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We discuss the relevance of the Stillinger and Weber approach to the glass transition investigating
the nonequilibrium behavior of models with nontrivial dynamics, but with simple equilibrium
properties. We consider a family of 1D constrained kinetic models, which interpolates between the
asymmetric chain introduced byckde and EisingefZ. Phys. B84, 115(1991)]and the symmetric

chain introduced by Fredrickson and Andergé&hys. Rev. Letts3, 1244(1984)], and the 1D
version of the Backgammon modgPhys. Rev. Lett.75, 1190 (1995)]. We show that the
configurational entropy obtained from the inherent structures is the same for all models irrespective
of their different microscopic dynamics. We present a detailed study of the coarsening behavior of
these models, including the relation between fluctuations and response. Our results suggest that any
approach to the glass transition inspired by mean-field ideas and resting on the definition of a
configurational entropy must rely on the absence of any growing characteristic coarsening pattern.
© 2000 American Institute of Physid$50021-9606(00)51347-6]

I. INTRODUCTION temperature below its critical temperaturg. After quench-
ing, domains of positive and negative magnetization grow
There is an old debate concerning the correct descriptiogith time. The system acquires a macroscopic magnetization
of dynamics in the glassy stateAccording to the general oniy when the typical domain size becomes of the order of
wisdom, undercooled liquids are in a locally equilibratedne system size, leading to a nucleation process which in-
metastable phase, but fall completely out of equilibrium,,\es overturning of large domains in favor of the dominant
when the relaxation time exceeds the observation time. "bhase. Although it cannot be excluded that some type of
this situation the glass ages and slowly relaxes towards equiarsening behavior similar to that found in ferromagnets
librium. While it is widely accepted t_hat the glass transitiontakes place in real glasses, there is no strong evidence, up to

how, that any type of coarsening process occurs in the relax-
still not clear whether a truéor what kind of) ergodicity atior; of an u);\dy:rcooled liquid gp

brgakmg unc_Jerlles the glas_sy beha_v_lor_ and Whe_ther the PTOP~ " Another possible description for the observed non-
erties associated to a possible equilibrium transition manifest

themselves on the experimentally accessible time scales g\quilibrium behavior calls for activated dynamics. The acti-
. . . . " vated dynamics scenario is rather different from coarsening.
particularly interesting problem concerns the precise mech

nism leading to a slow relaxation and its relation with theaNO typical growing I(_angth scales are now present. The Sys-
tem approaches a disordered state, which has no correlation

ground states structure of the system. . : . .
A possible description of the nonequilibrium regime is in with the crystal state, via thermally activated jumps among
ifferent configurations corresponding to structural rear-

terms of coarsening. The coarsening process is described ) ; ) X )
rangements of spatially localized regions. In this scenario,

a length scale which grows in time driving the system to- h dered | h a1 rel I
wards equilibrium. The most typical scenario for a coarsen!N€ ordered crystal state has no special relevance. It occurs

ing dynamics is found in a ferromagnet quenched down to Avhen fluptuatlopg nuc'leate a crystalline droplet of size bigger
than a given critical size, strongly dependent on external pa-

rameters such as temperature. Consequently crystallization
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bElectronic mail. ritort@ffn.ub.es can be completely inhibited by going to low enough tem

“Electronic mail: Andrea.Rocco@phys.uniromal.it peratures. It is generally assumed that crystallization plays a
PElectronic mail: msellit@ens-lyon.fr role only for time scales much larger than those relevant for
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the relaxation of thermodynamic quantities in the under-Weber approach, in contrast to what is found in other models
cooled phasésuch as the enthalpy or specific he&itdeed a  of structural glasses such as Lennard-Jones gfdsseor
glass transition also emerges for purely disordered systenfiite-size fully connected disordered spin glasde3he
where a crystal state does not eXisfThis does not exclude main reason is that even though the dynamics is different, the
the presence of heterogeneities in the glassy phase, whosenfigurational entropy derived from the Stillinger and We-
role and influence on the dynamics still needs to beber decomposition is the same for all models. While this
understood:® conclusion is probably valid for all type of coarsening mod-
Despite the enormous effort devoted to this subject it isels, it is an open problem whether the precise mechanism for
still not clear how these two scenarios combine together intavhich the inherent structure entropy happens to coincide is
a final description of the glassy state. Moreover, if coarsenmore general and independent of coarsening behavior, i.e., it
ing is the driving process for the relaxation of undercooledcould also hold for higher dimensional constrained models
liquids, due to the completely unknown microscopic struc-with a different dynamics.
ture of the glass stat@n which the system should asymp- The paper is organized as follows: In Sec. Il we intro-
totically relax) it is unclear what should be experimentally duce the family of one-dimensional models studied. In Sec.
measured in order to identify the growing domains. A similarlll we discuss the Stillinger and Weber approach and the
problem is encountered in spin glas&eSince a disordered configurational entropy for these models. In Sec. IV we ana-
state does not have a periodic structar@riori one does not lyze and compare the nonequilibrium dynamics for the dif-
know how to observe domains and the question of the naturkerent models, in particular we consider the coarsening phe-
of the domains in spin glasses is still unresolVédowever, nomena and the fluctuations response relation. Finally in
for spin glasses such freezing of temporal spin correlation§€ec. V we present conclusions and discussion. Some techni-
leads to a divergence of the spin-glass susceptibility. Despitgal points are analyzed in the Appendices.
some experimentiland simulation results? strong evi-
dence for such a divergence is not found in structural glasses.
The greatest difficulty in elucidating this issue is that a gen-ﬁ' THE MODELS
eral nonequilibrium theory to deal with this class of systems  We consider two different classes of 1D constrained
is still missing and approximations to this problem remainmodels: the constrained Ising chain and the Backgammon
partial. They usually work either in a limited range of time (BG) model. For the former we shall mainly consider the two
scales or in a limited range of temperatuésr instance, extreme cases of the symmetrically constrained ctB@IC)
mode-coupling theory) introduced by Fredrickson and Ander$2mnd the asym-
During the eighties a novel approach to the glass transimetrically constrained Ising chaifACIC) introduced by
tion was proposed by Stillinger and WebérThis descrip-  Jackle and Eisingef* The BG modé¥ is not a purely con-
tion of the undercooled liquid phase, inspired by the Adams-strained kinetic model since there are not local constraint on
Gibbs—Di Marzid? theory, incorporates those features of thethe microscopic dynamics. The constraint here follows from
energy landscape relevant to the activated regime. Ththe requirement that the number of particles remains con-
Stillinger—Weber approach is based on a decomposition a$tant. This induces a global dynamical constraint which
the configurational space into basitelso called inherent slows down the dynamics as temperature is lowered. The
structures, hereafter referred to a9 & the basis of the study of the BG model complement our investigation com-
topology of the potential energy surface. This constructiorparing its behavior with the locally constrained Ising chain
yields a definition of a configurational entropy in terms of models.
dynamically accessible basins and it is close in spirit to th

S . . . €A. The constrained Ising chain
equilibrium configurational entropy or complexity of mean-

field spin-glass modefs:* The Hamiltonian of the model is defined by
In this paper we study the relevance of the IS analysis v
proposed by Stillinger and Weber for nonequilibrium dy- E:_Z o, (1)
=1

namics using one-dimensional constrained kinetic models.

