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Inherent structures and nonequilibrium dynamics of one-dimensional
constrained kinetic models: A comparison study
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We discuss the relevance of the Stillinger and Weber approach to the glass transition investigating
the nonequilibrium behavior of models with nontrivial dynamics, but with simple equilibrium
properties. We consider a family of 1D constrained kinetic models, which interpolates between the
asymmetric chain introduced by Ja¨ckle and Eisinger@Z. Phys. B84, 115~1991!#and the symmetric
chain introduced by Fredrickson and Andersen@Phys. Rev. Lett53, 1244~1984!#, and the 1D
version of the Backgammon model@Phys. Rev. Lett.75, 1190 ~1995!#. We show that the
configurational entropy obtained from the inherent structures is the same for all models irrespective
of their different microscopic dynamics. We present a detailed study of the coarsening behavior of
these models, including the relation between fluctuations and response. Our results suggest that any
approach to the glass transition inspired by mean-field ideas and resting on the definition of a
configurational entropy must rely on the absence of any growing characteristic coarsening pattern.
© 2000 American Institute of Physics.@S0021-9606~00!51347-6#
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I. INTRODUCTION

There is an old debate concerning the correct descrip
of dynamics in the glassy state.1 According to the genera
wisdom, undercooled liquids are in a locally equilibrat
metastable phase, but fall completely out of equilibriu
when the relaxation time exceeds the observation time
this situation the glass ages and slowly relaxes towards e
librium. While it is widely accepted that the glass transiti
observed in laboratory is a purely kinetic phenomenon, i
still not clear whether a true~or what kind of! ergodicity
breaking underlies the glassy behavior and whether the p
erties associated to a possible equilibrium transition mani
themselves on the experimentally accessible time scale
particularly interesting problem concerns the precise mec
nism leading to a slow relaxation and its relation with t
ground states structure of the system.

A possible description of the nonequilibrium regime is
terms of coarsening. The coarsening process is describe
a length scale which grows in time driving the system
wards equilibrium. The most typical scenario for a coars
ing dynamics is found in a ferromagnet quenched down t
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temperature below its critical temperatureTc . After quench-
ing, domains of positive and negative magnetization gr
with time. The system acquires a macroscopic magnetiza
only when the typical domain size becomes of the order
the system size, leading to a nucleation process which
volves overturning of large domains in favor of the domina
phase. Although it cannot be excluded that some type
coarsening behavior similar to that found in ferromagn
takes place in real glasses, there is no strong evidence, u
now, that any type of coarsening process occurs in the re
ation of an undercooled liquid.

Another possible description for the observed no
equilibrium behavior calls for activated dynamics. The ac
vated dynamics scenario is rather different from coarsen
No typical growing length scales are now present. The s
tem approaches a disordered state, which has no correla
with the crystal state, via thermally activated jumps amo
different configurations corresponding to structural re
rangements of spatially localized regions. In this scena
the ordered crystal state has no special relevance. It oc
when fluctuations nucleate a crystalline droplet of size big
than a given critical size, strongly dependent on external
rameters such as temperature. Consequently crystalliza
can be completely inhibited by going to low enough te
peratures. It is generally assumed that crystallization play
role only for time scales much larger than those relevant
5 © 2000 American Institute of Physics
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the relaxation of thermodynamic quantities in the und
cooled phase~such as the enthalpy or specific heat!. Indeed a
glass transition also emerges for purely disordered syst
where a crystal state does not exist.2,3 This does not exclude
the presence of heterogeneities in the glassy phase, w
role and influence on the dynamics still needs to
understood.4,5

Despite the enormous effort devoted to this subject i
still not clear how these two scenarios combine together
a final description of the glassy state. Moreover, if coars
ing is the driving process for the relaxation of undercoo
liquids, due to the completely unknown microscopic stru
ture of the glass state~on which the system should asym
totically relax! it is unclear what should be experimental
measured in order to identify the growing domains. A simi
problem is encountered in spin glasses.6 Since a disordered
state does not have a periodic structure,a priori one does not
know how to observe domains and the question of the na
of the domains in spin glasses is still unresolved.7 However,
for spin glasses such freezing of temporal spin correlati
leads to a divergence of the spin-glass susceptibility. Des
some experimental8 and simulation results,5,9 strong evi-
dence for such a divergence is not found in structural glas
The greatest difficulty in elucidating this issue is that a g
eral nonequilibrium theory to deal with this class of syste
is still missing and approximations to this problem rema
partial. They usually work either in a limited range of tim
scales or in a limited range of temperatures~for instance,
mode-coupling theory.10!

During the eighties a novel approach to the glass tra
tion was proposed by Stillinger and Weber.11 This descrip-
tion of the undercooled liquid phase, inspired by the Adam
Gibbs–Di Marzio12 theory, incorporates those features of t
energy landscape relevant to the activated regime.
Stillinger–Weber approach is based on a decomposition
the configurational space into basins~also called inheren
structures, hereafter referred to as IS! on the basis of the
topology of the potential energy surface. This construct
yields a definition of a configurational entropy in terms
dynamically accessible basins and it is close in spirit to
equilibrium configurational entropy or complexity of mea
field spin-glass models.13,14

In this paper we study the relevance of the IS analy
proposed by Stillinger and Weber for nonequilibrium d
namics using one-dimensional constrained kinetic mod
Kinetically constrained models were first proposed
Fredrickson and Andersen15 in the attempt to provide a
simple microscopic mechanism for understanding the pu
dynamical transition predicted by the mode-coupling theo
In these models the slowing down of the dynamics is
tained through the introduction of dynamical constrain
compatible with detailed balance and Boltzmann–Gibbs
tribution. What makes highly peculiar the relaxational b
havior of these models is the fact that the slowing down
dynamics is only due to kinetic constraints, which preve
certain transitions from occurring. For a review on early
sults on these models, see Ref. 16.

We find that the nonequilibrium properties of this cla
of models cannot be described in terms of the Stillinger a
Downloaded 05 Dec 2005 to 161.116.80.212. Redistribution subject to AI
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Weber approach, in contrast to what is found in other mod
of structural glasses such as Lennard-Jones glasses14,17–19or
finite-size fully connected disordered spin glasses.20 The
main reason is that even though the dynamics is different,
configurational entropy derived from the Stillinger and W
ber decomposition is the same for all models. While t
conclusion is probably valid for all type of coarsening mo
els, it is an open problem whether the precise mechanism
which the inherent structure entropy happens to coincid
more general and independent of coarsening behavior, i.
could also hold for higher dimensional constrained mod
with a different dynamics.

The paper is organized as follows: In Sec. II we intr
duce the family of one-dimensional models studied. In S
III we discuss the Stillinger and Weber approach and
configurational entropy for these models. In Sec. IV we a
lyze and compare the nonequilibrium dynamics for the d
ferent models, in particular we consider the coarsening p
nomena and the fluctuations response relation. Finally
Sec. V we present conclusions and discussion. Some tec
cal points are analyzed in the Appendices.

II. THE MODELS

We consider two different classes of 1D constrain
models: the constrained Ising chain and the Backgamm
~BG! model. For the former we shall mainly consider the tw
extreme cases of the symmetrically constrained chain~SCIC!
introduced by Fredrickson and Andersen15 and the asym-
metrically constrained Ising chain~ACIC! introduced by
Jäckle and Eisinger.21 The BG model22 is not a purely con-
strained kinetic model since there are not local constraint
the microscopic dynamics. The constraint here follows fro
the requirement that the number of particles remains c
stant. This induces a global dynamical constraint wh
slows down the dynamics as temperature is lowered.
study of the BG model complement our investigation co
paring its behavior with the locally constrained Ising cha
models.

A. The constrained Ising chain

The Hamiltonian of the model is defined by

E52(
i 51

V

s i , ~1!

wheres i are Ising-type variables, which take the values 0
and the indexi runs over the sites of aD-dimensional lattice
of volumeV5LD. The model corresponds to a paramagn
in a field. The dynamics is of the Glauber-type, where
spins are randomly updated according to the following ru

W~s i→12s i !5F12
1

D S (
m51,D

~as i 1m1bs i 2m! D G
3min@1,exp~2bDE!#, ~2!

with a andb512a positive real numbers. In this paper w
consider the 1D caseD51 although the model is also inter
esting for larger dimensions. With exception of the config
ration with all spins equal to 1 it is known that the space
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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configurations is an irreducible Markov chain, so that erg
icity is guaranteed and detailed balance is fulfilled.

