
Eur. Phys. J. B 20, 105–122 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. In order to describe the thermodynamics of the glassy systems it has been recently introduced
an extra parameter, the effective temperature which generalizes the fluctuation-dissipation theorem (FDT)
to off-equilibrium systems and supposedly describes thermal fluctuations around the aging state. Using this
concept we investigate the applicability of a zeroth thermodynamic law for non-equilibrium systems. In
particular we study two coupled systems of harmonic oscillators with Monte Carlo dynamics. We analyze in
detail two types of dynamics: 1) sequential dynamics where the coupling between the subsystems comes only
from the Hamiltonian and 2) parallel dynamics where there is a further coupling between the subsystems
arising from the dynamics. We show that the coupling described in the first case is not enough to make
asymptotically the effective temperatures of the two interacting subsystems equalize, the reason being the
too small thermal conductivity between them in the aging state. This explains why different interacting
degrees of freedom in structural glasses may stay at different effective temperatures without never mutually
thermalizing.

PACS. 64.70.Pf Glass transitions – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

The dynamics of glassy systems has been a subject of
intensive research [2]. Despite the fact that glassy sys-
tems are off-equilibrium systems, some regularities that
allow the rationalization of the problem have been found.
One of the most striking regularities is the presence of
aging. This means that the correlation and response func-
tions are not only functions of time-differences but also
of the time elapsed since the system was prepared [6].
Thus, qualitatively, the longer one waits in the low tem-
perature phase, the smaller the response to an external
field will be. A salient feature of systems in equilibrium
is the fact that the linear response functions and the
equilibrium fluctuations are related by the well known
fluctuation-dissipation theorem (FDT) [1]. This relation
does not hold for off-equilibrium systems. Several studies
of spin-glass mean-field models have shown that a gener-
alization of the fluctuation-dissipation theorem is possible
through the definition of the “fluctuation-dissipation ra-
tio” (FDR) [3,4]:

X(t, s) =
TG(t, s)
∂C(t, s)
∂s

(t ≥ s), (1)
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which is equal to 1 in equilibrium. It turns out that the
behavior of the quantity X(t, s) is non trivial in the limit
t, s → ∞. If the lowest time s is sent to infinity the
quantity X(t, s) becomes a non-trivial function of the au-
tocorrelation C(t, s). This a strong statement which has
been proved to hold in the framework of mean-field spin
glasses [3,4]. Moreover, it has been recently recognized
that the quantity X is generally related to the Parisi or-
der parameter P (q) which appears in equilibrium studies
of spin-glasses providing a natural link between the static
and dynamical properties [5].

What is the physical interpretation of X? According
to relation (1) the fluctuation-dissipation relation would
be satisfied if the temperature into the right hand side
of (1) were T/X(t, s). This last ratio receives the name of
effective temperature and it has been shown [11] that it
has some of the good properties of a macroscopic temper-
ature. In fact a proper thermometer coupled to the slow
degrees of freedom can measure it. The value of Teff(t, s) =
T/X(t, s) would then be different (and higher) than that
of the thermal bath. The question about the convenience
of this temperature to describe the non-equilibrium behav-
ior has been a subject of controversy in the last years [7].
While there are some evidences (not only theoretical but
also experimental [14,2]) that the violation of FDT gives
a good temperature in the thermodynamic sense, it is un-
clear what properties of standard (i.e. equilibrium) tem-
peratures are common to the non-equilibrium ones.
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The motivation of this paper is to answer to the follow-
ing question: How effective temperatures equalize when
two systems out of equilibrium are put in contact? In other
words, does there exist a zeroth law for non-equilibrium
systems? Let us imagine about a vitrified piece of sil-
ica quenched to the room temperature. Because the glass
is off-equilibrium its effective temperature is higher than
room temperature. But, if we touch the piece of glass it is
not hotter than the room temperature. We must conclude
that some degrees of freedom within the piece of silica are
thermalized to the room temperature while other remain
non-thermalized and still hotter. Touching the piece of sil-
ica we feel the fast modes, not the slow ones. This poses
the question, how is that possible that different interacting
degrees of freedom have not reached thermal equilibrium
for sufficient long times? Despite of some considerations
present in the literature [11,12] there are no clear answers
to this question. We believe that some of them may require
a more deep understanding through a detailed analysis of
an illustrative example as a previous stage to offer more
simple and generic considerations. It is our purpose here
to follow this route trying to give a general answer to this
question by deriving exact results in the framework of a
solvable model.

The model is a set of harmonic oscillators evolving by
Monte Carlo dynamics introduced in [8] (hereafter referred
as BPR model). The importance of this model relies on
the fact that it is exactly solvable and shows one of the
main features of glasses, namely aging in correlation and
response functions. Our interest will be in considering two
coupled sets of harmonic oscillators. Thus, we can see how
the main observables are affected by the coupling, in par-
ticular how the effective temperature evolves for the two
sets of interacting degrees of freedom (represented by the
two different sets of harmonic oscillators). The interaction
may then appear through the Hamiltonian or through the
Monte Carlo dynamics itself. We will discover that the
effective temperature for the two sets of oscillators de-
pends on how the coupling is done, and we will under-
stand why in vitreous systems different degrees of freedom
may stay at different temperatures without thermalising
at very long times. The central idea is that interacting
non-equilibrium systems each one with very different ef-
fective temperatures may not equalize because the conduc-
tivity in the aging state can be extremely small. In this
sense the utility of the extension of the zeroth thermody-
namic law to the non-equilibrium aging state is questioned
due to the smallness of the non-equilibrium conductivities.

