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1. ABOUT THE CONNECTION BETWEEN THE AFR-X AND THE FD-X

We have argued that the parameter xtw appearing in Eq.1 (that we will call xAFR
tw

) is the

same that appears in the Cugliandolo-Kurchan generalized fluctuation-dissipation relation

(hereafter referred to as FDR) between correlations and responses (e.g. see Section 4.1 in

Ref.[1]),

TR(t, tw) = xFD

tw

∂C(t, tw)

∂tw
; (1)

where tw is the waiting time, t(> tw) is a later time and xFD
tw

stands for the fluctuation-

dissipation parameter (herefater we take kB = 1). The correlation C and response R appear-

ing in Eq.(1) denote the so-called aging components of the correlation functions. Below we

prove that, for t, tw, t/tw large enough, and in a partial equilibration scenario, xAFR
tw

= xFD
tw

.

The proof is split into two main parts: First we revisit the partial equilibration scenario

and derive the equivalent of the AFR (Eq.1 in main text) using microcanonical arguments.

Next we use the Onsager regression hypothesis to derive the extended fluctuation-dissipation

relation and the equality xAFR
tw

= xFD
tw

. The following derivation is by no means a rigorous

proof. It rather exposes the minimal elements of the physical picture potentially describing

non-equilibrium relaxation in glassy systems. The equality between both x parameters has

been proven in some exactly solvable models (e.g. in oscillator models [10]).

1.1. Microcanonical approach to derive of the AFR (Eq.1 in main text)

The significance of Eq.1 (main text) can be understood using a microcanonical approach

based on a weak ergodicity scenario of partial equilibration [2]. The elements of such argu-

ment can be summarized as follows:

• Partial equilibration. After the quench, kinetics becomes slow enough at tw for the

system to partially equilibrate inside specific regions or components R of phase space.

Phase space is then decomposed into disjoint partially-equilibrated regions (we say the

phase space is partitioned). Each region may include one or more basins of attraction,

e.g. defined in terms of inherent structures and often referred to as metabasins [3, 4].

The system attains partial equilibrium in a given region R, meaning that configura-

tions in that region, C ∈ R, are sampled according to restricted Boltzmann-Gibbs
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conditional occupancies,

ptw(C|R) = exp(−β(E(C) −FR)) (2)

where

exp(−βFR) =
∑

C

exp(−βE(C)) (3)

defines the (partial) free energy of region R, E(C) is the configurational energy and

β = 1/T with T the bath temperature.

• Equal-probability postulate. At a given time tw after the quench, relaxational

dynamics generates a partition of phase-space into regions, each region having a partial

free energy according to eq.(3). We postulate that regions with identical partial free

energy FR are uniformly sampled upon infinite repetitions of a quenching experiment.

Yet partitioning of phase space into regions is tw-dependent meaning that any region

R will have different probabilities at different waiting times. In essence, this is the

origin of the two-times dependence so characteristic of correlation functions during

the aging process. As tw increases, regions expand (in phase-space volume) and their

total number decreases until eventually full equilibrium is attained over a single region

englobing all phase space. This holds in a weak-ergodicity breaking scenario, e.g. for

finite-size systems and tw → ∞. The details of the above scenario, e.g. how phase

space partitioning changes with time, cannot be predicted unless equations of motion

are solved (analytically or numerically) and the time evolution of the configurational

probability distribution determined. How to do this starting from first principles

remains presently unclear although there exist several proposals (e.g. based on the

concept of inherent structures [5–8]).

The equal-probability postulate tells us that we can apply maximum entropy (i.e. max-

imum likelihood) arguments to determine how the system will evolve in response to an

external perturbation. Let Ω(F ,A) be equal to the density of regions with free energy F

and value A of a given observable A(C),

Ω(F ,A) =
∑

R

δ(F − FR)δ(A−AR) (4)

with

AR =
∑

C

A(C)ptw(C|R) , (5)
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and ptw(C|R) being given in Eq.(2).