Kinetically constrained models were first proposed bywheres; are Ising-type variables, which take the values 0,1,
Fredrickson and Anders€hin the attempt to provide a and the index runs over the sites of B-dimensional lattice
simple microscopic mechanism for understanding the purelyf yolume V=LP. The model corresponds to a paramagnet
dynamical transition predicted by the mode-coupling theoryin a field. The dynamics is of the Glauber-type, where the

In these models the slowing down of the dynamics is 0bspins are randomly updated according to the following rule:
tained through the introduction of dynamical constraints,

compatible with detailed balance and Boltzmann—Gibbs dis- Wi —1—0y)=
tribution. What makes highly peculiar the relaxational be-
havior of these models is the fact that the slowing down of .
dynamics is only due to kinetic constraints, which prevent xmin[1exi—BAE)], 2
certain transitions from occurring. For a review on early re-with a andb=1—a positive real numbers. In this paper we
sults on these models, see Ref. 16. consider the 1D case=1 although the model is also inter-
We find that the nonequilibrium properties of this classesting for larger dimensions. With exception of the configu-
of models cannot be described in terms of the Stillinger andation with all spins equal to 1 it is known that the space of

1
1_5<”21,D (aO'i+'u+bO'iM))
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configurations is an irreducible Markov chain, so that ergodparticles accumulate in a small number of boxes and the
icity is guaranteed and detailed balance is fulfilled. further emptying of boxes becomes slower and slower as
Depending on the values & we may have different time goes on.
cases. In particular faa= b= 3 the model corresponds to the In the original definition the dynamics of this model was
scicl mean-field in the sense that particles could move from one
box to any other box. This dynamics can be closed ex&ctly
and many results have been obtained on its nonequilibrium
behavior?®2° Here we are interested in the equivalent one-
so that a spin can flip iff at least one of its neighbors is downdimensional case where boxes are located on a closedaing
If ais equal to 0 or 1 then the model corresponds to thechain with periodic boundary conditionsind particles can
ACIC (a=0),% only move from one box to its left or right neighboring
boxes. In this case the dynamics at low temperatures is
driven by the coarsening of clusters of empty boxes similarly
to that of spin-1 domains in the kinetically constrained Ising

In this case a spin can flip iff its left neighbor is down, and chain. Here, however, in addition to temperature-activated
the dynamics is more constrained than in the SCIC. For ge- } ' ’ P

neric values ofa the flipping of the spins may take a differ- processes induced by energy jumps, the system has entropic
nt probability depending if the left or riaht spin is down barriers which contribute in a non trivial way to the coarsen-
ent probability €pe 9 € Ieft orright spin Is cown. ing dynamics. In the original mod@lwith mean-field dy-
The vast majority of works appeared in the literature . . b dth ic barri
focused on the previous two cas@ and(4). In the present namics coarsening was absent and the entropic barriers were
paper, for completeness and for the scopé of our discussiothe only responsible for glassy dynamics leading in that case

. . . : {b an activated behavior.
we shall discuss when possible the behavior for gereeric All these models share the common fact that, despite
The dynamics of these models cannot be solved exactl3{hei f

: : : r dynamics, the thermodynamics is trivial and there are
even if several important results are knowin. The correla- S . .
: . . . o no equilibrium spatial correlations at any temperature. In
tion time diverges in the low temperature limit as

—exp(28) for the SCIC modéP?* and as particular, they do not show any finite-temperature phase

_ > 5,26 [+ transition. Therefore the nontrivial behavior follows only
exp(8”/log(2)) for the ACIC modef> (i) In the SCIC from the dynamics, which, dynamically constrained in the

model the staggered correlation functions relax exponentially. . : .

s . ... . first case and ruled by entropic barriers in the second case,
fast with time and one can define two characteristic tlmeturns out 1o be qlass
scales’’ the first oner= 1/(1+exp(—B)) nonactivated, and glassy L o

. ) In the next sections we present a detailed investigation
the second one;=exp(B) activated. In particular the later

defines the time scale before which no aging effects are se Or¥ the nonequilibrium dynamics of these models and discuss

in the correlation function? (iii) In the SCIC model the ow their dynamics cannot be efficiently described in terms

hierarchy of dynamical equations can be exactly closed fon an IS based configurational entropy approach.

T=0.242"In Appendix A we show that this result, originally
obtained for the SCIC model, can be easily extended to gail. THE STILLINGER AND WEBER ENTROPY
neric values ofa.

W(oi—1-0))=3(1= 0,1+ 0oi_)min[1,exd — BAE)]

W(oi—>1—oi)=min[l,exp(—,BAE)]x6(,H,0. (4)

A. The Stillinger and Weber approach

An interesting approach to investigate activated behavior
in glasses was suggested in the eighties by Stillinger and
Weber!! This is based on th@natural)decomposition of the
The energy(Hamiltonian) of the Backgammon model motion near the glass transition into intrabasin motion
(within a valley)and interbasin motiojumps between val-
leys). In a “cage” picture the first motion corresponds to the
motion of particles within a cage, while the second one to the
creation or destruction of cages. This approach implements
in a practical way the old idea that in the undercooled liquid
wheren;=0,1,...,Ncounts the particles in each siteox) of 5 strong separation of time scales of the two motions occurs
aD-dimensional lattice oN=L" sites. The energy is given near the glass transition. The approach bears some resem-
by the number of empty boxes. As before we consider thance to the Edwards packing entropy in the context of
1D case, wherd=1. The dynamics is of the Kawasaki- granular system&,32
type, where the particles are randomly moved from one boX  \within the stillinger and WebefSW) approach each
to another and the change is accepted with probability,  configuration of the system is mapped into a local minimum

W=min[1,exf — BAE)]. 6) of t_he energy through a local potent_ial energy minir_ni;ation

which start from the given configuration. The local minimum
Strictly speaking the BG model is not a constrained kineticwas called inherent structu¢S), while the set of configu-
model since there are not local constraints on partigbes rations flowing into it defines the basin of attraction or valley
boxes). Nevertheless the conservation of particles numbeaf the IS. Following SW one then constructs a I1S-based ther-
introduces a global constraint which makes the dynamics ofmodynamics decomposing the partition function sum into a
the BG model glassy at low temperatures where a lot oum over IS with the same enerdy,

B. The Backgammon (BG) model

iSZZ

N
E=—2 0, (5)
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and the SW are dynamical quantities it is far from obvious

Z(T)Zg Pis(e,T), (7) that they contain allor almost all)relevant informations on
the dynamics on long time scales. This is a well known prob-
with lem in the theory of dynamical systems. The SW decompo-
sition can be seen as a mapping of the true dynamics at a
Pis(e,T)=expN[ - Be+s.(e) - Bi(B.e)], (8)  given temperature onto a symbolic dynamics given by the

wheres.(e), defined as the configurational entropy, yiemsdynamics of the IS. The obtained symbolic dynamics gives a

the number of different IS with energye, Q(e) good description of the original one only if the mapping

—exp(Ns(e)). The term(3,e) accounts for the free energy defines what is called a “generating pa}rt-ition,” see e.g., Ref.
of the 1S-basin of energg, i.e., the partition sum restricted 3°- In general for a generic dynamics it is not at all trivial to
to the basin of attraction of IS with energy In each IS- demonstrate that such a partition exists, and even if it does

basin the energy has been shifted, so that the IS has zefdiSt; how to find it. We can then recast the question posed
energy, and accounts only for energy differences. In gen- PY Biroli and Monasson in the following way: does the SW
eral f(3,e) may have a nontrivial dependence on the energ)gecomposmo.n Iegd to a generating partition, or at Iegst to a
if the 1S-basin of IS with different energy are quite different. 900d approximation of it, for the long time dynamics of
When the temperature is such that only the states near tfasses near the glass transition? - _
bottom of the IS-basin do contribute then it is reasonable to_ N 9éneral we can answer to this question calposte-
expect thaf (3,€) is roughly independent af. 18-2°Another ~ or- We define a p_ossmle partition and then c_heck if this
case where the dependencef OB,€) on e is expected to be reproduces th(_a desired fea.tures of _t_he dynamics. However
negligible is when the 1S-basins are narrow and contain few?® ¢an try to find under which conditions the answer could
configurations. This approximation works very well for P€ affirmative. Usually to find a generating partition, or a
REM-like models®® When thee-dependence of can be good approximation of it, a good starting point is by looking
neglected the configurational entropy(e) can be obtained 2t the “physical” properties of the dynamics. The SW map-
directly from Eq.(8). ping replaces ea}ch conflguratlon' in a IS-basm with the IS
As long as the configurations counted on the r.h.s. of EqltSelf. Therefore it is clear that this mapping will be a good
(7) are the most relevant for the thermodynamics at temperd'@PPing if the systems spends a lot of time inside the basin.
ture T the above construction is totally legitimate as far asUNder this assumption the dynamics on time scales larger
thermodynamics is concerned. It is only a different way ofthan the typical residence time inside a IS-basin should be
summing the partition function. Nevertheless th¢e) ob-  duite well described by the IS_ dyngmlcs..Th|s scenario is
tained with the SW decomposition is in some sense a dylyPical of a many valley dynamics with activated dynamics.
namical quantity since the projection between configurationdt iS also clear from the above discussion that if the IS map-
and IS basins can be seen as the zero-temperature dynamfigd iS & good mapping it does not matter which configura-
of the model. For this reason we will refer to it as Stillinger— tion inside the IS-basin is used to represent the 1S-basin. It
Weber configurational entropy to distinguish it from other MY be the IS itself or any other configuration in the basin.
possible definitions of the configurational entropy taken fromi" @ recent study of finite-size mean field spin-glass models,
mean-field concepfé:!” This poses the question, first raised which share the properties of structural glasses, this indepen-

by Monasson and Birofi* on the relevance of (e) and IS~ dence has been indeed obser%d. _
in general for dynamics. On the contrary for dynamical processes described by a