The paper is organized as follows. Section 2 describes
the main aspects as well as the interest of the model.
Section 3 describes the two classes of couplings we have
considered. Section 4 analyzes the case in which the main
coupling is ruled by the Monte Carlo dynamics. Section 5
describes the case where coupling appears only in the
Hamiltonian. Sections 4 and 5 show how to solve the dy-
namics of the system. The reader who is not interested in
technical issues can skip them. Section 6 discusses the re-
sults and the physical consequences of our work. The last

section presents the conclusions. Three appendices are de-
voted to some other technical issues.

2 A simple and solvable model of glass

As a simple model of glass we will consider a system of
uncoupled harmonic oscillators evolving with Monte Carlo
dynamics. The Hamiltonian is:

H =
1
2
K

N∑
i=1

x2
i . (2)

This model was introduced in [8] and was also reviewed
in [9,10].
The low-temperature Monte Carlo dynamics of an en-
semble of linear harmonic oscillators shows typical non-
equilibrium features of glassy systems like aging in the
correlation and response functions. The interest of this
model is that the slow dynamics at low temperatures is
a consequence of the entropy barriers generated by the
low acceptance rate. The simplicity of this model makes
it exactly solvable yielding a lot of results about the non-
equilibrium behavior.

The Monte Carlo move consists on the following: the
xi are moved to xi+ri/

√
N where ri are random variables

Gaussian distributed with zero average and variance ∆2.
The move is accepted according to the transition proba-
bility W (∆E) which satisfies detailed balance: W (∆E) =
W (−∆E) exp(−β∆E), where ∆E is the change in the
Hamiltonian. In Appendix A we show the computation
of the correlation and response functions. Here we only
quote the main results,

1. Slow decay of the energy. The evolution equation for
the energy is Markovian. This simplicity allows for an
asymptotic large-time expansion showing that the en-
ergy decays logarithmically E(t) ∼ 1/ log(t) and the
acceptance ratio decays faster A(t) ∼ 1/(t log(t)).

2. Aging in correlations and responses. The correlation
function C(t, s) is defined by:

C(t, s) =
1
N

N∑
i=1

xi(t)xi(s). (3)

The response function is calculated by applying an ex-
ternal field to the system. Then, the response func-
tion is the variation of the magnetization of the system
when the field is applied:

G(t, s) =
(
δM(t)
δh(s)

)
h=0

t > s, (4)

with the magnetization given by,

M(t) =
1
N

N∑
i=1

xi(t). (5)
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Details on how to solve correlations and responses
are given in Appendix A. The final results are equa-
tions (102, 111). Both correlation and responses show
dominant s/t scaling with logarithmic corrections. The
asymptotic scaling behavior is given by,

C(t, s) = C(s, s)
L(s)
L(t)

,

G(t, s) = G(s, s)
L(s)
L(t)

Θ(t− s), (6)

with C(s, s) = 2E(s)
K , G(s, s) = f(s)

K where the ex-
pression f(t) is given in equation (98) and L(t) ∼
t(log2(t)) [15]. The slow decay of the response function
shows the presence of long-term memory which mani-
fests as aging in the integrated response function [8].

3. The effective temperature. As said in the introduction,
the effective temperature is defined in terms of the
FDR equation (1):

Teff(t, s) =

∂C(t, s)
∂s

G(t, s)
· (7)

In equilibrium E(s) = T/2 and we recover the ex-
pected result Teff = T . Interestingly (7) yields a re-
sult for Teff which only depends on the smallest time
s. The unique dependence of the effective temperature
on the lowest time s is generally believed to be satisfied
in the asymptotic large s limit for generic structural
glasses and spin-glass models with a one step of replica
symmetry breaking. This expectation holds here for all
times. At zero temperature when slow motion sets in,
the system never reaches the ground state and ages for-
ever. In this regime the effective temperature verifies
in the long-time limit (i.e. s −→∞ ):

Teff(s) = 2E(s) +
2

f(s)
∂E(s)
∂s

−→ 2E(s). (8)

This gives a thermodynamic relationship between the
effective temperature and the dynamical energy in the
off-equilibrium regime showing how the equipartition
theorem can be extended to the glassy regime. The ef-
fective temperature measures how a quasi-stationary
or adiabatic hypothesis is exact for the present model
suggesting that some features of equilibrium thermo-
dynamics may be applied to the aging regime.

3 Two coupled systems

Now we consider the case in which we couple two systems
of harmonic oscillators. In this case it is possible to com-
pute analytically how one system affects the other without
loosing the benefit of evaluating Gaussian integrals. The
Hamiltonian we have to deal with is:

H =
K1

2

N∑
i=1

x2
i +

K2

2

N∑
i=1

y2
i −

ε

N

N∑
i=1

xiyi, (9)

where we take K1K2 > ε2, otherwise the system has no
bounded ground state. We define the following extensive
quantities (per oscillator):

E1 =
K1

2N

N∑
i=1

x2
i , E2 =

K2

2N

N∑
i=1

y2
i , Q =

1
N

N∑
i=1

xiyi

(10)

where E1 and E2 are the energy of the bare systems while
Q is the overlap between them. In this case we also con-
sider Monte-Carlo dynamics, where the transition prob-
ability is performed by the Metropolis algorithm which
satisfies detailed balance. The random changes in the de-
grees of freedom xi, yi are defined in the same way we
have explained in the previous section for the case of a
single system. But there are different ways to implement
the dynamics in the model depending on the updating
procedure of the variables xi, yi. Here we have analyzed
two important and different procedures which yield quite
different results:

1. Uncoupled or sequential dynamics. In this case the two
sets of variables x and y are sequentially updated. First
the xi variables are updated and the move is accepted
according to the total change of energy ∆E = ∆E1 −
ε∆Q. Next, the variables yi are changed and the move
accepted according to the energy change ∆E = ∆E2−
ε∆Q. This procedure is then iterated. In this case, the
dynamics does not affect simultaneously the two sets of
variables but each set is updated independently from
the other. The only coupling between the two sets of
oscillators comes from the explicit coupling term εQ
in the Hamiltonian. Note that for ε = 0 the dynamics
becomes trivial because the dynamical evolutions are
that of two independent sets of harmonic oscillators
everything reducing to the original model described in
Section 2.