Depending on the values ofa we may have different
cases. In particular fora5b5 1

2 the model corresponds to th
SCIC,15

W~s i→12s i !5 1
2 ~12s i 111s i 21!min@1,exp~2bDE!#

~3!

so that a spin can flip iff at least one of its neighbors is dow
If a is equal to 0 or 1 then the model corresponds to

ACIC (a50),21

W~s i→12s i !5min@1,exp~2bDE!#3ds i 21,0 . ~4!

In this case a spin can flip iff its left neighbor is down, a
the dynamics is more constrained than in the SCIC. For
neric values ofa the flipping of the spins may take a diffe
ent probability depending if the left or right spin is down.

The vast majority of works appeared in the literatu
focused on the previous two cases~3! and~4!. In the present
paper, for completeness and for the scope of our discuss
we shall discuss when possible the behavior for generica.

The dynamics of these models cannot be solved exa
even if several important results are known.~i! The correla-
tion time diverges in the low temperature limit ast
;exp(2b) for the SCIC model23,24 and as t
;exp(b2/log(2)) for the ACIC model.25,26 ~ii! In the SCIC
model the staggered correlation functions relax exponenti
fast with time and one can define two characteristic ti
scales:27 the first onet51/(11exp(2b)) nonactivated, and
the second onet15exp(b) activated. In particular the late
defines the time scale before which no aging effects are s
in the correlation functions.27 ~iii! In the SCIC model the
hierarchy of dynamical equations can be exactly closed
T50.24,27 In Appendix A we show that this result, originall
obtained for the SCIC model, can be easily extended to
neric values ofa.

B. The Backgammon „BG… model

The energy~Hamiltonian! of the Backgammon mode
is22

E52(
i 51

N

dni ,0
, ~5!

whereni50,1,...,Ncounts the particles in each site~box! of
a D-dimensional lattice ofN5LD sites. The energy is given
by the number of empty boxes. As before we consider
1D case, whereD51. The dynamics is of the Kawasak
type, where the particles are randomly moved from one
to another and the change is accepted with probability,

W5min@1,exp~2bDE!#. ~6!

Strictly speaking the BG model is not a constrained kine
model since there are not local constraints on particles~or
boxes!. Nevertheless the conservation of particles num
introduces a global constraint which makes the dynamic
the BG model glassy at low temperatures where a lot
Downloaded 05 Dec 2005 to 161.116.80.212. Redistribution subject to AI
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particles accumulate in a small number of boxes and
further emptying of boxes becomes slower and slower
time goes on.

In the original definition the dynamics of this model wa
mean-field in the sense that particles could move from
box to any other box. This dynamics can be closed exact28

and many results have been obtained on its nonequilibr
behavior.29,30 Here we are interested in the equivalent on
dimensional case where boxes are located on a closed rin~a
chain with periodic boundary conditions! and particles can
only move from one box to its left or right neighborin
boxes. In this case the dynamics at low temperatures
driven by the coarsening of clusters of empty boxes simila
to that of spin-1 domains in the kinetically constrained Isi
chain. Here, however, in addition to temperature-activa
processes induced by energy jumps, the system has ent
barriers which contribute in a non trivial way to the coarse
ing dynamics. In the original model22 with mean-field dy-
namics coarsening was absent and the entropic barriers
the only responsible for glassy dynamics leading in that c
to an activated behavior.

All these models share the common fact that, desp
their dynamics, the thermodynamics is trivial and there
no equilibrium spatial correlations at any temperature.
particular, they do not show any finite-temperature ph
transition. Therefore the nontrivial behavior follows on
from the dynamics, which, dynamically constrained in t
first case and ruled by entropic barriers in the second c
turns out to be glassy.

In the next sections we present a detailed investiga
of the nonequilibrium dynamics of these models and disc
how their dynamics cannot be efficiently described in ter
of an IS based configurational entropy approach.

III. THE STILLINGER AND WEBER ENTROPY

A. The Stillinger and Weber approach

An interesting approach to investigate activated behav
in glasses was suggested in the eighties by Stillinger
Weber.11 This is based on the~natural!decomposition of the
motion near the glass transition into intrabasin moti
~within a valley!and interbasin motion~jumps between val-
leys!. In a ‘‘cage’’ picture the first motion corresponds to t
motion of particles within a cage, while the second one to
creation or destruction of cages. This approach impleme
in a practical way the old idea that in the undercooled liqu
a strong separation of time scales of the two motions occ
near the glass transition. The approach bears some re
blance to the Edwards packing entropy in the context
granular systems.31,32

Within the Stillinger and Weber~SW! approach each
configuration of the system is mapped into a local minimu
of the energy through a local potential energy minimizati
which start from the given configuration. The local minimu
was called inherent structure~IS!, while the set of configu-
rations flowing into it defines the basin of attraction or vall
of the IS. Following SW one then constructs a IS-based th
modynamics decomposing the partition function sum into
sum over IS with the same energy,11
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Z~T!.(
e

PIS~e,T!, ~7!

with

PIS~e,T!5expN@2be1sc~e!2b f ~b,e!#, ~8!

wheresc(e), defined as the configurational entropy, yiel
the number of different IS with energye, V(e)
5exp(Nsc(e)). The termf (b,e) accounts for the free energ
of the IS-basin of energye, i.e., the partition sum restricte
to the basin of attraction of IS with energye. In each IS-
basin the energy has been shifted, so that the IS has
energy, andf accounts only for energy differences. In ge
eral f (b,e) may have a nontrivial dependence on the ene
if the IS-basin of IS with different energy are quite differen
When the temperature is such that only the states nea
bottom of the IS-basin do contribute then it is reasonable
expect thatf (b,e) is roughly independent ofe.18–20Another
case where the dependence off (b,e) on e is expected to be
negligible is when the IS-basins are narrow and contain
configurations. This approximation works very well fo
REM-like models.20,33 When thee-dependence off can be
neglected the configurational entropysc(e) can be obtained
directly from Eq.~8!.

As long as the configurations counted on the r.h.s. of
~7! are the most relevant for the thermodynamics at temp
ture T the above construction is totally legitimate as far
thermodynamics is concerned. It is only a different way
summing the partition function. Nevertheless thesc(e) ob-
tained with the SW decomposition is in some sense a
namical quantity since the projection between configurati
and IS basins can be seen as the zero-temperature dyna
of the model. For this reason we will refer to it as Stillinge
Weber configurational entropy to distinguish it from oth
possible definitions of the configurational entropy taken fr
mean-field concepts.14,17 This poses the question, first raise
by Monasson and Biroli,34 on the relevance ofsc(e) and IS
in general for dynamics.

It is clear that once the energy and the rules of the
namics are given the IS can always be defined. For exam
for spin-glass models with quenched disordered variab
taken from a continuous distribution, the dynamics usua
consists of Monte Carlo updates~for instance, single spin
flips!. The IS are then identified as the final configuratio
reached after a sequence of Monte Carlo moves where
spin which yields the largest decrease of energy is identi
and flipped. Consequently, IS are stable against single s
flips but not for higher-number of spin flips. Biroli an
Monasson34 conclude then that IS are ill-defined becau
sc(e) depends on the number of spin-flips, which make
configuration stable~at least, for not fully connected mod
els!. We disagree with this conclusions because, as n
above, the IS and the SW entropy are intimately related
dynamics, and therefore it is not a surprise that changing
dynamics the IS and the SW entropy in general chan
What, in our opinion, is ill-defined is to speak of IS witho
specifying the dynamics.

Nevertheless the question posed by Biroli and Monas
is far from being trivial. Indeed despite the fact that the
Downloaded 05 Dec 2005 to 161.116.80.212. Redistribution subject to AI
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and the SW are dynamical quantities it is far from obvio
that they contain all~or almost all!relevant informations on
the dynamics on long time scales. This is a well known pro
lem in the theory of dynamical systems. The SW decom
sition can be seen as a mapping of the true dynamics
given temperature onto a symbolic dynamics given by
dynamics of the IS. The obtained symbolic dynamics give
good description of the original one only if the mappin
defines what is called a ‘‘generating partition,’’ see e.g., R
35. In general for a generic dynamics it is not at all trivial
demonstrate that such a partition exists, and even if it d
exist, how to find it. We can then recast the question po
by Biroli and Monasson in the following way: does the S
decomposition lead to a generating partition, or at least t
good approximation of it, for the long time dynamics
glasses near the glass transition?