It is clear that once the energy and the rules of the dy_coarsening process this description should in.general fail be-
namics are given the IS can always be defined. For exampf¢dUS€ dynamics proceeds through geometrically correlated
for spin-glass models with quenched disordered variable§Onfigurations. Barrat, Burioni, and Mezard have sh?f\{vn
taken from a continuous distribution, the dynamics usuallythat the difference between the two scenarios has a simple
consists of Monte Carlo updatéfor instance, single spin- manifestation in how dynamical tra!ectorles departing from
flips). The IS are then identified as the final configurationd® same configurations separate in the phase space. Con-
reached after a sequence of Monte Carlo moves where thder a system described by a veck(t) in configuration
spin which yields the largest decrease of energy is identifie§Pace: At timet,, the system is cloned into a new system

and flipped. Consequently, IS are stable against single spifl€Scribed by the vectof(t). The two copies are let evolve

flips but not for higher-number of spin flips. Biroli and with different realizations o_f thermal noise and the.overlap
Monassof® conclude then that IS are ill-defined because@t,(t)=X(tw+1)-Y(t,+1) is recorded as a function of
s.(e) depends on the number of spin-flips, which make thefime t. For coarseninglike systentsalled type | systems in
configuration stabldat least, for not fully connected mod- Ref. 36) the overlap converges to a finite valu@..
els). We disagree with this conclusions because, as noted lim;_...Q;, (t) for any value oft,, while for glassy systems
above, the IS and the SW entropy are intimately related tavith structural glasses behavig¢called type Il systems in
dynamics, and therefore it is not a surprise that changing thRef. 36) that limit gives, for all possible values @f,, the
dynamics the IS and the SW entropy in general changdowest possible value ok(t,,+t)-Y(t,+t). Since in gen-
What, in our opinion, is ill-defined is to speak of IS without eral it is possible to define IS also for coarsening systems,
specifying the dynamics. this is an indication that in these systems the nonequilibrium
Nevertheless the question posed by Biroli and Monassodynamics goes through configurations that are unrelated with
is far from being trivial. Indeed despite the fact that the ISthe IS. Most probably the relevant configurations for coars-
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ening are those on the border among IS-basins, i.e., those Each IS is a fix-point of the dynamics, and therefore we

configurations which are not mapped into any IS. In this casean estimate, from the number of fix-points. This is easily

the IS and the SW configurational entropy can still be de-evaluated denoting witi the one-bit sequence 1 aldthe
fined but are obviously of little use for understanding non-two-bits sequence 01 since all fix-points are given by all
equilibrium dynamics, as shown by the results reported irpossible arbitrary sequencesAs andB’s (for instance, the
the following sections. sequencdBBBAABB). If N, Ng stand for the number of

Before addressing the SW approach to nonequilibriumA’s andB'’s in the sequence, witNp+2Ng=N, whereN is
dynamics of constrained kinetic models we note that thehe length of the chain, then

definition of the SW configurational entropy may not be

S . X (Np+Np)!
completely free of ambiguities, especially for systems with =
discrete states. Indeed the SW mapping assumes that once Na!Ng!
the energy and the dynamics are given then the mappingrom this expression, and noting thet — (N5 + Ng)/N, we
between configurations and IS is uniquely defined. Thisaye

means that regardless of when a given configuration appears

in the dynamical evolution it will always be mapped to the (€)= log(Nr) _

same IS. In most of the recent papers on this sutfjetthis ¢ N

was the case, but for discrete models with discretized values +(1426)log(— 1 2e) (11)

for the energies, as the ones studied here, there may be prob- 9 '

lems because there could be many directions in phase spatle above formula assumes that all IS are counted with an

where the energy decreases by the same amount. In this casguala priori probability. This is what is called the method

some “decision” must be taken, e.g., one could employ aof unbiased guessn information theory®® Therefore the
random choice among the possible directions. The IS and th&bove expression is valid iff the dynamics samplgsost)
corresponding SW configurational entropy can still be de-all fix-points with equal probability, where with “almost”
fined, but now they depend on the chosen strategy for dealve mean the fix-points relevant for equilibrium dynamics at
ing with equivalent directions. It can be shot{rthat this  temperaturel.

leads to a temperature dependencsfso that the form of A better estimate o6, comes from the analysis of the

s. depends orT. Only when some additional requirements zero-temperature dynamics. As shown in Appendix A the

are fulfilled the temperature dependence disappears. For exero-temperature dynamics can be solved exactly for any

ample when all possible strategies lead to the same samplinglue ofa, and from thisP,s(e,T) can be evaluated,

rate for the IS relevant for the dynamics. We anticipate that )

this requirement is not fulfilled by the constrained kinetic 1 (e—(eis))

: : Ps(e,T)=————=exg ——————
models nor by the BG model studied here, and in some cases 2m(C3()) 2(C3())
we find different curves fois, for different temperatures. 0 ¢

Nevertheless the violation is not too strong since we basiThe details of the calculation are reported in the Appendices

cally find only two different curves depending on the tem-together with the expressions 0€5()). and(es), Egs.

perature range. This reflects the trivial fact that the constraing1) and(59). Note that this result, as well as EG1), does

is more or less effective depending on the temperature beaot depend on the value efimplying that all models, and in

cause more we lower the temperature more the system oparticular the SCIC and ACIC, have the safg(e,T) and

ders. Another interesting feature of these models is that, ddience the same SW configurational entropy.

spite the fact that the properties of these dynamical models In Fig. 1 we compare the numerically evaluated

are rather different, all of them have the same SW configuPs(e, T) for the SCIC model witiN=64 and different tem-

rational entropys,. . This casts doubts on the relevance of theperatures with the analytical prediction E42). The agree-

IS analysis for the nonequilibrium dynamics of these modelsment is quite good at low temperature but decreases with
increasing temperatures where the variance of the Gaussian
is slightly larger than in simulations.

B. The kinetically constrained Ising chain In Fig. 2 we report the average IS energy as a function of

These models are defined by E¢s) and (2). To com- T and compare it wit.h the prediction from thg analytical
pute s.(e) we thermalize the system at a finite temperaturef@lculation of Appendix B. There are two possible ways to

T. This can be achieved either by running the dynamics for §omputee(T): the first is from Eq/(59), the second rests on

sufficient long time or by starting from equilibrium configu- Intégrating the variance

(10)

—elog(—e)—(1+e)log(l+e)

) . (12)

rations whose distribution is given by T(C2(20))¢
exp Boy) e(M= f 14T (13)
Ped 0i)= Trexpd)’ 9)

where (C3()). is given by Eq.(B5). We also report the
For each thermalized configuration the corresponding IS isesult from the fix-point approximatiofil). Figure 2 clearly
computed via the minimization process given by the zeroshows that the different approximations depart each other at
temperature dynamics. Repeating the procedure for several temperatureT=0.6. Above this temperature the energy
initial configurations the IS probability distributiof8) can  dependence of the IS free enerfyin Eq. (8) cannot be

be evaluated. neglected anymore, showing that the fix-point approximation
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FIG. 1. Probability histograms in the SCIC model with 64 spins at differentF|G. 3. SW configurational entropy in the SCIC k=64 spins at different
temperatures compared with the analytical predic(it?) full curve)and a  temperatures compared with the analytical predictids) (upper curvend
fit to a Gaussiaridashed curve the fix-point estimaté11) (ower curve).

which neglects thermal fluctuations inside the IS-basins is
inappropriate. On the other hand the direct calculation from
the zero-temperature dynamics turns out to be very good.
Finally we considers,. In Fig. 3 we show the results
obtained for the SCIC model witN=64 and different tem-
peratures. The SW configurational entropy is obtained

from the numericaP g(T,e) as®?° _ _ d - the
temperature behavio(15) asymptotically coincide in the
sc(e)=pe+log(Ps(T,e)/N)+const. (14) " Jimit T—0. We note that there is a range of energies where

For each temperature the constant has been fixed by collapdata fromT<0.6 collapse on one curve while data for higher
ing different data onto the single curve. As a comparison wdemperature collapse on a different curve. As discussed
also show the theoretical predictions from E(jsl) and(see  above, this residual temperature dependence follows from
Appendix B) the presence of many equivalent directions for energy mini-
mization.