2. Coupled or parallel dynamics. In this first case the
xi, yi variables are updated in parallel according to the
rule xi → xi+ri/

√
N , yi → yi+si/

√
N . The transition

probability for that moveW (∆E) is determined by the
change in the total energy ∆E = ∆E1 +∆E2 − ε∆Q
introducing, on top of the explicit coupling term εQ
in the Hamiltonian, an additional coupling between
the whole set of oscillators through the parallel updat-
ing dynamics. Contrarily to the uncoupled case, the
ε = 0 case is interesting by itself because it shows how
this kind of dynamical coupling strongly influences the
glassy behavior. In fact, in the limiting case ε = 0,
there will be some changes which make the energy of
one of the two systems increase, this change being ac-
cepted because the total energy will decrease. Because
of that, despite of the fact that there is no direct cou-
pling in the Hamiltonian the dynamics turns out to be
strongly coupled.

In what follows we describe the main set of quantities we
are interested in. The solution of the dynamical equations
for the coupled and uncoupled cases is very similar. The
Appendix B shows in detail the derivation of the dynam-
ical solution for the uncoupled case.
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3.1 Correlation, overlaps and responses

On top of the time evolution of one-time quantities our
interest will also focus on the behavior of two-times quan-
tities such as correlations and responses. These quantities
will refer to three classes of systems: the set of oscilla-
tors described by the x variables, the set of oscillators
described by the y variables and the whole set of x and y
variables. In the rest of the paper, as a rule, the subindex
1 will refer to quantities describing the set x of oscillators,
the subindex 2 will refer to quantities describing the set
y of oscillators and the subindex T will refer to quantities
describing the whole set of oscillators x plus y. The main
set of correlation and response functions we are interested
in are:

• Correlations. The correlation function for the sets x
and y,

C1(t, s) =
1
N

N∑
i=1

xi(t)xi(s),

C2(t, s) =
1
N

N∑
i=1

yi(t)yi(s), (11)

as well as the global correlation CT(t, s) = 1
2 (C1(t, s)+

C2(t, s)).
• Overlaps. These are cross-correlations involving differ-

ent sets of variables:

Q1(t, s) =
1
N

N∑
i=1

yi(t)xi(s),

Q2(t, s) =
1
N

N∑
i=1

xi(t)yi(s), (12)

with Q1(t, s) = Q2(s, t). As we will see later, it is useful
to define these two functions Q1, Q2 which essentially
are the same overlap function but acting on different
time sectors.
• Response functions. The response function for the sets
x and y are defined in the following way. Define the
magnetizations for the two sets of oscillators x and y,

M1 =
1
N

N∑
i=1

xi, M2 =
1
N

N∑
i=1

yi. (13)

Consider also two external fields h1 and h2 conjugated
respectively to M1 and M2,

H =
K1

2

N∑
i=1

x2
i +

K2

2

N∑
i=1

y2
i

−
∑
i

(h1xi + h2yi)− ε
∑
i

xiyi. (14)

We define four types of response functions G1,2, G
′
1,2.

The G1(t, s), G2(t, s) functions measure the change

in the magnetization M1(t), M2(t) induced by their
respective conjugated field h1, h2 applied at time s.
These are defined by

Gi(t, s) =
(
δMi(t)
δhi(s)

)
hi=0

, (15)

where the index i = 1, 2 represents each one of the
systems. Apart from these two response functions we
may define the global response function GT(t, s) as the
change in the global magnetization MT = 1

2 (M1 +M2)
induced by a field conjugate to the total magnetization,

GT(t, s) =
(
δMT(t)
δh(s)

)
h=0

=
1
2

(
G1(t, s) +G2(t, s)

)
.

(16)

The primed response functions G′1(t, s), G′2(t, s) func-
tions measure the change in the magnetization in each
set of oscillatorsM1(t), M2(t) induced by a conjugated
field (respectively h2, h1) applied on the other set of
oscillators at a time s:

G′i(t, s) =
(
δMi(t)
δhj(s)

)
hj=0

(17)

where the indices i, j = 1, 2 are different i 6= j. In the
absence of a coupling term εQ in the Hamiltonian (9)
the two response functions G′1,2 vanish but for ε 6= 0
they enter into the solution of the dynamical equations.
• Effective temperatures. From the correlation and re-

sponse functions we may define three effective temper-
atures: T 1

eff for the system 1, T 2
eff for system 2 and TT

eff
for the global system. These are defined as follows,

T 1
eff =

 ∂C1(t, s)
∂s

G1(t, s)

 , T 2
eff =

 ∂C2(t, s)
∂s

G2(t, s)

 ,

TT
eff =

 ∂CT(t, s)
∂s

GT (t, s)

 · (18)

We will analyze in detail the three effective tempera-
tures for the coupled and the uncoupled cases. From
them we will learn whether the systems equalize their
temperatures and how they do.

3.2 Equilibrium regime

Here we present the results for the statics for the general
model (9). The equilibrium solution is the stationary state
of the dynamics coinciding for both coupled and uncou-
pled dynamics. The results for the one-time quantities can
be simply evaluated from the partition function,

Z =
∫ ∞
−∞

dxdy exp(−βH), (19)
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which involves simple Gaussian integration. By perform-
ing the appropriate partial derivatives we calculate the
different thermodynamic quantities:

Eeq
1 = Eeq

2 =
K1K2T

2(K1K2 − ε2)
, Qeq =

εI

J
=

2εEeq
1

K1K2
,

(20)

where the parameters I, J are defined by,

I =
E1

K1
∆2

2 +
E2

K2
∆2

1, J =
K1∆

2
1

2
+
K2∆

2
2

2
, (21)

where the total energy E = E1 +E2 − εQ is given by the
equipartition relation E = T . Note that K1K2− ε2 > 0 in
order for Eeq

1 , Eeq
2 to be positive.