If a small field h coupled to A is applied at tw, free energy of regions are shifted (to linear

order in h) by Fh
R = FR − hAR, and the density of regions changes to

Ωh(F ,A) =
∑

R

δ(F − Fh
R)δ(A−Ah

R) =

∑

R

δ(F − FR + hAR)δ(A−AR) = Ω(F + hA,A) (6)

This expression is valid only to linear order in h when βhA << 1. Notice also that we took

Ah
R = AR (i.e., the field does not change the values of AR) to linear order in h, meaning that

the field does neither speed up or slow down the relaxation process, keeping the partitioning

of phase space unchanged. In other words, the field does not modify the trapping times of

different regions to linear order in h. The applicability of these assumptions is dependent

on the observable A. Those that satisfy such requirements are called neutral observables

[9, 10] (see also Sec.4.4 in [1]). Non-neutral observables are behind several non-monotonic

relaxation effects observed in structural glassses such as the Kovacs effect.

Small h now guarantees that the partitioning of phase space for t > tw remains unchanged

with respect to h = 0. The postulate of equal-probability of regions gives Ptw,t(A → A′) ∝

Ωh(F ,A′) where F is the typical free energy of a region visited at tw. Therefore,

Ptw,t(∆A)

Ptw,t(−∆A)
=

Ωh(F ,A′)

Ωh(F ,A)
=

Ω(F + hA′,A′)

Ω(F + hA,A)
=

Ω(F ,A′)

Ω(F ,A)
exp(βxtwh∆A) = exp(βxtwh∆A) (7)

with ∆A = A′ −A and

xAFR

tw
= T

(∂Sc

∂F

)

with Sc(F ,A) = log(Ω(F ,A)) , (8)

where we used Eq.(6). In Eq.(8) Sc stands for the so-called configurational entropy or

complexity and the partial derivative is taken at typical values (F ,A) of regions visited at

tw. Note that in Eq.(7) we took Ω(F ,A′) = Ω(F ,A) meaning that (∂Sc

∂A
) = 0. This implies

Ptw,t(∆A) = Ptw,t(−∆A) for h = 0, i.e. A is a neutral observable [9, 10]. Equation (7)

with ∆S = βh∆A gives the AFR, Eq.1 in main text, in the time sector t >> tw where net

entropy production is contributed by inter-region relaxation.
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1.2. Relation to the FD-x parameter.

Here we show that the parameter xAFR
tw

defined in Eq.(8) is equal to the fluctuation-

dissipation ratio xFD
tw

that appears in the fluctuation-dissipation relation Eq.(1).

If a small field h coupled to A is applied at tw the expectation value of the observable at

a later time t is given by,

〈A(t)〉 =
∑

R,R′

ARph(R, t|R′, tw)Ptw(R′) (9)

where ph(R, t|R′, tw) is the probability of the system to be in region R at time t conditioned

to be in region R′ at the previous time tw in the presence of an applied (stepwise) field h

at tw; and Ptw(R′) is the (unperturbed, i.e. h=0) probability to be in region R′ at time tw

during the quenching. According to Eq.(7), the transition probabilities ph(R, t|R′, tw) in a

field h satisfy

ph(R, t|R′, tw) = p0(R, t|R′, tw) exp
(

βxtwh(AR −AR′)
)

(10)

where the region-dependent observables AR are defined in Eq.(5). Inserting Eq.(10) into

Eq.(9) and expanding the exponential to linear oder in h we get,

〈A(t)〉 − 〈A(t)〉0 = βxtwh
∑

R,R′

AR(AR −AR′)p0(R, t|R′, tw)Ptw(R′) =

βxtwh
(

〈A2(t)〉 − 〈A(t)A(tw)〉
)

. (11)

If we know define the two-times correlation and response functions as,

C(t, s) = 〈A(t)A(s)〉 (12)

R(t, s) =
δ〈A(t)〉

δh(s)
(13)

we then have,

∫ t

tw

R(t, s)ds = lim
h→0

〈A(t)〉 − 〈A(t)〉0
h

=

βxtw

(

C(t, t) − C(t, tw)
)

= βxtw

∫ t

tw

∂C(t, s)

∂s
ds (14)

where we used Eqs.(11,12,13). Identifying the integrands at the beginning and end in Eq.(14)

we get the FDT result Eq.(1) and the equality xAFR
tw

= xFD
tw

.
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