We have checked th#,5(T,e) is independent o& by
repeating the analysis for the ACIC model and for different
values ofa. In all cases we always find the same results.

_ (Tdeg) dT
sC(e)—f0 a7 T (15)

As shown in Appendix B, both coincide asymptotically close
to the ground state energ@e= — 1. The collapse is excellent
showing that the approximation(11) and the low-

075
C. The BG model

-09

-0.95

FIG. 2. IS energies as function of temperature obtained integratingLEy.
using Eq.(B3) and the variance of the IS-energy distribution given by Eq.

(13).

a ® Numerical
--- mean Gauss, 4
-—-- variance (Gauss.
—— Fix points ]

In this case we cannot exactly solve the zero-temperature
dynamics of the model and compute the SW configurational
entropy. Nevertheless, we can approximsige) of the BG
model by counting the number of ways in which two or more
particles can be distributed in a set Nf occupied boxes
separated by empty boxes. This yields two contributions: the
first comes from all possible ways of distributing thk oc-
cupied boxes in a chain & boxes, with the additional con-
dition that each occupied box is surrounded by an empty
box. This is again given by Eq10) assuming thatr=1 for
occupied boxes ana=0 for empty ones. The enerd$) is
given byE=—(N—M) and therefore this contribution reads

sist(e)=—(1+e)log(1+e)—elog(—e)+(1+2e)

xlog(—1—2e). (16)
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to T=1. Similarly to that found for the constrained kinetic

T models, the data nicely collapse onto a single curve although
it does not exactly coincide with the number of fix points. In
this model the presence of different equivalent directions to
decrease the energy does not influegiceThis is most prob-
ably due to the global character of the constraint.

Comparing Figs. 3 and 4 we see that the agreement now
is worse. We attribute this to the presence of entropic barri-
ers which follows from all possible arrangements of particles
inside the boxes. All arrangements leave the energy un-
changed, but their number strongly depends on the number
of empty boxes, leading to a stronger energy dependence of
the IS free energy for this model. This effect was not present
in the kinetically constrained Ising chain.

The conclusion that can be drawn from this section is
that for these models a description of the glassy behavior in
terms of a complex energy landscape is not relevant. Even
e though the SW configurational entropy for the constrained

FIG. 4. SW coni onal I the BG model for 100 500 b Ising chain is a non trivial quantity, it does not distinguish
4. configurational entropy in the model for= oxes

at different temperatureb=1.0, 0.5,0.4,0.3,0.2,0.15,0.1 compared with the the SCIC model from the ACIC model.

fix-point estimate(21) (ull line).

IV. ANALYSIS OF COARSENING BEHAVIOR

In the previous section we have seen that the IS ap-

The second contribution follows from considering all Proach yields identical results for models which are known
different ways of distributing thé&l particles among the4 o have a completely different dynamical behavior, namely,

occupied boxes with the constraint that each occupied bof€ SCIC and ACIC models. The purpose of this section is to
contains at least two particles, show these differences making connection with results al-
1

N ready known in the literature and studying new ones to gain
neeeonds S S n—N some insight using the tools from disordered systems. Coars-
fix N, Hrnr! “~ r
r=17rT"

' (17) ening appears when domains of a given phase grow in time

slowly enough for the system to be off-equilibriu¥hin the
where then,! terms arise from the distinguishability of par- simplest case, dynamics is characterized by a unique length
ticles. Introducing the integral representation for the deltascale associated with the typical size of the growing do-

function, mains. All models discussed in this paper can be described in
1 (e terms of coarsening in the sense that it is possible to define a
8(x)= 2—f explianx)dX, (18) length scale which identifies the distance from to equilib-
TJ e rium. For the kinetically constrained Ising chain this length
we find an expression for E¢L7)in terms of the fugacity. i the typical size of the-1 domain while in the BG model

In the N— oo limit this can be evaluated by the saddle pointit is the typical length of sequences of empty boxes.

method yielding
|og(Nsecon

fix

see) = —— = —log(y)

+(1+e)log(exply)—y—1),

wherey satisfies the saddle-point condition,
exply)—1-y

y(exply)—1)"

The full entropy is given by

sc(e)=s/"(e) +s3e{e).

In the simplest cases this length suffices to characterize
the off-equilibrium behavior. For instance, for coarsening in
(ordered or disordergderromagnets the off-equilibrium be-
havior is fully characterized in terms of a single length scale
L(t) in the sense that the two-times dependence of correla-
tion and response functions directly enters through the value
of this length scale. In the aging regime, where both tiles
s are large we havé

L(t)
Cag(t,s)~f ) (22)
R,q(t s)~L (ﬂ) t>s (23)
WL L) T

Note that for this model the configurational contribution maywith =1 a positive exponent which depends on the model

be negative because particles are distinguishable.
We have computed;(e) numerically following a pro-

under consideration.
Correlations are easy to measure, while responses re-

cedure similar to that described for the constrained kinetiquire the introduction of an external perturbation. This per-
models. The results are shown in Fig. 4 for two differentturbation must couple with the variables of the system and

sizesN=100, 500 and temperatures ranging frém 0.1 up

must be small enough to ensure a linear response regime. A

Downloaded 05 Dec 2005 to 161.116.80.212. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



10622  J. Chem. Phys., Vol. 113, No. 23, 15 December 2000 Crisanti et al.

useful quantity is the integrated response functiogreafter  with the absorbing state, i.e., the ground state. We start from
denoted as IRF), which measures how much the system re random initial configuration and after a waiting tinse
members the effects of a perturbation applied during a giver-t,, apply a random staggered field = ¢;ho(t), where

interval of time3° ho(t) is the intensity of the field ané,= =1 are independent
. random quenched variables of zero mean. This method has
X(t,s)zf duR(t,u). (24) the advantage that the perturbation term in the Hamiltonian
S

does not directly couple to the coarsening length, and has

One of the salient features of coarsening phenofiféfidlis ~ been used by Barrétto investigate coarsening in finite-
that aging effects in the integrated response function asymglimensional Ising models.

totically vanish when the lower time goes to infinity and The staggered magnetic field couples to the spin vari-
the system does not have long-term memory. Suppose th@Pleso; in kinetically constrained models and to the equiva-
the coarsening length(t) grows liket*Z with z a dynamical ~lent variableso; =5, o in the BG model so that the pertur-
exponent. Using Eqg23) and (24) one finds that the aging bation in the Hamiltonian reads

part of the IRF behaves like, N
Xag(tys)Nsl— (@25(t/s) (25) OH(t)= —Zl €iho(t)o;. (29)
which vanishes as— if a>z. In the case ohy(t) =hy6(t—t,,) the integrated response

An easy way to test these effects is by directly looking atfynction can be obtained measuring the random staggered
fluctuation-dissipation plotéhereafter referred to as FD13. magnetization after switching the field at time-t,, as

In equilibrium R(t,u)=R(t—u)=B[dC(t—u)/du] which N

i i i 1
substituted into Eq(24) yields, (it t) = WE coi(t+ty). (30)
x(t=s)=p[C(0)~C(t=9)], (26) o=t
and the plot ofT x(t,s) in terms ofC(t,s) is a straight line of The original 0,1 va_mables have some disadvantages, for ex-
slope — 1. ample the correlation at equal time is not 1 but depends on

temperature. For this reason we find more convenient to
work with the new variabley=20—1 which now take the
values 1,—1. We then consider the disconnected correlation,

In the off-equilibrium regime expressiof26) can be
generalized by defining the fluctuation-dissipation ritio