In general we can answer to this question onlya poste-
riori. We define a possible partition and then check if th
reproduces the desired features of the dynamics. Howe
we can try to find under which conditions the answer co
be affirmative. Usually to find a generating partition, or
good approximation of it, a good starting point is by lookin
at the ‘‘physical’’ properties of the dynamics. The SW ma
ping replaces each configuration in a IS-basin with the
itself. Therefore it is clear that this mapping will be a goo
mapping if the systems spends a lot of time inside the ba
Under this assumption the dynamics on time scales la
than the typical residence time inside a IS-basin should
quite well described by the IS dynamics. This scenario
typical of a many valley dynamics with activated dynamic
It is also clear from the above discussion that if the IS m
ping is a good mapping it does not matter which configu
tion inside the IS-basin is used to represent the IS-basin
may be the IS itself or any other configuration in the bas
In a recent study of finite-size mean field spin-glass mod
which share the properties of structural glasses, this indep
dence has been indeed observed.20

On the contrary for dynamical processes described b
coarsening process this description should in general fail
cause dynamics proceeds through geometrically correl
configurations. Barrat, Burioni, and Mezard have show36

that the difference between the two scenarios has a sim
manifestation in how dynamical trajectories departing fro
the same configurations separate in the phase space.
sider a system described by a vectorX( t) in configuration
space. At timetw the system is cloned into a new syste
described by the vectorY( t). The two copies are let evolve
with different realizations of thermal noise and the overl
Qtw

(t)5X( tw1t)•Y( tw1t) is recorded as a function o
time t. For coarseninglike systems~called type I systems in
Ref. 36! the overlap converges to a finite valueQ`

5 limt→`Qtw
(t) for any value oftw while for glassy systems

with structural glasses behavior~called type II systems in
Ref. 36! that limit gives, for all possible values oftw , the
lowest possible value ofX( tw1t)•Y( tw1t). Since in gen-
eral it is possible to define IS also for coarsening syste
this is an indication that in these systems the nonequilibri
dynamics goes through configurations that are unrelated
the IS. Most probably the relevant configurations for coa
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ening are those on the border among IS-basins, i.e., th
configurations which are not mapped into any IS. In this c
the IS and the SW configurational entropy can still be
fined but are obviously of little use for understanding no
equilibrium dynamics, as shown by the results reported
the following sections.

Before addressing the SW approach to nonequilibri
dynamics of constrained kinetic models we note that
definition of the SW configurational entropy may not
completely free of ambiguities, especially for systems w
discrete states. Indeed the SW mapping assumes that
the energy and the dynamics are given then the map
between configurations and IS is uniquely defined. T
means that regardless of when a given configuration app
in the dynamical evolution it will always be mapped to t
same IS. In most of the recent papers on this subject18–20this
was the case, but for discrete models with discretized va
for the energies, as the ones studied here, there may be
lems because there could be many directions in phase s
where the energy decreases by the same amount. In this
some ‘‘decision’’ must be taken, e.g., one could employ
random choice among the possible directions. The IS and
corresponding SW configurational entropy can still be
fined, but now they depend on the chosen strategy for d
ing with equivalent directions. It can be shown37 that this
leads to a temperature dependence ofsc , so that the form of
sc depends onT. Only when some additional requiremen
are fulfilled the temperature dependence disappears. Fo
ample when all possible strategies lead to the same sam
rate for the IS relevant for the dynamics. We anticipate t
this requirement is not fulfilled by the constrained kine
models nor by the BG model studied here, and in some c
we find different curves forsc for different temperatures
Nevertheless the violation is not too strong since we b
cally find only two different curves depending on the te
perature range. This reflects the trivial fact that the constr
is more or less effective depending on the temperature
cause more we lower the temperature more the system
ders. Another interesting feature of these models is that,
spite the fact that the properties of these dynamical mo
are rather different, all of them have the same SW confi
rational entropysc . This casts doubts on the relevance of t
IS analysis for the nonequilibrium dynamics of these mod

B. The kinetically constrained Ising chain

These models are defined by Eqs.~1! and ~2!. To com-
pute sc(e) we thermalize the system at a finite temperat
T. This can be achieved either by running the dynamics fo
sufficient long time or by starting from equilibrium configu
rations whose distribution is given by

Peq~s i !5
exp~bs i !

11exp~b!
. ~9!

For each thermalized configuration the corresponding IS
computed via the minimization process given by the ze
temperature dynamics. Repeating the procedure for sev
initial configurations the IS probability distribution~8! can
be evaluated.
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Each IS is a fix-point of the dynamics, and therefore
can estimatesc from the number of fix-points. This is easil
evaluated denoting withA the one-bit sequence 1 andB the
two-bits sequence 01 since all fix-points are given by
possible arbitrary sequences ofA’s andB’s ~for instance, the
sequenceABBBAABB!. If NA , NB stand for the number o
A’s andB’s in the sequence, withNA12NB5N, whereN is
the length of the chain, then

Nfix5
~NA1NB!!

NA!NB!
. ~10!

From this expression, and noting thate52(NA1NB)/N, we
have

sc~e!5
log~Nfix!

N
52e log~2e!2~11e!log~11e!

1~112e!log~2122e!. ~11!

The above formula assumes that all IS are counted with
equala priori probability. This is what is called the metho
of unbiased guessin information theory.35 Therefore the
above expression is valid iff the dynamics samples~almost!
all fix-points with equal probability, where with ‘‘almost’’
we mean the fix-points relevant for equilibrium dynamics
temperatureT.

A better estimate ofsc comes from the analysis of th
zero-temperature dynamics. As shown in Appendix A t
zero-temperature dynamics can be solved exactly for
value ofa, and from thisPIS(e,T) can be evaluated,

PIS~e,T!5
1

A2p^C0
2~`!&c

expS 2
~e2^eIS&!2

2^C0
2~`!&c

D . ~12!

The details of the calculation are reported in the Appendi
together with the expressions of^C0

2(`)&c and ^eIS&, Eqs.
~61! and~59!. Note that this result, as well as Eq.~11!, does
not depend on the value ofa implying that all models, and in
particular the SCIC and ACIC, have the samePIS(e,T) and
hence the same SW configurational entropy.

In Fig. 1 we compare the numerically evaluate
PIS(e,T) for the SCIC model withN564 and different tem-
peratures with the analytical prediction Eq.~12!. The agree-
ment is quite good at low temperature but decreases w
increasing temperatures where the variance of the Gaus
is slightly larger than in simulations.

In Fig. 2 we report the average IS energy as a function
T and compare it with the prediction from the analytic
calculation of Appendix B. There are two possible ways
computee(T): the first is from Eq.~59!, the second rests o
integrating the variance

e~T!5E
0

T ^C0
2~`!&c

T2 dT, ~13!

where ^C0
2(`)&c is given by Eq.~B5!. We also report the

result from the fix-point approximation~11!. Figure 2 clearly
shows that the different approximations depart each othe
a temperatureT.0.6. Above this temperature the energ
dependence of the IS free energyf in Eq. ~8! cannot be
neglected anymore, showing that the fix-point approximat
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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which neglects thermal fluctuations inside the IS-basins
inappropriate. On the other hand the direct calculation fr
the zero-temperature dynamics turns out to be very good

Finally we considersc . In Fig. 3 we show the result
obtained for the SCIC model withN564 and different tem-
peratures. The SW configurational entropysc is obtained
from the numericalPIS(T,e) as19,20

sc~e!5be1 log~PIS~T,e!/N!1const. ~14!

For each temperature the constant has been fixed by col
ing different data onto the single curve. As a comparison
also show the theoretical predictions from Eqs.~11! and~see
Appendix B!

FIG. 1. Probability histograms in the SCIC model with 64 spins at differ
temperatures compared with the analytical prediction~12! ~full curve! and a
fit to a Gaussian~dashed curve!.

FIG. 2. IS energies as function of temperature obtained integrating Eq.~11!,
using Eq.~B3! and the variance of the IS-energy distribution given by E
~13!.
Downloaded 05 Dec 2005 to 161.116.80.212. Redistribution subject to AI
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sc~e!5E
0

T d^eIS&
dT

dT

T
. ~15!

As shown in Appendix B, both coincide asymptotically clo
to the ground state energye521. The collapse is excellen
showing that the approximation~11! and the low-
temperature behavior~15! asymptotically coincide in the
limit T→0. We note that there is a range of energies wh
data fromT<0.6 collapse on one curve while data for high
temperature collapse on a different curve. As discus
above, this residual temperature dependence follows f
the presence of many equivalent directions for energy m
mization.