The equilibrium correlations C, overlaps Q and re-
sponses G,G′ only depend on the time differences. While
the precise form of these functions depends on the par-
ticular type of dynamics, the magnetic susceptibilities do
not. These are given by:

χ1 =
∫ ∞

0

G1(t)dt =
K2

K1K2 − ε2
,

χ2 =
∫ ∞

0

G2(t)dt =
K1

K1K2 − ε2
,

χT =
∫ ∞

0

GT(t)dt =
1
2

(χ1 + χ2), (22)

and are temperature independent as expected for oscilla-
tor systems. Nonetheless, in equilibrium the three effective
temperatures (18) coincide with the bath temperature T .

4 The dynamically uncoupled (or sequential)
case

In this section we solve the dynamics of the thermody-
namic relevant quantities for the case in which the two
subsystems of oscillators are dynamically uncoupled. As
explained in the previous section, in this case we make
a sequential dynamics avoiding direct dynamical cou-
pling effects coming from the Monte Carlo dynamics. The
derivation of the dynamical equations is explained in the
Appendix B. The equations for the energies and over-
lap (10) are written down in (126, 127, 133),

∂E1

∂t
= −(2E1 − εQ)fR1(t)

+
1
2

(
fR1(t)
β

+
K1∆

2
1

2
ercf(α1)

)
(23)

∂E2

∂t
= −(2E2 − εQ)fR1(t)

+
1
2

(
fR2(t)
β

+
K2∆

2
2

2
ercf(α2)

)
(24)

∂Q

∂t
= −

(
Q− 2εE2

K1K2

)
fR1(t)

−
(
Q− 2εE1

K1K2

)
fR2(t) (25)

with the following definitions:

R1 = E1 − εQ+
ε2E2

K1K2
,

R2 = E2 − εQ+
ε2E1

K1K2
, (26)

fRi(t) =
Ki∆

2
i

2
β exp

(
−βKi∆

2
i

2
(1− 2Ri(t)β)

)

× erfc(αi(t)(4Ri(t)β − 1)) with αi=

√
Ki∆2

i

16Ri
,

(27)

where the error function was defined in (97).
Definitions (27) hold for i = 1, 2, each i representing

one of the two systems. Note that the whole dynamics is
contained in the function fRi(t). In what follows we will be
especially interested in the zero-temperature case where
relaxation time diverges and dynamics is slow and glassy.
For T = 0 the function fRi(t) in (27) becomes

fRi =
2αi√
π

exp(−α2
i ). (28)

4.1 Asymptotic long-time expansion for the one-time
quantities

The asymptotic solution of equations (23–25) may be
guessed from the behavior of the energy (113) for the un-
coupled systems. Trying a solution of the type

E1 =
a

log(t)
, E2 =

b

log(t)
, Q =

c

log(t)
, (29)

we can only solve the asymptotic behavior in the limit
ε ≈ 0. This is a consequence of the fact that the quan-
tities R1 and R2 are different in general and we have a
system of four equations with three parameters. There is
not any general solution for this system, but in the limit
ε ≈ 0 the quantities R1 and R2 become identical to the
corresponding energies to leading order yielding only three
equations with three unknown parameters (a, b, c). In this
limit the value of the coefficients a, b, c may be easily ob-
tained yielding

a =
K2

1K2∆
2
1

16(K1K2 − ε2)
, b =

K1K
2
2∆

2
2

16(K1K2 − ε2)
,

c =
εJ

8(K1K2 − ε2)
, (30)

where J was defined in equation (21). At first order in
logarithmic corrections 1/ log(t) we find in the limit ε ≈ 0:

E1 =
K2

1K2∆
2
1

16(K1K2 − ε2) log(t)
,

E2 =
K1K

2
2∆

2
2

16(K1K2 − ε2) log(t)
,

Q =
εJ

8(K1K2 − ε2) log(t)
· (31)
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Fig. 1. The decay of the energies and the overlap for two sys-
tems with K1 = 2, K2 = 1,∆1 = 1, ∆2 = 1 and ε = 0.2. The
longest lines are the numerical solution for the dynamic equa-
tions, while the shorter ones are the corresponding asymptotic
behaviors.

Note that, in the long time limit both energiesE1, E2 tend
to zero logarithmically but their relative difference E1−E2

E1

stays finite. In the limit of small coupling constant we can
do a more refined expansion yielding:

E1 =
K2

1K2∆
2
1

16(K1K2 − ε2)
1

log(t) + 1
2 log(log(t))

+O(
1

log2(t)
),

(32)

E2 =
K1K

2
2∆

2
2

16(K1K2 − ε2)
1

log(t) + 1
2 log(log(t))

+O(
1

log2(t)
),

(33)

Q =
εJ

8(K1K2 − ε2)
1

log(t) + 1
2 log(log(t))

+O(
1

log2(t)
),

(34)

where we have put explicitly the terms of order 1/ log2(t)
as sub-dominant corrections. These terms come from the
fact that the true expressions for the energies and the over-
lap should be, in order to match the coefficients in (23–25):

E1 =
a

log(At)
, E2 =

b

log(Bt)
, Q =

c

log(Ct)
, (35)

which gives a correction of order 1/ log2(t) in expres-
sions (31).