X(t _TR(t,s) 07 n
(t,s)= JC(t,s) (@7) C(t+ty,ty)= NEl vi(ty) vi(t+ty), (31)
Js o

, , o and the staggered magnetizati@®),
which measures how far the system is from equilibrium. In

equilibrium X is equal to 1. In the off-equilibrium asymptotic 1 N
long-time regime, i.e., in the aging regime, where there isno Mg dt+t,,t,)= Nz €vi(t+ty,)=2hgx(t+t,,t,).
time translational invariance bot(t,s) and x(t,s) are ex- =1

pected to be nontrivial functions &. A quantitative esti- (32)

mate ofX, can be obtained from the slope of the FDT plots,Now the equal times disconnected correlation function is
equal to 1 so that in the FDT plots, where the integrated

response function is plotted vs the disconnected correlation
: (28)  function, all curves start fronC=1, M0 for t=t,,.
Cts)=C This makes easier to compare results from different values of
For coarsening models the aging part of the IRF asympt,, .
totically vanishes andy(t,s) is expected to saturate to a As discussed before in Sec. Il a different way to distin-
finite value, called the field-cooled value in the context ofguish coarsening dynamics from other more complex behav-
spin glasses, and stays constant while the correlation stilbrs is to measure the overlap(t) between two replicas
decreases before saturating. which start from the same configuration at timg and
The simplest way to compute the IRF in the present clasgvolve with different realization of thermal noises. Here we
of models is to apply a perturbation which does not coupleconsider the connected, normalized overlap function,

dTx(t,s)

X(©)=~17%cts)

1 1 1
NEi“105”(tw+t)ai‘2)(tw+t>—(NE-“ 1ai‘1’(tw+t>)(ﬁii“1o§2)(tw+t>

Q)= , (33)

v v :
N2i=10i (tw) — N 2i=10 (tw)

(1.2)=

whereo 0,1 refer to the two replicas, and the connected, normalized, correlation,
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1
Nzi'\lzla-i(l)(tw+t)

1 1
Nzi”_la§“<tw+t>o§”(tw>—(NEN_loi“)(tWH)

Co(t+ty,ty)= 2 (34)
v @ v
Nzi:lai (tw)— NEi:lUi (tw)
|
For type | systemQZ =lim, ... Q¢ (t) is finite. For type c NEN 1 61(0) oy () = =N, 0 (0)SN Loy (1) 5
Il systems this quantity converges in theso limit to the ()= NEP:Ni(O)—(ZiN:Ni(O))Z . (35)

lowest accessible value, i.e., vanishes in thee limit. In o ) ]
following relation is validQ; (t)=Cc(2t). There are few functional form:

numerical studies ofQf .**** For the models considered
here the results from this analysis are, however, not so

strong, the reason probably being that coarsening occurs Ir]veherea, a, b are three fit parameters and the activated time

disordered(.e., pare}magn(.auq)has.e. . . . scaler; is introduced in the fitting function as an effective
In the rest of this section we investigate in detail coars-

ening length scales, correlations and responses for the norr]icroscopic time. The results f@(t) are shown in Fig. 5
'g eng s =spon for different temperatures, the lines are the best fits with
equilibrium dynamics of models described in Sec. Il. We

note that although many results on timescales and coarsenirgé]]rm (36). This fits are in agreement with the asymptotic
length scales have been obtained in the literdke? al- alytical predictions of Reiter andckie®® and Schulz and

. 4 . . . .
most nothing is known about the aging behavior in this typeTrlmper2 but combined with the exponential time scaig

) : derived in Ref. 27. In particular, the exponenis close to
of models(partial results are shown in Ref. 27 for the SEIC the value 1/2 predicted in Refs. 23, 24 for very low tempera-

A. The SCIC model tures.

It has been shown in Ref. 27 that the SCIC model has an From the fit we can estimate,y as
activated time scale;=exp(B) characterized by an expo- o
nential decay of the staggered energy. For times smaller than  Tcorr— fo Cc(tdt. (37)
71 there are no aging effects and only for times larger than
nonequilibrium behavior with nonexponential relaxation andThe results are shown in Fig. 6. The correlation timg
aging appear. From the decay of correlation functions a sedollows the Arrhenius-type lawrco,~exp(28). This func-
ond activated timescale,,,> 7, can be defined. To this end tional dependence of correlation time from temperature can

we have computed the equilibrium connected correlatiofP® understood from the following phenomenological argu-
function ment, based on defects annihilation in the SCIC. A defect

separated by magnetized domains can disappear by anchor-
ing defects along the chain. The typical time to anchor a

Ce()=

1+t/7-1) exp(—at®), (36)

L LERELRLLL RSB ILRLLLY I

10

T T 11171

T=035
T=04 - v T
T=035 d
T=06 I [ 24 T
T=0.7 ot
T=08 s
T=09 100 i
T=1.0

Lol

1
\

1o

[0 R I IRl

P!
T
1
TCOrr
\,
\

L N

10

1]Il|
sl
\,

- 4
0 1 2 3 4 5 10 —

FIG. 5. Equilibrium connected correlation functions in the SCIC for tem- B

peratures ranging from= 1.0 down to = 0.35 fitted according to E¢36).

Data have been averaged over 1000 thermalized initial conditiondNand FIG. 6. Correlation time in the SCIC computed using E8i7) and fitted
=10°. with an Arrhenius behavior. The best fit giveg,,= 1.43 exp(1.98).
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FIG. 7. Average domain length and ll"nagnetization in the SCIC model. The=|G, 8. Correlations and zero-field cooled magnetization in a staggered field
average length grows diffusively likg’2. in the SCIC model forN=10°, T=0.3 and different waiting times,,

=10,100,1 000,10 000. The horizontal lines indicate the equilibrium values
(42) and (43).

defect is exp@) while the length of the magnetized domains

in equilibrium is of order expf). Because defects can be 4in length grows likeX2 while the equilibrium value for

anchored starting from the right or from the left of a magne-jarge g3 is deq—€XP(B) We get for the correlation timegy,
tized domain, the typical time to annihilate that domain is the_ _ exp(28), as expected

sum of independent processes yielding,~exp(25). Further information on the non-equilibrium behavior can
To investigate coarsening in the SCIC model we have,q gptained from the analysis of the response to a staggered
measured the growth of the average domain length, magnetic field as described in Eq&8), (31), and(32). In
sNIPL(D Figs. 8 and 9 we shoM y,{t+1,,t,,) [see Eq(32)]and the
dit)= =g—=—+—, (38)  correlation functiorC(t+t,,,t,,) for temperaturd =0.3 and
Z=1Pi(l) 0.11 and different waiting timetg, . The strength of the stag-

gered field isho=0.1 while the system size N=10°. The
horizontal lines indicate the equilibrium values,

where

N i+l-1

P«n=§;}; o (O[1—0a (D[ 1—a_1()] (39)

T T LR | LAY T

1.0 jo-8-6-0-0-6-0-8-0-0-0p s 5~ e T —

is proportional to the probability of having a domain of spins

1 of lengthl at timet. Fort—o P, converges towards the 0.8 oot =10 -
equilibrium length probability distribution, O o i oo 1 =10 ]
exqiﬁ) i °_otw=103 ]

= 0.4 —

Ped )= vexp— BT (40 A -
0'2_II|| 1 1 IIIIlII | 1 IIIIIII 1 1 Illllll 1 1 Illllll'_

and the average length saturates to the equilibrium value,

deg=1+expB). (42)

LILLI LR | LNLELRLRLLL LR | T

In Fig. 7 we present the average domain length as a &
function of time starting from a random initial condition. = g1
From the figure it follows that after fOMCS d(t) is still

|||||||l||l|l|
IIIIIIIIIIlIIlll

well below the equilibrium valued, for temperatures as 0.0 ln-a-ao-aes

high asT=0.2 indicating that the systems has not yet equili- ol v vvd 3 vind il
brated. In agreement with Ref. 23 a power law fit leads to 10' 10° 10’ 10° 10°
d(t)~tY? characteristic of diffusiof® In the lower part of t

Fig. 7 we show the relaxation of the energy as a function of

time. These results combine the zero temperature exponeﬁ]— the SCIC model forN—1(°, T—0.11 and different waiting fimes,

. 7 .
tial decay to the th_r_es_h()ld enefdy 1/e_ with the slower  _10,100,1 000,10 000. The horizontal lines indicate the equilibrium values
decay towards equilibrium. Note that since the average do@3).

IG. 9. Correlations and zero-field cooled magnetization in a staggered field
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FIG. 10. FDT plots in the SCIC foN=10°, T=0.3 and different waiting
timest,,=10,100,1 000,10 000. The straight line is the FDT relati®®).

o 1 1-exp—p)|?
e 2 0= Trap | “2

and
N

B expB)

eq 1
ME N 2 (=2 0D (43)
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FIG. 12. Q¢ (1) Vs Ce(t+1,, t,,) in the SCIC aff=0.11.

tization. The equilibration timergq to reach equilibrium is
larger than both the activated timg and the correlation
time 7¢o,. If we define the equilibration time,q as the time
needed for the average domain length to reach the equilib-
rium value, then plotting the data of Fig. 7 as a function of
Tlog(t/my) we find that7eo,~ Teq/ 71, 1.€., Teq™~ €XP(IB).