We have checked thatPIS(T,e) is independent ofa by
repeating the analysis for the ACIC model and for differe
values ofa. In all cases we always find the same results

C. The BG model

In this case we cannot exactly solve the zero-tempera
dynamics of the model and compute the SW configuratio
entropy. Nevertheless, we can approximatesc(e) of the BG
model by counting the number of ways in which two or mo
particles can be distributed in a set ofN occupied boxes
separated by empty boxes. This yields two contributions:
first comes from all possible ways of distributing theM oc-
cupied boxes in a chain ofN boxes, with the additional con
dition that each occupied box is surrounded by an em
box. This is again given by Eq.~10! assuming thats51 for
occupied boxes ands50 for empty ones. The energy~5! is
given byE52(N2M ) and therefore this contribution read

sc
first~e!52~11e!log~11e!2e log~2e!1~112e!

3 log~2122e!. ~16!

t

.

FIG. 3. SW configurational entropy in the SCIC forN564 spins at different
temperatures compared with the analytical prediction~15! ~upper curve!and
the fix-point estimate~11! ~lower curve!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The second contribution follows from considering a
different ways of distributing theN particles among theM
occupied boxes with the constraint that each occupied
contains at least two particles,

Nfix
second5 (

) r 51
N nr>2

1

) rnr !
dS (

r 51

N

nr2ND , ~17!

where thenr ! terms arise from the distinguishability of pa
ticles. Introducing the integral representation for the de
function,

d~x!5
1

2p E
2`

`

exp~ ilx!dl, ~18!

we find an expression for Eq.~17! in terms of the fugacityy.
In the N→` limit this can be evaluated by the saddle po
method yielding

sc
second~e!5

log~Nfix
second!

N
52 log~y!

1~11e!log~exp~y!2y21!,
~19!

wherey satisfies the saddle-point condition,

e5211
exp~y!212y

y~exp~y!21!
. ~20!

The full entropy is given by

sc~e!5sc
first~e!1sc

second~e!. ~21!

Note that for this model the configurational contribution m
be negative because particles are distinguishable.

We have computedsc(e) numerically following a pro-
cedure similar to that described for the constrained kin
models. The results are shown in Fig. 4 for two differe
sizesN5100, 500 and temperatures ranging fromT50.1 up

FIG. 4. SW configurational entropy in the BG model forN5100 500 boxes
at different temperaturesT51.0, 0.5,0.4,0.3,0.2,0.15,0.1 compared with t
fix-point estimate~21! ~full line!.
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to T51. Similarly to that found for the constrained kinet
models, the data nicely collapse onto a single curve altho
it does not exactly coincide with the number of fix points.
this model the presence of different equivalent directions
decrease the energy does not influencesc . This is most prob-
ably due to the global character of the constraint.

Comparing Figs. 3 and 4 we see that the agreement
is worse. We attribute this to the presence of entropic ba
ers which follows from all possible arrangements of partic
inside the boxes. All arrangements leave the energy
changed, but their number strongly depends on the num
of empty boxes, leading to a stronger energy dependenc
the IS free energy for this model. This effect was not pres
in the kinetically constrained Ising chain.

The conclusion that can be drawn from this section
that for these models a description of the glassy behavio
terms of a complex energy landscape is not relevant. E
though the SW configurational entropy for the constrain
Ising chain is a non trivial quantity, it does not distinguis
the SCIC model from the ACIC model.

IV. ANALYSIS OF COARSENING BEHAVIOR

In the previous section we have seen that the IS
proach yields identical results for models which are kno
to have a completely different dynamical behavior, name
the SCIC and ACIC models. The purpose of this section is
show these differences making connection with results
ready known in the literature and studying new ones to g
some insight using the tools from disordered systems. Co
ening appears when domains of a given phase grow in t
slowly enough for the system to be off-equilibrium.38 In the
simplest case, dynamics is characterized by a unique le
scale associated with the typical size of the growing d
mains. All models discussed in this paper can be describe
terms of coarsening in the sense that it is possible to defi
length scale which identifies the distance from to equil
rium. For the kinetically constrained Ising chain this leng
is the typical size of the11 domain while in the BG mode
it is the typical length of sequences of empty boxes.

In the simplest cases this length suffices to characte
the off-equilibrium behavior. For instance, for coarsening
~ordered or disordered! ferromagnets the off-equilibrium be
havior is fully characterized in terms of a single length sc
L(t) in the sense that the two-times dependence of corr
tion and response functions directly enters through the va
of this length scale. In the aging regime, where both timet,
s are large we have38

Cag~ t,s!; f S L~ t !

L~s! D , ~22!

Rag~ t,s!;
1

L~ t !a gS L~ t !

L~s! D , t.s, ~23!

with a>1 a positive exponent which depends on the mo
under consideration.

Correlations are easy to measure, while responses
quire the introduction of an external perturbation. This p
turbation must couple with the variables of the system a
must be small enough to ensure a linear response regim
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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useful quantity is the integrated response function~hereafter
denoted as IRF!, which measures how much the system
members the effects of a perturbation applied during a gi
interval of time,39

x~ t,s!5E
s

t

duR~ t,u!. ~24!

One of the salient features of coarsening phenomena38,40,41is
that aging effects in the integrated response function asy
totically vanish when the lower times goes to infinity and
the system does not have long-term memory. Suppose
the coarsening lengthL(t) grows liket1/z with z a dynamical
exponent. Using Eqs.~23! and ~24! one finds that the aging
part of the IRF behaves like,

xag~ t,s!;s12 ~a/z!x̂~ t/s! ~25!

which vanishes ass→` if a.z.
An easy way to test these effects is by directly looking

fluctuation-dissipation plots~hereafter referred to as FDT!.42

In equilibrium R(t,u)5R(t2u)5b @]C(t2u)/]u# which
substituted into Eq.~24! yields,

x~ t2s!5b@C~0!2C~ t2s!#, ~26!

and the plot ofTx(t,s) in terms ofC(t,s) is a straight line of
slope21.

In the off-equilibrium regime expression~26! can be
generalized by defining the fluctuation-dissipation ratio39

X~ t,s!5
TR~ t,s!

]C~ t,s!

]s

~27!

which measures how far the system is from equilibrium.
equilibriumX is equal to 1. In the off-equilibrium asymptoti
long-time regime, i.e., in the aging regime, where there is
time translational invariance bothX(t,s) andx(t,s) are ex-
pected to be nontrivial functions ofC. A quantitative esti-
mate ofX, can be obtained from the slope of the FDT plo

X~C!52F]Tx~ t,s!

]C~ t,s! G
C(t,s)5C

. ~28!

For coarsening models the aging part of the IRF asym
totically vanishes andx(t,s) is expected to saturate to
finite value, called the field-cooled value in the context
spin glasses, and stays constant while the correlation
decreases before saturating.

The simplest way to compute the IRF in the present cl
of models is to apply a perturbation which does not cou
Downloaded 05 Dec 2005 to 161.116.80.212. Redistribution subject to AI
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with the absorbing state, i.e., the ground state. We start f
a random initial configuration and after a waiting times
5tw apply a random staggered fieldhi5e ih0(t), where
h0(t) is the intensity of the field ande i561 are independen
random quenched variables of zero mean. This method
the advantage that the perturbation term in the Hamilton
does not directly couple to the coarsening length, and
been used by Barrat43 to investigate coarsening in finite
dimensional Ising models.

The staggered magnetic field couples to the spin v
abless i in kinetically constrained models and to the equiv
lent variabless i5dni ,0

in the BG model so that the pertur
bation in the Hamiltonian reads

dH~ t !52(
i 51

N

e ih0~ t !s i . ~29!

In the case ofh0(t)5h0u(t2tw) the integrated respons
function can be obtained measuring the random stagg
magnetization after switching the field at times5tw as

x~ t1tw ,tw!5
1

Nh0
(
i 51

N

e is i~ t1tw!. ~30!

The original 0,1 variables have some disadvantages, for
ample the correlation at equal time is not 1 but depends
temperature. For this reason we find more convenien
work with the new variablesn52s21 which now take the
values 1,21. We then consider the disconnected correlati

C~ t1tw ,tw!5
1

N (
i 51

N

n i~ tw!n i~ t1tw!, ~31!

and the staggered magnetization~30!,

M stag~ t1tw ,tw!5
1

N (
i 51

N

e in i~ t1tw!52h0x~ t1tw ,tw!.

~32!

Now the equal times disconnected correlation function
equal to 1 so that in the FDT plots, where the integra
response function is plotted vs the disconnected correla
function, all curves start fromC51, M stag.0 for t5tw .
This makes easier to compare results from different value
tw .