In Figure 1 we show the evolution for the energies and
the overlap for two systems of harmonic oscillators with
a small value of ε. We also show the asymptotic behav-
ior (32–34). We can see that the two energies remain dif-
ferent even at long times. We will see that this feature is
very important for describing the non-equilibrium state of
the whole system. We can also see that the asymptotic
expansions are in good agreement with the numerical so-
lution of the dynamic equations. Nevertheless, there are
systematic deviations at long times being consequence of
the limited range of validity (ε � 1) of the asymptotic
solution (32–34). If K1∆

2
1 = K2∆

2
2 the energies of the two

oscillators become identical (note that equations (96–98)

only depend on the constant K∆2) and asymptotic dy-
namics also.

4.2 Correlations and responses

The set of equations for the four correlation and overlap
functions defined in (11, 12) can be written as:

∂

∂t

C1(t, s)
C2(t, s)
Q1(t, s)
Q2(t, s)

 =

−


fR1(t) 0 − ε

K1
fR1(t) 0

0 fR2(t) 0 − ε
K2
fR2(t)

− ε
K2
fR2(t) 0 fR2(t) 0
0 − ε

K1
fR1(t) 0 fR1(t)



×

C1(t, s)
C2(t, s)
Q1(t, s)
Q2(t, s)

 (36)

with the subsidiary boundary conditions

C1(s, s) =
2E1(s)
K1

, C2(s, s) =
2E2(s)
K2

,

Q1(s, s) = Q2(s, s) = Q(s). (37)

The equilibrium solution can be appropriately worked out
because the matrix coefficients are time-independent. If
we write the matrix equation in compact form

∂C
∂t

= MC (38)

with C = (C1, C2, Q1, Q2) the solution is

C(t, s) = C(s, s) exp
(
Meq(t− s)

)
. (39)

The precise results for correlations and overlaps are
reported in the Appendix B (formulae (151–159)),
the initial conditions being given in (37). In the non-
equilibrium case it is not possible to write down an exact
solution for equation (38) for any value of ε. The formal
solution of (38) is

C(t, s) = T exp
(
ε

∫ t

s

BI(s′)
)
C(s, s), (40)

which can be worked out perturbatively up to
any order around ε = 0 (T stands for the
time ordered product). In the Appendix C, we
give some details how to construct such expansion.
Up to order ε2 the solution for the components C1, C2
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of the four component vector C are

C1(t, s) = exp
(
−
∫ t

s

fR1(x)dx
)(2E1(s)

K1
+ ε

Q(s)
K1

×
∫ t

s

dt′fR1(t′)e
R
t′
s

(fR1(x)−fR2(x))dx + ε2
2E1(s)
K2K2

1

×
∫ t

s

dt′
∫ t′

s

dt′′fR1(t′)fR2(t′′)e
R
t′
t′′ (fR1 (x)−fR2(x))dx

)
,

(41)

C2(t, s) = exp
(
−
∫ t

s

fR2(x)dx
)(2E2(s)

K2
+ ε

Q(s)
K2

×
∫ t

s

dt′fR2(t′)e
R t′
s

(fR2(x)−fR1(x))dx + ε2
2E2(s)
K1K2

2

×
∫ t

s

dt′
∫ t′

s

dt′′fR2(t′)fR1(t′′)e
R
t′
t′′ (fR2(x)−fR1(x))dx

)
.

(42)

Similar expansions are obtained from Q1(t, s), Q2(t, s).
Here we do not report them because correlations are
enough to analyze the effective temperatures. Similarly
we can also obtained expressions for the responses as de-
tailed in the Appendix B. The time evolution for the four
possible response functions is given by

∂G1(t, s)
∂t

= −
(
G1(t, s)fR1(t)− fR1(t)

K1
δ(t− s)

− ε

K1
G′2(t, s)fR1(t)

)
(43)

∂G2(t, s)
∂t

= −
(
G2(t, s)fR2(t)− fR2(t)

K2
δ(t− s)

− ε

K2
G′1(t, s)fR2(t)

)
r (44)

∂G′1(t, s)
∂t

= −
(
G′1(t, s)fR1(t)− ε

K1
G2(t, s)fR1(t)

)
(45)

∂G′2(t, s)
∂t

= −
(
G′2(t, s)fR2(t)− ε

K2
G1(t, s)fR2(t)

)
.

(46)

As explained in Appendix B these equations must be
solved with the subsidiary boundary conditions,

G1(s, s) =
fR1(s)
K1

; G2(s, s) =
fR2(s)
K2

,

G′1(s, s) = 0, G′2(s, s) = 0. (47)

The initial conditions for G1, G2 come from the delta-
terms in their equations. The other two initial conditions
for G′1, G

′
2 come from the fact that there is no discontin-

uous jump in the response function of one system when
we apply the field to the other system. This result also
holds in the framework of the Langevin dynamics and
manifests in the equations for the magnetizations (see in
Appendix B (143, 145)) as the absence of a field h2 in

the equation for M1 and the absence of a term h1 in the
equation for M2.

In equilibrium the expressions for the responses G1, G2

are given in the Appendix B. Up to order ε2 the expres-
sion for the off-equilibrium responses G1, G2 can be solved
analogously as done for the correlations and are given by

G1(t, s) =
fR1

K1
exp
(∫ t

s

fR1(x)dx
)(

1 +
ε2

K1K2

×
∫ t

s

dt′
∫ t′

s

dt′′fR1(t′)fR2(t′′)e
R t′
t′′(fR1 (x)−fR2(x))dx

)
(48)

G2(t, s) =
fR2

K2
exp
(∫ t

s

fR2(x)dx
)(

1 +
ε2

K1K2

×
∫ t

s

dt′
∫ t′

s

dt′′fR2(t′)fR1(t′′)e
R t′
t′′(fR2 (x)−fR1(x))dx

)
.

