The position
of the maximum stays along a well-de�ned line in the (�; T ) plane and (2) The value
of the maximum of g is the same everywhere along that line. A good collapse of data
is obtained with an exponent � ' 2. The position of the maximum of the scaled data
yields a value of C ' 0:17 and gmax ' 0:2. This value is universal along the critical line
and approximately coincides with the value of the Binder parameter at the tricritical
point [15–17]. Although we expect that the critical line will have some L dependence,
very similar results obtained for L=5 indicate that our estimate of the critical line for
L=6 is reasonable. Our results con�rm the theoretical scenario presented in Ref. [11]
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showing that the shape of the critical line for small values of � is not far from the
mean-�eld result.
Now, we discuss the physical interpretation of this critical line. As mentioned in the

introduction, whatever the nature of this line (critical or crossover) its presence is rem-
iniscent of the �rst-order character of the transition in the mean-�eld approximation.
Furthermore, the strong metastability which induces a hard thermalization is related to
the properties of the metastable basins which are narrow and stable very much alike
to what is found in the random-energy model of Derrida [23]. Again this is reminis-
cent of the �rst-order character of the transition in the mean-�eld limit. In mean-�eld
theory (AGM or ideal MCT) metastable states have an in�nite lifetime so there are in-
�nitely large barriers which separate them. This is the reason why in mean-�eld theory
ergodicity already breaks at the mode-coupling (also called dynamical) temperature. In
short-ranged systems or real glasses metastable states decay by nucleation processes
so ergodicity is always restored. A typical feature of the ideal MCT singularity is the
characteristic two-step relaxational decay in correlation functions, the so-called � and �
processes. In ideal MCT the typical relaxation time associated to the � process diverges
at Td and the ergodicity parameter jumps discontinuously at Td. An accurate study of
correlation functions reveals that the two-step characteristic relaxation curve is absent
in the present model (1) [15–19]. The absence of a plateau in these curves indicate
that do not exist two well-separated time-scales (� and �), like in generic glass-forming
liquids, but a continuous hierarchy of time scales of nucleation processes. We interpret
this result as consequence of the continuous nature of the transition everywhere in the
critical line �–T . A possible scenario for the potential function [24] for this type of
transition is depicted in Fig. 4. Although this �gure must be interpreted with caution
it is indicative of how the present behavior, being critical or crossover, should com-
pare with the mean-�eld prediction. In the �gure we show that there is not a typical
time scale for nucleation processes (where a small excited droplet or bubble decays
from q = qEA to q = 0) and the potential around the secondary minimum q = qEA
is marginally stable. Across the critical line the Edwards–Anderson parameter qEA is
continuous but dqEA=d� is discontinuous, the potential being completely 
at in q. Note
that at T = Tc; �= 0 where the complexity vanishes, the Edwards–Anderson parameter
is also continuous in agreement with the absence of the two-step relaxation in this
model. The complexity in this model is de�ned by the height of the secondary saddle
point which moves towards q= 0 for T = Tc. The present scenario is very di�erent to
that found in the Edwards–Anderson model in �nite dimensions where no additional
spinodal point (apart from the paramagnetic one q=0) has been found above Tc. Con-
cerning dynamical processes and thermalization e�ects this model behaves also quite
di�erently. Spatial regions may be frozen if their local temperature (measured always
respect to the intensity of the local interaction) is low enough for nucleation processes
to decay very slowly. This is apparent from Fig. 4 where the secondary saddle point
may become a stable minima in certain Gri�ths regions. This e�ect has been observed
in numerical studies of the P(q) where a secondary peak in that distribution function
has been observed already for small sizes for certain disorder realizations [15–17].



8 M. Campellone, F. Ritort / Physica A 286 (2000) 1–9

Fig. 4. Potential function for the short-range p-spin spin glass at �=0 above Tc as a function of temperature.
From high temperatures (above) to low temperatures (below). The secondary minimum at q 6= 0 is a spinodal
point. The height of that secondary saddle point is the complexity (the logarithm of the number of metastable
states per site) which vanishes at Tc. The potential at T =Tc becomes 
at and qEA vanishes at Tc (following
the dashed line).

In summary, we have studied a short-range spin-glass model which in the mean-�eld
approximation is well consistent with the Adam–Gibbs–DiMarzio theory and with the
ideal mode-coupling theory. In the �–T plane we have found evidence for a line of
critical points. Our study has been done in the high-temperature phase where thermal-
ization is easier to achieve (but still, huge thermalization times are needed for large
sizes) compared to the low-temperature region. Our results cannot exclude the pos-
sibility that we are observing a crossover behavior where the maximum value of g
would eventually vanish for L→ ∞ [25]. 3 Although we cannot exclude that possibil-
ity its sole presence is reminiscent of the �rst-order character of this critical line in the
mean-�eld approximation which induces a behavior much di�erent to that found in the
�nite dimensional Edwards–Anderson model. Our results have two immediate conse-
quences: (1) The di�culty to discern a true critical behavior form a crossover behavior
makes very hard to numerically establish the existence of a critical line (�rst order or
continuous) in the �–T plane for low values of � using equilibrium methods which
are known to reasonably work for � = 0. This conclusion applies to both spin glasses
and structural glasses. (2) If the line observed where only a crossover behavior this
adds evidence to the fact. A Kauzmann transition may well exist only in mean-�eld
models where an unambiguous de�nition of an equilibrium con�gurational entropy
is possible. Further studies should extend the present analysis to study the potential
energy landscape and a numerical estimate of the dynamical con�gurational entropy for

3 Strong �nite-size e�ects (but in a very di�erent context, i.e., at �=0) have been observed in the disordered
hierarchical lattice.
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this model (such as that which has been done for glass-forming liquids [26,27]) as well
as the role of the Gri�ths singularities in the dynamics.
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