As discussed before in Sec. III a different way to disti
guish coarsening dynamics from other more complex beh
iors is to measure the overlapQ(t) between two replicas
which start from the same configuration at timetw and
evolve with different realization of thermal noises. Here w
consider the connected, normalized overlap function,
Qtw
c ~ t !5

1

N
( i 51

N s i
(1)~ tw1t !s i

(2)~ tw1t !2S 1

N
( i 51

N s i
(1)~ tw1t ! D S 1

N
( i 51

N s i
(2)~ tw1t ! D

1

N
( i 51

N s i
(1)~ tw!2F 1

N
( i 51

N s i
(1)~ tw!G2 , ~33!

wheres (1,2)50,1 refer to the two replicas, and the connected, normalized, correlation,
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Cc~ t1tw ,tw!5

1

N
( i 51

N s i
(1)~ tw1t !s i

(1)~ tw!2S 1

N
( i 51

N s i
(1)~ tw1t ! D S 1

N
( i 51

N s i
(1)~ tw1t ! D

1

N
( i 51

N s i
(1)~ tw!2S 1

N
( i 51

N s i
(1)~ tw! D 2 . ~34!
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For type I systemsQ`
c 5 limt→` Qtw

c (t) is finite. For type

II systems this quantity converges in thet→` limit to the
lowest accessible value, i.e., vanishes in thet→` limit. In
equilibrium both Eqs.~33! and~34! depend only ont and the
following relation is validQtw

c (t)5Cc(2t). There are few

numerical studies ofQtw
c .36,44 For the models considere

here the results from this analysis are, however, not
strong, the reason probably being that coarsening occurs
disordered~i.e., paramagnetic!phase.

In the rest of this section we investigate in detail coa
ening length scales, correlations and responses for the
equilibrium dynamics of models described in Sec. II. W
note that although many results on timescales and coarse
length scales have been obtained in the literature21,23–27al-
most nothing is known about the aging behavior in this ty
of models~partial results are shown in Ref. 27 for the SCIC!.

A. The SCIC model

It has been shown in Ref. 27 that the SCIC model has
activated time scalet15exp(b) characterized by an expo
nential decay of the staggered energy. For times smaller
t1 there are no aging effects and only for times larger thant1

nonequilibrium behavior with nonexponential relaxation a
aging appear. From the decay of correlation functions a s
ond activated timescaletcorr.t1 can be defined. To this en
we have computed the equilibrium connected correlat
function

FIG. 5. Equilibrium connected correlation functions in the SCIC for te
peratures ranging fromT51.0 down to T50.35 fitted according to Eq.~36!.
Data have been averaged over 1000 thermalized initial conditions anN
5105.
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Cc~ t !5
N( i 51

N s i~0!s i~ t !2( i 51
N s i~0!( i 51

N s i~ t !

N( i 51
N s i~0!2~( i 51

N s i~0!!2 , ~35!

which is well described for all temperatures by the followin
functional form:

Cc~ t !5S 1

11t/t1
D a

exp~2atb!, ~36!

wherea, a, b are three fit parameters and the activated ti
scalet1 is introduced in the fitting function as an effectiv
microscopic time. The results forCc(t) are shown in Fig. 5
for different temperatures, the lines are the best fits w
form ~36!. This fits are in agreement with the asympto
analytical predictions of Reiter and Ja¨ckle23 and Schulz and
Trimper24 but combined with the exponential time scalet1

derived in Ref. 27. In particular, the exponenta is close to
the value 1/2 predicted in Refs. 23, 24 for very low tempe
tures.

From the fit we can estimatetcorr as

tcorr5E
0

`

Cc~ t !dt. ~37!

The results are shown in Fig. 6. The correlation timetcorr

follows the Arrhenius-type lawtcorr;exp(2b). This func-
tional dependence of correlation time from temperature
be understood from the following phenomenological arg
ment, based on defects annihilation in the SCIC. A def
separated by magnetized domains can disappear by an
ing defects along the chain. The typical time to ancho

-

FIG. 6. Correlation time in the SCIC computed using Eq.~37! and fitted
with an Arrhenius behavior. The best fit givestcorr51.43 exp(1.93b).
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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defect is exp(b) while the length of the magnetized domai
in equilibrium is of order exp(b). Because defects can b
anchored starting from the right or from the left of a magn
tized domain, the typical time to annihilate that domain is
sum of independent processes yieldingtcorr;exp(2b).

To investigate coarsening in the SCIC model we ha
measured the growth of the average domain length,

d~ t !5
( l 51

N lPt~ l !

( l 51
N Pt~ l !

, ~38!

where

Pt~ l !5(
i 51

N

)
j 5 i

i 1 l 21

s j~ t !@12s i 1 l~ t !#@12s i 21~ t !# ~39!

is proportional to the probability of having a domain of spi
1 of length l at time t. For t→` Pt converges towards th
equilibrium length probability distribution,

Peq~ l !5
exp~2b!

@11exp~2b!# l , ~40!

and the average length saturates to the equilibrium value

deq511exp~b!. ~41!

In Fig. 7 we present the average domain length a
function of time starting from a random initial condition
From the figure it follows that after 106 MCS d(t) is still
well below the equilibrium valuedeq for temperatures as
high asT50.2 indicating that the systems has not yet equ
brated. In agreement with Ref. 23 a power law fit leads
d(t);t1/2 characteristic of diffusion.45 In the lower part of
Fig. 7 we show the relaxation of the energy as a function
time. These results combine the zero temperature expo
tial decay to the threshold energy24,27 1/e with the slower
decay towards equilibrium. Note that since the average

FIG. 7. Average domain length and magnetization in the SCIC model.
average length grows diffusively liket1/2.
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main length grows liket1/2 while the equilibrium value for
large b is deq;exp(b) we get for the correlation timetcorr

;exp(2b), as expected
Further information on the non-equilibrium behavior c

be obtained from the analysis of the response to a stagg
magnetic field as described in Eqs.~28!, ~31!, and~32!. In
Figs. 8 and 9 we showM stag(t1tw ,tw) @see Eq.~32!# and the
correlation functionC(t1tw ,tw) for temperatureT50.3 and
0.11 and different waiting timestw . The strength of the stag
gered field ish050.1 while the system size isN5105. The
horizontal lines indicate the equilibrium values,

eFIG. 8. Correlations and zero-field cooled magnetization in a staggered
in the SCIC model forN5105, T50.3 and different waiting timestw

510,100,1 000,10 000. The horizontal lines indicate the equilibrium val
~42! and ~43!.

FIG. 9. Correlations and zero-field cooled magnetization in a staggered
in the SCIC model forN5105, T50.11 and different waiting timestw

510,100,1 000,10 000. The horizontal lines indicate the equilibrium val
~43!.
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Ceq5
1

N (
i 51

N

^n i&
25S 12exp~2b!

11exp~b! D 2

~42!

and

M stag
eq 5

1

N (
i 51

N

^n i&52h0

b exp~b!

@11exp~b!#2 1O~h0
2!. ~43!

The corresponding FDT plots are shown in Figs. 10 a
11, respectively.

Concerning Figs. 8, 9, 10, and 11 we note the followin
~1! Aging in the correlation function appears for waitin

times larger than the critical timet15exp(b) and survives
even for times larger than the correlation timetcorr. This can
be seen from both correlation function and staggered ma

FIG. 10. FDT plots in the SCIC forN5105, T50.3 and different waiting
times tw510,100,1 000,10 000. The straight line is the FDT relation~26!.

FIG. 11. FDT plots in the SCIC forN5105, T50.11 and different waiting
times tw510,100,1 000,10 000. The straight line is the FDT relation~26!.
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tization. The equilibration timeteq to reach equilibrium is
larger than both the activated timet1 and the correlation
time tcorr. If we define the equilibration timeteq as the time
needed for the average domain length to reach the equ
rium value, then plotting the data of Fig. 7 as a function
T log(t/t0) we find thattcorr; teq/t1 , i.e., teq;exp(3b).

~2! The staggered magnetization has a hump, in co
spondence of which the correlation function presents a br
minimum, as function oft. For tw<t1 the hump maximum
takes the largest value and decreases withtw as soon astw

.t1 and eventually disappears fortw→`. This effect is a
direct manifestation of the two critical time scales presen
the SCIC model.27

~3! The existence of different activated relaxation tim
results in rather peculiar FDT plots, see Figs. 10 and 11.
tw,t1 , Fig. 11,C, x, andX do not show any dependence o
tw , neverthelessX is a nontrivial function ofC correspond-
ing to nonequilibrium behavior without aging. A simila
shape is found for the one-dimensional Ising model at l
temperatures.46 For tw.t1 , Fig. 10, there are aging effect
and X shows the typical two slope pattern. However, t
existence of a second typical timescale results in a sec
downwards bending of the IRF andX as function ofC has a
three slope shape.