(2) The staggered magnetization has a hump, in corre-
spondence of which the correlation function presents a broad
minimum, as function of. Fort,<7; the hump maximum

The corresponding FDT plots are shown in Figs. 10 andgyes the largest value and decreases wjtas soon as,,

11, respectively.

>7, and eventually disappears fo—. This effect is a

Concerning Figs. 8, 9, 10, and 11 we note the following: §irect manifestation of the two critical time scales present in
(1) Aging in the correlation function appears for waiting ihe scic modet”

times larger than the critical time,;=exp(8) and survives
even for times larger than the correlation timg,,. This can

(3) The existence of different activated relaxation times
results in rather peculiar FDT plots, see Figs. 10 and 11. For

be seen from both correlation function and staggered magng- - Fig. 11,C, y, andX do not show any dependence on

04

03

T

02

0.1

o &
2

FIG. 11. FDT plots in the SCIC foN=10°, T=0.11 and different waiting
timest,,=10,100,1 000,10 000. The straight line is the FDT relati®®).

ty, neverthelesX is a nontrivial function ofC correspond-
ing to nonequilibrium behavior without aging. A similar
shape is found for the one-dimensional Ising model at low
temperature&® For t,,>7;, Fig. 10, there are aging effects
and X shows the typical two slope pattern. However, the
existence of a second typical timescale results in a second
downwards bending of the IRF andas function ofC has a
three slope shape.

We conclude the analysis of the SCIC model by discuss-
ing the results for the cloning experiment. In Fig. 12 we
show the overlathCW(t) [Eq. (33)] as a function of the con-

nected correlatiorC.(t+tw,t,) [Eq. (34)] for temperature
T=0.11. The results show that, for any finttg, Q goes to
zero quite rapidly. If one compare@fw(t) with C.(2t
+t,,,t,) for different values oft,, one finds that both de-
crease exponentially fast with time and tl@fgv(t) is smaller

but very close toC,(2t+t,,,t,). This implies that the two
trajectories depart from each other quite fast. The data in Fig.
12 collapse quite nicely onto the parab@a=C? in agree-
ment with the exponential decay.

In conclusion the SCIC model is a coarsening model
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FIG. 13. Connected correlatior@(t,, ,t,,+1t) in the SCIC forN=10°, T
=0.15 and different waiting timeg,,=10,100,1 000,10 000. Aging is

) FIG. 15. Average domain length and magnetization in the ACICT at
present for times larger than = exp(B).

=0.15,0.20. The average length grows liké.

with three activated time scales=exp(B), Tcor=eXp(283), B. The ACIC model
and 7eq=exp(36). In this scenario we do not expect the

simple scaling form(22) in terms of a single length scale to
be verified. Indeed, although a growing length scale can b
identified a single length scale does not describe the whol . . .
time regime. This is clearly seen in Fig. 13 for=0.15 much faster than the typical Arrhenius behavmexp(ge)
where aging starts after;~1000. The scaling form22) found for the_SCIC model. I_n _the SCIC model d_O”?a'”?’ can
constructed from data from Fig. 7 is shown in Fig. 14. Thealwa_ys grow if they can annihilate defects by building inter-
scaling is obviously rather poor. The behavior of this moolelmedlate defects to the right or to the left of that defect. In the

is essentially diffusive as emerges from the behavior of théA‘CIC ”_‘Od‘?" on the_ contrary, de_fects can disappear only t_)y
overlapQ? (t) similar to the behavior of a ferromagnet with anchoring intermediate defects in the middle of the domain

) ) from one side. This strongly enhances the correlation time.
the nonconserved order parameter, with the difference th%n the other hand, the absence of a critical time kkend

the ch mc_)del has no phase transition and coarsening takgs, ¢yincidence of the correlation time with the equilibration
place in a disordered phase. time makes the dynamics of this model simpler than that of
the SCIC model.

In Fig. 15 we show the average domain length defined
by Eq.(38) and the energy as a function of time when start-
ing from a random initial configuration for different tempera-
tures. TheT log(t) scaling predicted by Sollich and Evahs
is very well satisfied. Note the presence of plateaus in both
the average domain length and the energy for the same range
of time. These correspond to time intervals where domains
coalesce and the global energy stays constant because the
number of anchoring spins is much smaller than the length of
the coalescing domairf§.Since the average domain length
grows like log(d)~\Tog(t), i.e., d~t*", and the equilib-
rium domain length is given byl~exp(B) for low tem-
perature, a phenomenological argument yields for the corre-
lation time 7o, ~exp(8%/\) with A=log(2) in agreement
with the expectations of Mauch andchée 2°
el b b b by L Figures 16 and 17 show the nonequilibrium discon-

1 2 3 4 5 6 nected correlation functiof81) and the staggered magneti-
d(t+t ) /7 d(t) zatio_n(32) frpm infinite temperature initial conditions as a
function of time for two temperature§=0.2 and 0.4 and
FIG. 14. Connected correlation8,(t, .t,+t) (34) in the scic forn  different values ot,,. The strength of the field iB;=0.1.
=10°, T=0.15 plotted vad(t+t,)/d(t,). The dashed horizontal lines are the equilibrium val(s)

Coarsening in this model has been extensively studied
Qy several authors, finding that the correlation time has a
Super-Arrhenius behavior and grows like esfilog(2)) 5%
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FIG. 16. Correlations and zero-field cooled magnetization in a staggered

FIG. 18. FDT plots in the ACIC foN=10°, T=0.4 and different waiting
t,=10,100,1 000,10 000. The horizontal line indicates the equilibriumtimest,=10,100,1 000,10 000. The straight line is the FDT relat2®).

field in the ACIC model forN=10°, T=0.4 and different waiting times

value (43).

and(43). The FDT plots are shown in Figs. 18 and 19.

points:

hump, and the correlation functions a broad minimum, as irffoarsening nature of the dynamics in this model. A simple
the SCIC model. Here, on the contrary, both are monotoni€heck can be done with the help of the FDT plots shown in

present for all time scales in both the correlation function

and staggered magnetization. Aginguhy,4is noticeable for

all values oft,, suggesting that aging in the IRF disappears
Looking at this set of figures we note the following rather slowly witht,,. Keeping in mind the coarsening na-

ture of this model this suggests that=z in Eq. (25).
(1) The staggered magnetization does not posses a (3) From Figs. 16 and 17 it is difficult to verify the

functions of time, a behavior commonly found in models Figs. 18 and 19 for temperatur@s=0.4 andT=0.2. Inter-

where there is no critical timédike 7, in the SCIC)associ-

estingly for waiting times comparable to the correlation time,
ated with a microscopic fast process. On the time scale o$0 that the system is not far from equilibrium, the

Teorr DOth quantities relax to the equilibrium values. We notefluctuation-dissipation ratiX rapidly converges to 1, see
Fig. 18. At low temperatures, Fig. 19,, <7, and the

that 7., = 10* for T=0.4 andr.,,= 10" for T=0.2.