(49)

5 The dynamically coupled (or parallel) case

For the dynamically coupled case the calculations pro-
ceed similarly as to the previous dynamically uncoupled
case. The evolution equations for the overlap and the en-
ergies (10) are:

∂Q

∂t
= −

(
Q− εI

J

)
fEN(t) (50)

∂E1

∂t
=
K1∆

2
1

4
erfc

(
J√
4EN

)
+
(
K1∆

2
1

2β
− 2E1∆

2
1K1 + εQ∆2

1K1

)
fEN(t)

2J
(51)

∂E2

∂t
=
K2∆

2
2

4
erfc

(
J√
4EN

)
+
(
K2∆

2
2

2β
− 2E2∆

2
2K2 + εQ∆2

2K2

)
fEN(t)

2J
·

(52)

I and J were defined in (21) and the new quantities EN,
fEN and ET (ET is not the total energy) are given by

EN = ET − 2εQJ + ε2I,

ET = E1K1∆
2
1 +E2K2∆

2
2 (53)

fEN(t) = Jβ exp
(
β2EN − Jβ

)
erfc

(
2ENβ − J√

4EN

)
(54)

and the expression (54) at zero-temperature is

fEN(t) =
J√
ENπ

exp(− J2

4EN
) · (55)

5.1 Asymptotic long-time expansion for the one-time
quantities

Proceeding similarly as done in the former section we can
find the asymptotic expressions for the energies and over-
laps. In this case we can find a solution for ε finite due
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Fig. 2. The decay of the energies and the overlap for two sys-
tems with K1 = 2, K2 = 1, ∆1 = 1, ∆2 = 1 and ε = 0.3.
Black lines are the numerical solution for the dynamic equa-
tions, while the blue ones are the corresponding asymptotic
behaviors.

to the fact that in this case we have only one dynamic
function fEN . We find, to leading order in 1/ log(t)

E1 =
K1K2J

8(K1K2 − ε2) log(t)
, E2 =

K1K2J

8(K1K2 − ε2) log(t)
,

Q =
εJ

4(K1K2 − ε2) log(t)
· (56)

Note that, contrarily to results (31) for the dynamically
uncoupled case, the energies E1, E2 asymptotically coin-
cide and the relative difference (E1 − E2)/E1 vanishes in
the long-time limit. This difference of behaviors is not ca-
sual and has a physical interpretation that we will discuss
later. The more precise expansion turns out to be,

E1 =
K1K2J

8(K1K2 − ε2)
1

log(t) +
1
2

log(log(t))
+O(

1
log2(t)

)

(57)

E2 =
K1K2J

8(K1K2 − ε2)
1

log(t) +
1
2

log(log(t))
+O(

1
log2(t)

)

(58)

Q =
εJ

4(K1K2 − ε2)
1

log(t) +
1
2

log(log(t))
+O(

1
log2(t)

) ·

(59)

Let us stress that, contrarily to the dynamically uncoupled
or sequential case the previous expressions are valid to any
order in ε. The origin of the 1/ log2(t) terms in previous ex-
pressions is the same as in the uncoupled case (32–34). In
Figure 2, we show the numerical solution for the evolution
of the energies and the overlap as well as the asymptotic
expansions (57–59).

We have said that the relative difference (E1−E2)/E1

vanishes in the long-time limit. It is not difficult to see how
this happens. The time-evolution for the quantity E1/E2

is easy to derive from equations (50–52) in the asymptotic

1 2 3 4 5
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(E
  −

 E
  )

 / 
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ε = 0.1 − 0.9

Fig. 3. Relative energy difference E1/E2 − 1 for two sys-
tems with K1 = 2, K2 = 1, ∆1 = 1, ∆2 = 1 and ε =
0.1, 0.3, 0.5, 0.7, 0.9 (from top to bottom). The asymptotic pre-
diction (60) is also shown.

long-time limit EN → 0. One then finds the following
expansion to leading order

E1

E2
= 1− K1∆

2
1 −K2∆

2
2

2J log(t)
· (60)

If K1∆
2
1 = K2∆

2
2 the correction is even smaller.

Interestingly, this leading correction does not depend
on ε showing that the two energies E1, E2 approach each
other at a rate determined by the fact that the whole
dynamics of the model is coupled and not by the fact that
the two oscillator systems are coupled by the presence of a
term εQ in the Hamiltonian. The behavior of this quantity
is shown in Figure 3 for different values of ε together with
the asymptotic expansion (60).

5.2 Correlations and responses.

Following similar methods as for the dynamically uncou-
pled case presented before we can write down the equa-
tions for correlations and overlaps

∂C1(t, s)
∂t

= −
(
K1∆

2
1C1(t, s)− ε∆2

1Q1(t, s)
) fEN(t)

2J
(61)

∂C2(t, s)
∂t

= −
(
K2∆

2
2C2(t, s)− ε∆2

2Q2(t, s)
) fEN(t)

2J
(62)

∂Q1(t, s)
∂t

= −
(
K2∆

2
2Q1(t, s)− ε∆2

2C1(t, s)
) fEN(t)

2J
(63)

∂Q2(t, s)
∂t

= −
(
K1∆

2
1Q2(t, s)− ε∆2

1C2(t, s)
) fEN(t)

2J
,

(64)

with the subsidiary boundary conditions given by equa-
tions (37).