We conclude the analysis of the SCIC model by discu
ing the results for the cloning experiment. In Fig. 12 w
show the overlapQtw

c (t) @Eq. ~33!# as a function of the con-

nected correlationCc(t1tw,tw) @Eq. ~34!# for temperature
T50.11. The results show that, for any finitetw , Q goes to
zero quite rapidly. If one comparesQtw

c (t) with Cc(2t

1tw ,tw) for different values oftw one finds that both de
crease exponentially fast with time and thatQtw

c (t) is smaller

but very close toCc(2t1tw ,tw). This implies that the two
trajectories depart from each other quite fast. The data in
12 collapse quite nicely onto the parabolaQ.C2 in agree-
ment with the exponential decay.

In conclusion the SCIC model is a coarsening mo

FIG. 12. Qtw
c (t) vs Cc(t1tw ,tw) in the SCIC atT50.11.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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with three activated time scalest15exp(b), tcorr5exp(2b),
and teq5exp(3b). In this scenario we do not expect th
simple scaling form~22! in terms of a single length scale t
be verified. Indeed, although a growing length scale can
identified a single length scale does not describe the wh
time regime. This is clearly seen in Fig. 13 forT50.15
where aging starts aftert1;1000. The scaling form~22!
constructed from data from Fig. 7 is shown in Fig. 14. T
scaling is obviously rather poor. The behavior of this mo
is essentially diffusive as emerges from the behavior of
overlapQtw

c (t) similar to the behavior of a ferromagnet wit

the nonconserved order parameter, with the difference
the SCIC model has no phase transition and coarsening t
place in a disordered phase.

FIG. 13. Connected correlationsCc(tw ,tw1t) in the SCIC forN5105, T
50.15 and different waiting timestw510,100,1 000,10 000. Aging is
present for times larger thant15exp(b).

FIG. 14. Connected correlationsCc(tw ,tw1t) ~34! in the SCIC for N
5105, T50.15 plotted vsd(t1tw)/d(tw).
Downloaded 05 Dec 2005 to 161.116.80.212. Redistribution subject to AI
e
le

l
e

at
es

B. The ACIC model

Coarsening in this model has been extensively stud
by several authors, finding that the correlation time ha
super-Arrhenius behavior and grows like exp(b2/log(2)),25,26

much faster than the typical Arrhenius behavior;exp(2b)
found for the SCIC model. In the SCIC model domains c
always grow if they can annihilate defects by building inte
mediate defects to the right or to the left of that defect. In
ACIC model, on the contrary, defects can disappear only
anchoring intermediate defects in the middle of the dom
from one side. This strongly enhances the correlation tim
On the other hand, the absence of a critical time liket1 and
the coincidence of the correlation time with the equilibrati
time makes the dynamics of this model simpler than tha
the SCIC model.

In Fig. 15 we show the average domain length defin
by Eq. ~38! and the energy as a function of time when sta
ing from a random initial configuration for different temper
tures. TheT log(t) scaling predicted by Sollich and Evans26

is very well satisfied. Note the presence of plateaus in b
the average domain length and the energy for the same r
of time. These correspond to time intervals where doma
coalesce and the global energy stays constant becaus
number of anchoring spins is much smaller than the length
the coalescing domains.26 Since the average domain leng
grows like log(d);lTlog(t), i.e., d;tlT, and the equilib-
rium domain length is given bydeq;exp(b) for low tem-
perature, a phenomenological argument yields for the co
lation time tcorr;exp(b2/l) with l5 log(2) in agreement
with the expectations of Mauch and Ja¨ckle.25

Figures 16 and 17 show the nonequilibrium disco
nected correlation function~31! and the staggered magnet
zation ~32! from infinite temperature initial conditions as
function of time for two temperaturesT50.2 and 0.4 and
different values oftw . The strength of the field ish050.1.
The dashed horizontal lines are the equilibrium values~42!

FIG. 15. Average domain length and magnetization in the ACIC atT
50.15,0.20. The average length grows liketlT.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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and ~43!. The FDT plots are shown in Figs. 18 and 19.
Looking at this set of figures we note the followin

points:
~1! The staggered magnetization does not posse

hump, and the correlation functions a broad minimum, as
the SCIC model. Here, on the contrary, both are monoto
functions of time, a behavior commonly found in mode
where there is no critical time~like t1 in the SCIC!associ-
ated with a microscopic fast process. On the time scale
tcorr both quantities relax to the equilibrium values. We no
that tcorr.104 for T50.4 andtcorr.1015 for T50.2.

~2! A simple look at Figs. 16 and 17 reveals that aging

FIG. 16. Correlations and zero-field cooled magnetization in a stagg
field in the ACIC model forN5105, T50.4 and different waiting times
tw510,100,1 000,10 000. The horizontal line indicates the equilibri
value ~43!.

FIG. 17. Correlations and zero-field cooled magnetization in a stagg
field in the ACIC model forN5105, T50.2 and different waiting times
tw510,100,1 000,10 000. The horizontal line indicates the equilibri
value ~43!.
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present for all time scales in both the correlation functio
and staggered magnetization. Aging inM stagis noticeable for
all values oftw suggesting that aging in the IRF disappear
rather slowly withtw . Keeping in mind the coarsening na-
ture of this model this suggests thata.z in Eq. ~25!.

~3! From Figs. 16 and 17 it is difficult to verify the
coarsening nature of the dynamics in this model. A simp
check can be done with the help of the FDT plots shown
Figs. 18 and 19 for temperaturesT50.4 andT50.2. Inter-
estingly for waiting times comparable to the correlation time
so that the system is not far from equilibrium, the
fluctuation-dissipation ratioX rapidly converges to 1, see
Fig. 18. At low temperatures, Fig. 19,tw!tcorr and the
fluctuation-dissipation ratio is very small,X.0.1, and

ed

ed

FIG. 18. FDT plots in the ACIC forN5105, T50.4 and different waiting
times tw510,100,1 000,10 000. The straight line is the FDT relation~26!.

FIG. 19. FDT plots in the ACIC forN5105, T50.2 and different waiting
times tw510,100,1 000,10 000. The straight line is the FDT relation~26!.
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roughly independent oftw , a scenario typical of coarsenin
models.43

In the ACIC model there is only one characteristic d
vergent timescale, namelytcorr, and thus we expect that th
scaling behavior~22! should be satisfied. Note that, contra
ily to the SCIC, the average domain lengthd(t) does not
grow in time like a power law~see Ref. 26 and Fig. 15!.
Consequently, in the aging regime the scaling will not be
the form t/tw , see Fig. 20, but a more complicated functi
depending on shape ofd(t),26 see Fig. 21 whereCc(tw ,tw

1t) is plotted as a function ofd(tw1t)/d(tw). The scaling is
quite good.

We conclude our analysis of the ACIC model with th
discussion ofQtw

c (t) and Cc(t1tw ,tw) shown in Figs. 22

and 23. AgainQtw
c (t) decays to zero for anytw but slower

FIG. 20. Connected correlationsCc(tw ,tw1t) in the ACIC for N5105, T
50.20 and different values oftw plotted vst.

FIG. 21. The same data of Fig. 20 plotted vsd(tw1t)/d(tw).
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than in the SCIC model, see Fig. 12. IfQtw
c (t) is compared

with Cc(2t1tw ,tw) for different values oftw one finds that
again Qtw

c (t) is smaller, but very close to,Cc(2t1tw ,tw).

However, contrarily to the SCIC case, now during the init
regime whentw is small bothQtw

c (t) and Cc(2t1tw ,tw)

show a plateau, more pronounced forQ, for times t.103.
The time range betweentw5102 and tw5103 corresponds
~see Fig. 15!to the regime whered(t) is growing very fast.
This means that during this time interval domains gro
sinceC slowly decays, butQ remains almost constant be
cause the two replicas follow the same narrow path in ph
space. This effect is consequence of the way domains g
in this model where the anchoring of spins proceeds one
one in a given direction, different from the diffusive mech
nism in the SCIC model. Fortw larger than 103 this effect
would be observed at the next time scale, between 105 and
106, where new domains would have grown again~see Fig.
15!. Moreover this would also lead to a new plateau forQ

FIG. 22. Qtw
c (t) vs Cc(t1tw ,tw) in the ACIC atT50.2.

FIG. 23. Qtw
c (t) andCc(2t1tw ,tw) in the ACIC atT50.2.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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and C for waiting times tw510 and 102 for values of the
correlation of order 0.3~which we have not reached in th
simulations!.