(2) A simple look at Figs. 16 and 17 reveals that aging isfluctuation-dissipation ratio is very smallX=0.1, and
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FIG. 17. Correlations and zero-field cooled magnetization in a staggere
field in the ACIC model forN=10°, T=0.2 and different waiting times
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FIG. 20. Connected correlatio®(t, ,t,+1) in the ACIC forN=10°, T

C H —
=0.20 and different values df, plotted vst. FIG. 22. Q; (1) vs Cc(t+1y,.y) in the ACIC atT=0.2.

roughlly‘l;ndependent o, , a scenario typical of coarsening than in the SCIC model, see Fig. 12.Qf (t) is compared
models. . : w .
In the ACIC model there is only one characteristic di—\;\/g;fé(cz(t; ti"sv’;V:B];ﬁérdIgsie\?;r\;alcl:g:ec}:&“:o(r;f?dst t;\at
vergent timescale, namely,,,, and thus we expect that the tw , ' AT Wi
scaling behaviot22) should be satisfied. Note that, contrar- HOWever, contrarily to the SCICCcase, now during the initial
ily to the SCIC, the average domain lengilit) does not r€dime whent, is small bothQ (t) and Cc(2t+1ty,ty)
grow in time like a power law(see Ref. 26 and Fig. 15 show a plateau, more pronounced @r for timest=10°.
Consequently, in the aging regime the scaling will not be ofThe time range betweety,=10* andt,=10> corresponds
the formt/t,,, see Fig. 20, but a more complicated function (see Fig. 15o the regime wherel(t) is growing very fast.
depending on shape af(t),?® see Fig. 21 wher€(t,, ,t,, This means that during this time interval domains grow,
+1) is plotted as a function af(t,+t)/d(t,). The scalingis ~sinceC slowly decays, buQ remains almost constant be-
quite good. cause the two replicas follow the same narrow path in phase
We conclude our analysis of the ACIC model with the space. This effect is consequence of the way domains grow
discussion ofQf (t) and C(t+t,,t,) shown in Figs. 22 in this model where the anchoring of spins proceeds one by
and 23. AgainQVtg (t) decays to zero for ang, but slower one in a given direction, different from the diffusive mecha-
w nism in the SCIC model. Fat, larger than 18 this effect
would be observed at the next time scale, betweehat@l
10°, where new domains would have grown agéee Fig.
15). Moreover this would also lead to a new plateau @or
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FIG. 21. The same data of Fig. 20 plottedd,,+t)/d(t,,). FIG. 23. wa(t) andC,(2t+t,,,t,) in the ACIC atT=0.2.
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and C for waiting timest,,=10 and 16 for values of the To compute the staggered magnetization we have to use
correlation of order 0.3which we have not reached in the the equilibrium probability distribution with the extra term
simulations). (29) added to the energy. A straightforward calculation leads

We can summarize the results of this subsection by sayto
ing that the nonequilibrium behavior of the ACIC model

resembles coarsening in a simple ferromagnet although the ef(1—e ?)sinh Bho)

1 N
growing length scale grows slower, liké'°9?). The ansatz M =—> (p)= , (48)
(22) for the scaling behavior is well verified and the FDT o Ni:1< ! z(e*~1+e costi gho))
plots show some similarities with the physics of undercooled
liquids although no connection between the slope of the FDTherez is now solution of
behavior and the SW configurational entropy is possible.
Note that we obtairX=0 when temperature is lowered. Fur- € 1 1
thermore, the behavior @fw(t) reveals that the relaxational "2 |eZ—1+PTho) + e7— 1+ efT-ho) |~ 1 (49)

dynamics proceeds by evolution in narrow channels in the
time intervals where domains grow similar to what happens\gte thatM &4 is linear inh, for small values ohy.

for type | models. On the contrary, it is not possible to es-  Apalyzing in details the dynamics we can distinguish
tablish the glassy scenario from the value oflim Qf (t) @ two different decay processes: the first one entropically acti-
guantity which we expect to work only for models with bro- vated and the second one energetically activated. When the
ken ergodicity. system is quenched from high to low particles “evapo-
rate” from some boxes and accumulate in others. After some
time a situation is reached where boxes with more then one
particle are separated by empty boxes and a very small num-
ber of single occupied boxdslefects). ForT=0 these de-

In the 1D BG model, at difference with the kinetic con- fects disappear and the energy does not relax to equilibrium.
straint models discussed above, there are no dynamical co®n the contrary foiT small but finite the number of these
straints and coarsening follows from the slow growth of thedefects may be large enough, its number scalind s to
number of empty boxes induced by entropic barriers. If weserve as nucleation paths between two nearby multiple occu-
denote witha=0,1 empty and occupied box, respectively, pied boxes which, by the usual entropic mechanism, eventu-
then we can consider the same quantities discussed for thgly accumulate onto a single box. The time scaldor this
kinetic constraint models, i.e., domain length probability dis-process is activated since defects must be created, but it is
tribution, average length, correlation, and magnetization. Allsmaller than exgg).
these quantities converge for large times to their equilibrium A second, energetically activated, process appears for
values derived from the equilibrium probability defects to be anchored between multiple occupied boxes so
distribution?® that they coalesce in a single multiple occupied box. At low

ne1 temperature and close to equilibrium the typical number of
M (44)  particles per occupied box is of ordgrwhile the distance
ntexp(z) that particles must cover by diffusion from one box to a
contiguous one is of orded.;~ 3. Combining these two
behaviors we obtain for the equilibration timer,

C. The BG model

1 N
Ped )= 2, (9, )=

which gives the probability that at equilibrium a box contains
n particles. Normalization of the distributiofd4) corre-

sponds to the conservation of the total number of particlesTﬂeXp@' .
and reads The interplay between these two mechanisms can clearly

be seen in Fig. 24, where we report growth of the average
exp(B)—1=(z—1)expz). (45)  domain length, from an initial random configuration, and
e(minus) the average number of empty boxesnergy)as a

By usingP¢,the equilibrium values of correlations, respons ’ ) )
and domain length can be computed. For example the avefunction of time for different temperatures. The data are plot-
ted as function ofT log(t) so that the equilibration time,

age domain length of empty boxes at equilibrium is given by, e .
where the average length reaches the equilibrium value, is

1 46) Tlog(reg=1+4 with &§=-Tlog(T) leading to 7,
e 11— Ped0) =B exp(@). This equilibration time scale., is shorter than
hich di f % wh Il particles fill a sinale b that of the kinetically constrained Ising chain but longer than
From the defiion i ollows thab(0) & equal to minus 1 Mean-feld case~ [exp(8)£7]2 From the figure we
o .
the equilibrium energy5) which, for smallT, goes a€/N also see that both the average domain length and the energy

display a plateau at short times corresponding to Tke0

- 2 _

B 1.+.T+O(T ). We then havedeq .'8 for f—ce. behavior. The departure from this initial plateau occurs for
Similarly for the correlation function we have,

times shorter than the activated characteristic time @xp(

d

1 N and is driven by the entropic mechanism described above. A
Ceq=ﬁ_2 (vi)?=[2P¢{0)— 177, (47)  good collapse of the departing time is obtained for
ot =exp(B)/B. For B— the characteristic times; and 7,
wherev=20-1. become well separated sina:gqlrl~/32.
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FIG. 24. Average domain length and energy in the BG model. FIG. 26. The same as Fig. 25 for=0.09.

Figures 25, 26, 27, and 28 show the correlation function, ~ (2) For waiting timest,,> 7, the dynamics slows down
staggered magnetization, and FDT plots of the 1D BG modeflue to energy barriers. To empty a box a large number of
for the two temperatures=0.1 and 0.09 and field strength particles must be transferred, a process which is cooperative

ho=0.1. and involves all the particles in the box. The typical time of
From the analysis of the figures the following conclu- this cooperative process ig,~ 8 exp(8). For waiting times
sions can be drawn: 71 <ty < 7eq the system shows strong nonequilibrium effects

(1) After quenching from infinite to low temperature a With a downwards bending of the IRF as a funct@similar
fast evaporation of occupied boxes occurs after which only 4 what is seen in the SCIC model. The origin of this effect
finite fraction of them, approximately 30%, survives. Eachis, however, different and follows from the asymmetric re-
occupied box contains in average about 3—4 particles. ThigPonse to the staggered field of occupied and empty boxes.
process is clearly seen in Fig. 24. The time scale Since the field is coupled to empty boxes, the typical time to
=exp(B)/B has a role similar to the time scalg found in ~ empty a box is larger than that to occupy an empty one. In
the SCIC model. The aging effects are absentfer r; but ~ other words, when quenching from higbr infinite) tem-
X<1 (see Figs. 27 and 28). The dynamics is again diffusivePerature boxes are occupied fast and its number converges

and similar to the one found for the one-dimensional Isingelatively fast towards the equilibrium value. However, due
model® to the staggered field, the distance among them is far from
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FIG. 25. Correlations and staggered magnetization in the Ba\Nfed 0", FIG. 27. FDT plots in the BG foN=10*, T=0.1 and different values of
T=0.10, and different values af, . ty -
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0.5 the early times are contained in the larger domains at later
times. Consequently thislow) approach to equilibrium can
be described within a geometrical picture in terms of the
value of the average domain length.