In matrix form these equations reduce to the equa-
tion (38). As explained for the uncoupled case, this set
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of equations can be exactly solved only in the equilib-
rium regime where the coefficients are time-independent.
The solution is then given by the equation (39), the ex-
pressions for correlations and overlaps are the formu-
lae (151, 156) with a = −K1∆

2
1

2J fEN ; b = ε∆2
1

2J fEN ; c =
ε∆2

2
2J fEN ; d = −K2∆

2
2

2J fEN and the formulae (152, 157)

with a = −K2∆
2
2

2J fEN ; b = ε∆2
2

2J fEN ; c = ε∆2
1

2J fEN ; d =

−K1∆
2
1

2J fEN .
In the most general case where the coefficients of the

matrix equation are time dependent the exact solution can
be written in the closed form (40) which can be expanded
to any order in ε as explained in the Appendix C. As in
the uncoupled case we present here the results up to order
ε2 only for the correlations,

C1(t, s) =

exp
(
−K1∆

2
1

2J

∫ t

s

fEN(x)dx
)(2E1(s)

K1
+ ε

∆2
1Q(s)
2J

×
∫ t

s

dt′fEN(t′)e

�
K1∆

2
1−K2∆

2
2

2J

�R
t′
s
fEN (x)dx

+ε2
2E1(s)∆2

1∆
2
2

4J2K1

×
∫ t

s

dt′
∫ t′

s

dt′′fEN(t′)fEN(t′′)e

�
K1∆

2
1−K2∆

2
2

2J

�R
t′
t′′ fEN (x)dx)

(65)

C2(t, s) =

exp
(
−K2∆

2
2

2J

∫ t

s

fEN(x)dx
)(2E2(s)

K2
+ ε

∆2
2Q(s)
2J

×
∫ t

s

dt′fEN(t′)e

�
K2∆

2
2−K1∆

2
1

2J

�R t′
s
fEN (x)dx

+ ε2
2E2(s)∆2

2∆
2
1

4J2K2

×
∫ t

s

dt′
∫ t′

s

dt′′fEN(t′)fEN(t′′)e

�
K2∆

2
2−K1∆

2
1

2J

�R t′
t′′ fEN (x)dx)

.

(66)

Responses G1,2, G
′
1,2 can be worked out in a similar way

as shown in the Appendix B for the uncoupled case,

∂G1(t, s)
∂t

= −K1∆
2
1

2J

(
G1(t, s)fEN(t)

−fEN(t)
K1

δ(t− s)− ε

K1
G′2(t, s)fEN(t)

)
(67)

∂G2(t, s)
∂t

= −K2∆
2
2

2J

(
G2(t, s)fEN(t)

−fEN(t)
K2

δ(t− s)− ε

K2
G′1(t, s)fEN(t)

)
(68)

∂G′1(t, s)
∂t

= −K1∆
2
1

2J

(
G′1(t, s)fEN(t)

− ε

K1
G2(t, s)fEN(t)

)
(69)

∂G′2(t, s)
∂t

= −K2∆
2
2

2J

(
G′2(t, s)fEN(t)

− ε

K2
G1(t, s)fEN(t)

)
, (70)

with the subsidiary boundary conditions (note that for
G1, G2 they are different from those in (47)),

G1(s, s) =
∆2

1fEN (s)
2J

, G2(s, s) =
∆2

2f2(s)
2J

,

G′1(s, s) = 0, G′2(s, s) = 0. (71)

It is a simple exercise to check in equilibrium whether
these responses give the correct value of the susceptibil-
ity (22). In equilibrium responses only depend on the dif-
ference of times. As the susceptibility is just the integral
of the response function we can integrate the equations
(for simplicity we shall consider that s = 0). Then, the
equilibrium susceptibility of every system is just:

χ =
∫ ∞

0

G(t)dt. (72)

Integrating the equations for response functions we obtain:

G1(∞)−G1(0) = −fENK1∆
2
1

2J

(
χ1 +

ε

K1
χ′2

)
= −fENK1∆

2
1

2JK1
(73)

G′2(∞)−G′2(0) = −fENK2∆
2
2

2J

(
χ′2 +

ε

K2
χ1

)
= 0

(74)

G2(∞)−G2(0) = −fENK2∆
2
2

2J

(
χ2 +

ε

K2
χ′1

)
= −fENK2∆

2
2

2JK2
(75)

G′1(∞)−G′1(0) = −fENK1∆
2
1

2J

(
χ′1 +

ε

K1
χ2

)
= 0.

(76)

At very long times, ergodicity imposes G1,2(∞) =
G′1,2(∞) = 0. These equations give the exact results for
the equilibrium susceptibilities equations (22). In equilib-
rium the responses can be easily computed and one gets
(to keep formulae at minimum we only report the results
for G1 and G2),

G1(t, s) =
∆2

1fEN(s)
2J

(
λ2 − a
λ2 − λ1

exp(λ1(t− s))

− λ1 − a
λ2 − λ1

exp(λ2(t− s))
)

(77)

G2(t, s) =
∆2

2fEN(s)
2J

(
λ2 − a
λ2 − λ1

exp(λ1(t− s))

− λ1 − a
λ2 − λ1

exp(λ2(t− s))
)
, (78)

with the usual expression (155) for λ1, λ2. For G1 the
values of the constants are:

a = −K1∆
2
1

2J
fEN ; b =

ε∆2
1

2J
fEN ; c =

ε∆2
2

2J
fEN ;

d = −K2∆
2
2

2J
fEN (79)
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while forG2 the same results (79) are valid but interchang-
ing the indices 1 and 2.

In the general off-equilibrium case the result for
G1, G2, G

′
1, G

′
2 can be worked out perturbatively. Here

we only write the expression up to order ε2

G1(t, s) =
fEN∆

2
1

2J
exp
(
−K1∆

2
1

2J

∫ t

s

fEN(x)dx
)

×
(

1 + ε2
∆2

1∆
2
2

4J2

∫ t

s

dt′
∫ t′

s

dt′′fEN(t′)fEN(t′′)

×e
(
K1∆

2
1−K2∆

2
2

2J

) R t′
t′′ fEN (x)dx

)
(80)

G2(t, s) =
fEN∆

2
2

2J
exp
(
−K2∆

2
2

2J

∫ t

s

fEN(x)dx
)

×
(

1 + ε2
∆2

2∆
2
1

4J2

∫ t

s

dt′
∫ t′

s

dt′′fEN(t′)fEN(t′′)

×e
(
K2∆

2
2−K1∆

2
1

2J

) R t′
t′′ fEN (x)dx

)
. (81)

6 Results and discussion

First of all we can check that the equilibrium results are
the expected ones. It is easy to prove that, independent
of the dynamics, the effective temperatures are just the
temperature of the bath:

T 1
eff = 2E1 − εQ = T, T 2

eff = 2E2 − εQ = T. (82)

Because in equilibrium the energies of the subsystems are
the same (see (20)).