We can summarize the results of this subsection by s
ing that the nonequilibrium behavior of the ACIC mod
resembles coarsening in a simple ferromagnet although
growing length scale grows slower, liketT log(2). The ansatz
~22! for the scaling behavior is well verified and the FD
plots show some similarities with the physics of undercoo
liquids although no connection between the slope of the F
behavior and the SW configurational entropy is possib
Note that we obtainX.0 when temperature is lowered. Fu
thermore, the behavior ofQtw

c (t) reveals that the relaxationa

dynamics proceeds by evolution in narrow channels in
time intervals where domains grow similar to what happe
for type I models. On the contrary, it is not possible to e
tablish the glassy scenario from the value of limt→` Qtw

c (t) a

quantity which we expect to work only for models with br
ken ergodicity.

C. The BG model

In the 1D BG model, at difference with the kinetic co
straint models discussed above, there are no dynamical
straints and coarsening follows from the slow growth of t
number of empty boxes induced by entropic barriers. If
denote withs50,1 empty and occupied box, respective
then we can consider the same quantities discussed fo
kinetic constraint models, i.e., domain length probability d
tribution, average length, correlation, and magnetization.
these quantities converge for large times to their equilibri
values derived from the equilibrium probabilit
distribution,28

Peq~n!5
1

N (
r 51

N

^dnr ,n&5
zn21 exp~bdn,0!

n! exp~z!
, ~44!

which gives the probability that at equilibrium a box contai
n particles. Normalization of the distribution~44! corre-
sponds to the conservation of the total number of partic
and reads

exp~b!215~z21!exp~z!. ~45!

By usingPeq the equilibrium values of correlations, respon
and domain length can be computed. For example the a
age domain length of empty boxes at equilibrium is given

deq5
1

12Peq~0!
~46!

which diverges forb→` when all particles fill a single box
From the definition it follows thatPeq(0) is equal to minus
the equilibrium energy~5! which, for smallT, goes asE/N
5211T1O(T2). We then havedeq;b for b→`.

Similarly for the correlation function we have,

Ceq5
1

N (
i 51

N

^n i&
25@2Peq~0!21#2, ~47!

wheren52s21.
Downloaded 05 Dec 2005 to 161.116.80.212. Redistribution subject to AI
y-

he

d
T
.

e
s
-

n-

e
,
he
-
ll

s,

r-
,

To compute the staggered magnetization we have to
the equilibrium probability distribution with the extra term
~29! added to the energy. A straightforward calculation lea
to

M stag
eq 5

1

N (
i 51

N

^n i&5
eb~12e2z!sinh~bh0!

z~ez211eb cosh~bh0!!
, ~48!

wherez is now solution of

zez

2 F 1

ez211eb(11h0) 1
1

ez211eb(12h0)G51. ~49!

Note thatM stag
eq is linear inh0 for small values ofh0 .

Analyzing in details the dynamics we can distingui
two different decay processes: the first one entropically a
vated and the second one energetically activated. When
system is quenched from high to lowT particles ‘‘evapo-
rate’’ from some boxes and accumulate in others. After so
time a situation is reached where boxes with more then
particle are separated by empty boxes and a very small n
ber of single occupied boxes~defects!. ForT50 these de-
fects disappear and the energy does not relax to equilibri
On the contrary forT small but finite the number of thes
defects may be large enough, its number scaling asTN, to
serve as nucleation paths between two nearby multiple o
pied boxes which, by the usual entropic mechanism, eve
ally accumulate onto a single box. The time scalet1 for this
process is activated since defects must be created, but
smaller than exp(b).

A second, energetically activated, process appears
defects to be anchored between multiple occupied boxe
that they coalesce in a single multiple occupied box. At lo
temperature and close to equilibrium the typical number
particles per occupied box is of orderb while the distance
that particles must cover by diffusion from one box to
contiguous one is of orderdeq;b. Combining these two
behaviors we obtain for the equilibration timeteq

;b exp(b).
The interplay between these two mechanisms can cle

be seen in Fig. 24, where we report growth of the aver
domain length, from an initial random configuration, a
~minus! the average number of empty boxes~energy!as a
function of time for different temperatures. The data are pl
ted as function ofT log(t) so that the equilibration time
where the average length reaches the equilibrium value
T log(teq).11d with d52T log(T) leading to teq

.b exp(b). This equilibration time scaleteq is shorter than
that of the kinetically constrained Ising chain but longer th
the mean-field caseteq; @exp(b)/b2#.29 From the figure we
also see that both the average domain length and the en
display a plateau at short times corresponding to theT50
behavior. The departure from this initial plateau occurs
times shorter than the activated characteristic time expb)
and is driven by the entropic mechanism described above
good collapse of the departing time is obtained fort1

5exp(b)/b. For b→` the characteristic timest1 and teq

become well separated sinceteq/t1;b2.
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Figures 25, 26, 27, and 28 show the correlation functi
staggered magnetization, and FDT plots of the 1D BG mo
for the two temperaturesT50.1 and 0.09 and field strengt
h050.1.

From the analysis of the figures the following concl
sions can be drawn:

~1! After quenching from infinite to low temperature
fast evaporation of occupied boxes occurs after which on
finite fraction of them, approximately 30%, survives. Ea
occupied box contains in average about 3–4 particles. T
process is clearly seen in Fig. 24. The time scalet1

.exp(b)/b has a role similar to the time scalet1 found in
the SCIC model. The aging effects are absent fortw,t1 but
X,1 ~see Figs. 27 and 28!. The dynamics is again diffus
and similar to the one found for the one-dimensional Is
model.46

FIG. 24. Average domain length and energy in the BG model.

FIG. 25. Correlations and staggered magnetization in the BG forN5104,
T50.10, and different values oftw .
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~2! For waiting timestw.t1 the dynamics slows down
due to energy barriers. To empty a box a large numbe
particles must be transferred, a process which is coopera
and involves all the particles in the box. The typical time
this cooperative process isteq;b exp(b). For waiting times
t1,tw,teq the system shows strong nonequilibrium effec
with a downwards bending of the IRF as a functionC similar
to what is seen in the SCIC model. The origin of this effe
is, however, different and follows from the asymmetric r
sponse to the staggered field of occupied and empty bo
Since the field is coupled to empty boxes, the typical time
empty a box is larger than that to occupy an empty one
other words, when quenching from high~or infinite! tem-
perature boxes are occupied fast and its number conve
relatively fast towards the equilibrium value. However, d
to the staggered field, the distance among them is far fr

FIG. 26. The same as Fig. 25 forT50.09.

FIG. 27. FDT plots in the BG forN5104, T50.1 and different values of
tw .
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the equilibrium value and occupied boxes must be re
ranged, which is a very slow process. Consequently corr
tion functions and staggered magnetizations show pecu
humps corresponding to the fast and slow responses.

In conclusion, we can say that the strong entropic effe
which follows from the large occupation numbers of som
boxes at low temperatures, imply that the nonequilibriu
behavior of the 1D BG model cannot be well described o
in terms of a single length scaled(t). The reason is tha
althoughd(t) tells how far the system is from equilibrium
does not contain enough information to efficiently descr
the effects associated with the entropic barriers and the
satz~22! does not hold.

V. CONCLUSIONS

In this paper we have studied the dynamics of co
strained 1D Ising models. In particular we have focused o
family of constrained kinetic models which interpolate b
tween the symmetrically constrained Ising chain~SCIC! in-
troduced by Fredrickson and Andersen15 and the asymmetri-
cally constrained Ising chain~ACIC! introduced by Eisinger
and Ja¨ckle.21 For comparison we have also studied the
Backgammon model,22 where dynamics is slowed down b
the global constraint imposed by the conservation of the p
ticle number. Although these models reproduce some gen
features of undercooled liquids there are, however, impor
differences.

First of all since the class of kinetic constrained mod
defined in Sec. II@see Eqs.~1! and ~2!# have the same
Stillinger–Weber configurational entropy~see Sec. III!but
rather different nonequilibrium behaviors~see Sec. IV!, we
conclude that the IS approach is not appropriate for th
models. The reason of this failure can be easily understo
Dynamics in coarsening systems is usually described
terms of a growing length scale which measures how cl
the system is to equilibrium. In this scenario configuratio
at different times are obviously overlapping since domain

FIG. 28. The same as Fig. 27 forT50.09.
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the early times are contained in the larger domains at l
times. Consequently the~slow! approach to equilibrium can
be described within a geometrical picture in terms of t
value of the average domain length.