In undercooled liquids such a length scale probably does
not exist and no coarsening takes place in the metastable
region. Here the slowing down of the dynamics follows from
an activated dynamics in a complex energy landscape com-
posed by many valley¥. The SW idea of mapping run-time
configurations onto local minima of energy surfdt®) is to
provide a statistical description of the valleys. The fact that
these valleys are uncorrelated is at the basis of the potential-
ity of the approach, a result shared by disordered mean-field
models for the glass transition suchmspin model& or the
random energy modéf. Obviously coarsening plays a role
for crystallization processes but we know that the anomalies
found in the undercooled regime are also found in disordered
C models with a crystal stafe’ so that the role of the crystal
state in the undercooled dynamics can be ignored.

We have critically discussed the SW configurational en-
tropy and its meaning. A conclusion which is difficult to
the equilibrium value and occupied boxes must be rearfScape from is that any sort of 90nfiguratiopal entropy, for
ranged, which is a very slow process. Consequently correl€*a@mple adapted from mean-field the&)}, will_have -
tion functions and staggered magnetizations show peculidf'€@ning only from a dynamical point of view. Efforts in this
humps corresponding to the fast and slow responses. direction are the Stillinger and Weber approach itself, the

. . 9 . .
In conclusion, we can say that the strong entropic effectd/0rK of Nleu(;/\(/)enhmzeﬁ, the mean-field scenario by Franz
which follows from the large occupation numbers of some@Nd Virasosd,” and the very recent approach proposed by

. 1
boxes at low temperatures, imply that the nonequilibriumBiroli and Kurchar?

behavior of the 1D BG model cannot be well described only ~ 1he description of nonequilibrium dynamics in terms of
in terms of a single length scati(t). The reason is that configurational entropy is valid, in general, if relaxation pro-

althoughd(t) tells how far the system is from equilibrium it C€€ds via activated jumps between uncorrelated configura-
does not contain enough information to efficiently describeions not described by any characteristic length scale. An-

the effects associated with the entropic barriers and the arther possible rephrasing of this conclusion, following the
satz(22) does not hold. definitions in Ref. 36, is to say that models of type | cannot

be described in terms of anyean-field-like configurational
entropy such as the SW approach. Inherent structures and
V. CONCLUSIONS their statistical treatment are only useful for models of type

In this paper we have studied the dynamics of conl, category to which structural glasses belong. But as we

strained 1D Ising models. In particular we have focused on 42ve shown here, one must be careful in using this classifi-
family of constrained kinetic models which interpolate be-cation for models without phase transition but with glassy
tween the symmetrically constrained Ising ché8CIC)in-  dynamics when ergodicity is not broken like in order@d
troduced by Fredrickson and Ander&®and the asymmetri- dlso.rd.er'ed)f.erromagnets. A simple classification based on
cally constrained Ising chaifACIC) introduced by Eisinger the infinite time limit of theQ (t) seems to be well posed
and Jakle?! For comparison we have also studied the 1Dfor coarsening ferromagnetlike systems, but for other slow
Backgammon modéf where dynamics is slowed down by dynamics it may be inappropriate, see some results in Ref.
the global constraint imposed by the conservation of the par44. Still a careful examination of the whole dynamical be-
ticle number. Although these models reproduce some generféavior of Q; (t), and not only its infinite time limit, may
features of undercooled liquids there are, however, importarprovide useful information to evidentiate how coarsening
differences. takes place.

First of all since the class of kinetic constrained models ~ Complementary to this investigation we also made a de-
defined in Sec. ll[see Egs.(1) and (2)] have the same tailed study of the coarsening behavior of the 1D constrained
Stillinger—Weber configurational entrodgee Sec. lll)but  kinetic models and the 1D Backgammon model analyzing
rather different nonequilibrium behaviofsee Sec. 1V), we their different nonequilibrium behaviors. Such study con-
conclude that the IS approach is not appropriate for theséirms theoretical results already present in the literature, but
models. The reason of this failure can be easily understoodlso contains new ones concerning the behavior of the aver-
Dynamics in coarsening systems is usually described imge domain length, in particular for the 1D Backgammon
terms of a growing length scale which measures how closenodel for which nothing is known, of the magnetization,
the system is to equilibrium. In this scenario configurationsresponses and the violation of fluctuation-dissipation rela-
at different times are obviously overlapping since domains ation. Concerning correlation functions we have found that in

04—

03—

0.1

FIG. 28. The same as Fig. 27 for=0.09.
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all models studied here thét,, scaling behavior character- d

istic of mean-field models is not observed. However, when g7 (7i " 7i+k) = —a(K7i Tt 7o g 740 (A2)
there is a single typical time or length scale, as in the ACIC

model, the general scalin@2) and(23) (Ref. 38)is found. —b(KTi Ty T T k1) - (A3)

For the SCIC model we have found that the predicted critical ) ) )

time scaler; (Ref. 27) marks the violation of the scaling Following Ref. 27 we define the set of correlations,
behavior(22). This peculiar behavior leads to a hump and a 1 N

broad minimum in the integrated response function and the C,(t)= Nz () 7 () -+ T (b). (A4)
correlation respectively, leading to a rather unusual =1

fluctuation-dissipation plots. This scer)ario remains valid for;; is simple to see that, for ang, b provided thata+b
values ofa not too far from 1/2, the region & close to 1(or

0) is under investigation and will be reported elsewhere. A
similar conclusion is valid for the 1D Backgammon model dCy
where the presence of entropic barriers induces a second W:_kck(t)_ckﬂ(t)' (AS)
characteristic time scale. In this respect the model with the

simpler nonequilibrium dynamics is the ACIC which pre- which are identical to those of the FA model computed in
sents a single time scale and the scaling beha2@yis well ~ Ref. 27. The generating function

=1, theCy satisfy the equations

satisfied. This result suggests that the FDT plots to distin- © K
guish one glassy scenario from another one must be used G(x,t)=> ick(t)
with caution. The simple models studied here show interest- k=0 k!

ing FDT plots but no relevant information can be obtained to , I
interpret the off-equilibrium scenario. Quite probably thecloses the hierarchy yielding the restil,

only cases where quantities such as configurational entropy G(x,t)=Gy((1+x)exp(—t)—1), (AB)
or FDT ratio are interesting and meaningful are those where - N

some kind of universality is expected. To this class belongVith the initial conditionGo(x) =G(x,t=0). In the t—e
structural glasses. For this case, the Stillinger—Weber delM! (55) yields Cy () = Co(%) 50, Where

composition provides a statistical and useful description of = (1)K
some, otherwise inapplicable, mean-field concepts. Co(®)= 2, ——Cx(0). (A7)
In the present research we have tried to clarify the limit k=0 K

of validity of the SW approach to the description of the

glassy dynamics. The conclusions that can be drawn froPAPPENDIX B: ANALYTICAL CALCULATION OF
the present study of kinetic constrained models and thés(E,T)

Backgammon model can be generalized and we expect that

the SW approach will fail to describe any coarsening model,  Heré we give an analytical derivation of the SW con-
In coarsening models, the information is always contained ir{|gurat|onal entropy for the constrained Ising chain from the

a growing domain length which specifies the stage of evolyZero-temperature dynamics described in Appendix A. If at

tion of microscopic configurations. In undercooled liquids =0 the system is in thermal equilibrium at temperatlire

where the simplest coarsening description fails, the SW dedd the system is large enough the central limit theorem says

scription is a good alternative which provides the natural linkthat the Cx(0) are Gaussian distributed variables. Conse-

with mean-field ideas. quently, Co() is a _Gau53|an distributed variable with the
Note added in proofAfter completion of this work we [IrSt two moments given by

have known of a work by J. P. Garrahan and M. E. J. Z o (—1)k

Newman on a three-spin _int_eraction model on a triangular  (Cy())= >, T<Ck(o)>, (B1)

lattice who found results similar to those presented here. k=0 '

(C3())c=(Ci()) —(Co())?
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temperaturd. This automatically yields, using EB1) the
APPENDIX A: CLOSURE OF DYNAMICAL EQUATIONS  average IS energges) =(Co())— 1 yielding,

k

For the constrained kinetic Ising chain the single-spin (eg)=(1—m)exgm—1)—1. (B3)
zero-temperature dynamics,
) The computation of the second momd®2) is also
7=~ 7i(@71+b7i-y) (AL) straightforward and requires the calculation(6C,);. A

with a, b such thaa+b=1. Fork=0 we get simple calculation gives
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