In undercooled liquids such a length scale probably d
not exist and no coarsening takes place in the metast
region. Here the slowing down of the dynamics follows fro
an activated dynamics in a complex energy landscape c
posed by many valleys.47 The SW idea of mapping run-time
configurations onto local minima of energy surface~IS! is to
provide a statistical description of the valleys. The fact th
these valleys are uncorrelated is at the basis of the poten
ity of the approach, a result shared by disordered mean-fi
models for the glass transition such asp-spin models48 or the
random energy model.33 Obviously coarsening plays a rol
for crystallization processes but we know that the anoma
found in the undercooled regime are also found in disorde
models with a crystal state,2,3 so that the role of the crysta
state in the undercooled dynamics can be ignored.

We have critically discussed the SW configurational e
tropy and its meaning. A conclusion which is difficult t
escape from is that any sort of configurational entropy,
example adapted from mean-field theory,14,17 will have
meaning only from a dynamical point of view. Efforts in th
direction are the Stillinger and Weber approach itself,
work of Nieuwenhuizen,49 the mean-field scenario by Fran
and Virasoso,50 and the very recent approach proposed
Biroli and Kurchan.51

The description of nonequilibrium dynamics in terms
configurational entropy is valid, in general, if relaxation pr
ceeds via activated jumps between uncorrelated config
tions not described by any characteristic length scale.
other possible rephrasing of this conclusion, following t
definitions in Ref. 36, is to say that models of type I cann
be described in terms of anymean-field-like configurationa
entropy such as the SW approach. Inherent structures
their statistical treatment are only useful for models of ty
II, category to which structural glasses belong. But as
have shown here, one must be careful in using this clas
cation for models without phase transition but with glas
dynamics when ergodicity is not broken like in ordered~or
disordered!ferromagnets. A simple classification based
the infinite time limit of theQtw

(t) seems to be well pose
for coarsening ferromagnetlike systems, but for other sl
dynamics it may be inappropriate, see some results in R
44. Still a careful examination of the whole dynamical b
havior of Qtw

(t), and not only its infinite time limit, may
provide useful information to evidentiate how coarseni
takes place.

Complementary to this investigation we also made a
tailed study of the coarsening behavior of the 1D constrai
kinetic models and the 1D Backgammon model analyz
their different nonequilibrium behaviors. Such study co
firms theoretical results already present in the literature,
also contains new ones concerning the behavior of the a
age domain length, in particular for the 1D Backgamm
model for which nothing is known, of the magnetizatio
responses and the violation of fluctuation-dissipation re
tion. Concerning correlation functions we have found that
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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all models studied here thet/tw scaling behavior character
istic of mean-field models is not observed. However, wh
there is a single typical time or length scale, as in the AC
model, the general scaling~22! and ~23! ~Ref. 38! is found.
For the SCIC model we have found that the predicted crit
time scalet1 ~Ref. 27! marks the violation of the scaling
behavior~22!. This peculiar behavior leads to a hump and
broad minimum in the integrated response function and
correlation respectively, leading to a rather unus
fluctuation-dissipation plots. This scenario remains valid
values ofa not too far from 1/2, the region ofa close to 1~or
0! is under investigation and will be reported elsewhere
similar conclusion is valid for the 1D Backgammon mod
where the presence of entropic barriers induces a sec
characteristic time scale. In this respect the model with
simpler nonequilibrium dynamics is the ACIC which pr
sents a single time scale and the scaling behavior~22! is well
satisfied. This result suggests that the FDT plots to dis
guish one glassy scenario from another one must be u
with caution. The simple models studied here show inter
ing FDT plots but no relevant information can be obtained
interpret the off-equilibrium scenario. Quite probably t
only cases where quantities such as configurational ent
or FDT ratio are interesting and meaningful are those wh
some kind of universality is expected. To this class belo
structural glasses. For this case, the Stillinger–Weber
composition provides a statistical and useful description
some, otherwise inapplicable, mean-field concepts.

In the present research we have tried to clarify the lim
of validity of the SW approach to the description of th
glassy dynamics. The conclusions that can be drawn f
the present study of kinetic constrained models and
Backgammon model can be generalized and we expect
the SW approach will fail to describe any coarsening mod
In coarsening models, the information is always contained
a growing domain length which specifies the stage of evo
tion of microscopic configurations. In undercooled liqui
where the simplest coarsening description fails, the SW
scription is a good alternative which provides the natural l
with mean-field ideas.

Note added in proof.After completion of this work we
have known of a work52 by J. P. Garrahan and M. E. J
Newman on a three-spin interaction model on a triangu
lattice who found results similar to those presented here
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APPENDIX A: CLOSURE OF DYNAMICAL EQUATIONS

For the constrained kinetic Ising chain the single-s
zero-temperature dynamics,

ṫ i52t i~at i 111bt i 21! ~A1!

with a, b such thata1b51. Fork>0 we get
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d

dt
~t i¯t i 1k!52a~kt i¯t i 1k1t i 21¯t i 1k! ~A2!

2b~kt i¯t i 1k1t i¯t i 1k11!. ~A3!

Following Ref. 27 we define the set of correlations,

Ck~ t !5
1

N (
i 51

N

t i~ t !t i 11~ t ! ¯ t i 1k~ t !. ~A4!

It is simple to see that, for anya, b provided thata1b
51, theCk satisfy the equations

dCk

dt
52kCk~ t !2Ck11~ t !, ~A5!

which are identical to those of the FA model computed
Ref. 27. The generating function

G~x,t !5 (
k50

`
xk

k!
Ck~ t !

closes the hierarchy yielding the result,27

G~x,t !5G0~~11x!exp~2t !21!, ~A6!

with the initial conditionG0(x)5G(x,t50). In the t→`
limit ~55! yields Ck(`)5C0(`)dk,0 , where

C0~`!5 (
k50

`
~21!k

k!
Ck~0!. ~A7!

APPENDIX B: ANALYTICAL CALCULATION OF
PIS„E,T…

Here we give an analytical derivation of the SW co
figurational entropy for the constrained Ising chain from t
zero-temperature dynamics described in Appendix A. If at
50 the system is in thermal equilibrium at temperatureT
and the system is large enough the central limit theorem s
that the Ck(0) are Gaussian distributed variables. Con
quently, C0(`) is a Gaussian distributed variable with th
first two moments given by

^C0~`!&5 (
k50

`
~21!k

k!
^Ck~0!&, ~B1!

^C0
2~`!&c5^C0

2~`!&2^C0~`!&2

5 (
k50

`
~21!k1 l

k! l !
^Ck~0!Cl~0!&c , ~B2!

where the subindexc stands for connected correlations. Ifm
stands for the magnetizationm51/@11exp(2b)#, then
Ck(0)5(12m)k11 for a thermalized initial condition a
temperatureT. This automatically yields, using Eq.~B1! the
average IS energŷeIS&5^C0(`)&21 yielding,

^eIS&5~12m!exp~m21!21. ~B3!

The computation of the second moment~B2! is also
straightforward and requires the calculation of^CkCl&c . A
simple calculation gives
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^CkCl&c5
1

N S S k2 l 211
2

mD ~12m!k11

2S l 1k111
2

mD ~12m!k1 l 12D . ~B4!

This expression is valid fork> l andk1 l 11<N. After
some calculations we finally obtain,

^C0
2~`!&c5

1

N S ~12m!3 exp~m21!2
4~12m!2

m

3exp~m21!1
~22m!~12m!

m
I 0

3~2~12m!!12~12m!3 exp~2m22!

2S m12

m D ~12m!2 exp~2m22! D , ~B5!

where I 0(x) is the zeroth order modified Bessel functio
I 0(x)5(k50

` x2k/22k(k!) 2. This finally yields for the IS
probability distribution~8!,

PIS~e,T!5
1

A2p^C0
2~`!&c

expS 2
~e2^eIS&!2

2^C0
2~`!&c

D . ~B6!

From Eqs.~B3! and~B5! we can directly obtain the configu
rational entropy in two different ways. One is obtained
exact integration of the IS energy as function of temperatu

sc~e!5E
0

T de~T!

dT

dT

T
, ~B7!

where e(T) is given by the expression~B3!. The other is
obtained by integrating the fluctuations,

sc~e!5E
0

T ^C0
2~`!&c

T3 dT. ~B8!

According to Eq.~8! both expressions should coincid
when the termf (b,e) in Eq. ~8! is independent of the energ
e. This is generally not true and expressions~15! and ~B8!
are different. The interesting remark is that, in the limitT
→0 both expressions~15!, ~B8!, and the fix-point approxi-
mation~11! coincide to first order inT. The reason is that the
SW configurational entropy has full meaning in the lim
where sc goes to zero and the IS-basins are very narr
containing few configurations.
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