6.1 Sequential case

In the off-equilibrium case the results are more interesting.
It is easy to verify the following expressions for (18) up to
order ε2 :

T 1
eff = 2E1(s) +

2
fR1(s)

∂E1(s)
∂s

− εQ(s) +
(
εQ(s)

−ε2 2E1(s)
K1K2

)fR2(s)
fR1(s)

×
∫ t

s

dt′fR1(t′)e
R
t′
s

(fR1 (x)−fR2(x))dx (83)

T 2
eff = 2E2(s) +

2
fR2(s)

∂E2(s)
∂s

− εQ(s) +
(
εQ(s)

−ε2 2E2(s)
K1K2

)fR1(s)
fR2(s)

×
∫ t

s

dt′fR2(t′)e
R t′
s

(fR2 (x)−fR1(x))dx. (84)

The expression for the total effective temperature is just

TT
eff =

∂C1(t, s)
∂s

+
∂C1(t, s)

∂s
G1(t, s) +G2(t, s)

, (85)
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Fig. 4. Relative energy difference E1/E2 − 1 for two systems
with K1 = 2, K2 = 1, ∆1 = 1, ∆2 = 1 and different values
of ε = 0.1, 0.3, 0.5, 0.7, 0.9. Note that the relative difference
increases with time.

where the correlations are given by expressions (41, 42)
and the responses are given by (48, 49).

From the equations (83, 84) we can see immediately
that the effective temperatures are well defined in the
regime in which the ratio t

s is finite. Otherwise, the last
term in the right hand side of (83) and (84) would diverge.
At zero temperature and up to order ε2 in the coupling
constant, we have found that E1, E2, Q decrease logarith-
mically implying that both fR1 and fR2 decay like 1/t.
Now let us consider t, s both large but t − s � s. For a
weak coupling (i.e. ε ≈ 0) the value of the effective tem-
peratures are, in the limit s→∞ but with t

s finite:

T 1
eff ≈ 2E1(s) +O(ε2) ≈ K2

1K2∆
2
1

8(K1K2 − ε2) log(t)
(86)

T 2
eff ≈ 2E2(s) +O(ε2) ≈ K1K

2
2∆

2
2

8(K1K2 − ε2) log(t)
· (87)

This yields in the s → ∞ limit a non vanishing relative
difference T 1

eff/T
2
eff − 1. This is a consequence of the fact

that the two energies are different in the long-time regime.
Note that each effective temperature verifies the equipar-
tition theorem in the limit of long times as expected. The
physical interpretation is clear: each system is relaxing
towards its equilibrium state slowly and at any time we
can consider that the systems are at “quasi-equilibrium”
at their corresponding effective temperatures. Obviously
the concept of “quasi-equilibrium” is meaningful in a time
window smaller than the characteristic time-scale in which
the system relaxes (i.e. during this time-scale the effective
temperatures do not change), hence we need to impose
that t/s is finite.

Let’s think now about the global system. As we have
seen, the energies for the two systems remain different
even at infinite times. This can be explicitly seen in
Figure 4 where we show how the relative difference be-
tween the energies (or the effective temperatures accord-
ing to (86, 87)) increases monotonically as a function
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of time (for late times) for any value of ε. We may then
conclude that a coupling in the Hamiltonian is not enough
to reach an equalization of effective temperatures.

This difference of the two effective temperatures im-
plies that there are some degrees of freedom hotter than
others. One can then imagine that there is always some
kind of heat transfer or current flow going from the “hot
degrees” of freedom to the “cold” ones. Then, one may
ask why the effective temperatures do not asymptotically
equalize. The reason is that the off-equilibrium conduc-
tivity may vanish with time fast enough for the heat
transfer not to be able to compensate such difference.
In this situation, if we now compute the total effective
temperature (85) for the whole system we see that in the
off-equilibrium regime this temperature does not coincide
with the sum of the energies of the systems. This fact for-
tifies the definition of the effective temperature using the
FDR (1) in off-equilibrium systems. For two systems in
“local” equilibrium at two different temperatures, despite
the fact that each system verifies FDT, the sum of the two
systems never verifies FDT unless the two temperatures
are equal. In our case, we have two systems which are
in “quasi-equilibrium” at two different effective tempera-
tures, so the TT

eff would never be the sum of the two en-
ergies unless the two effective temperatures T 1

eff , T
2
eff were

the same. In other words, two systems thermodynamically
stable at different temperatures are not globally stable
when put in contact.

6.2 Parallel dynamics

The effective temperatures (18) can be exactly computed
to order ε2. In the equilibrium regime, both the full
expression derived from (151, 156, 77, 78) and the
general approximate solutions (65, 66, 80, 81) up to
order ε2 computed in the equilibrium regime yield the
bath temperature for the three effective temperatures.
In the non-equilibrium case, up to order ε2, the results are:

T 1
eff = 2E1(s) +

4J
K1∆2

1fEN(s)
∂E1(s)
∂s

− εQ(s) +
(
εQ(s)

−ε2 2E1(s)
K1K2

)
K2∆

2
2

∫ t

s

dt′fEN (t′)

×e
K1∆

2
1−K2∆

2
2

2

R
t′
s
fEN (x)dx (88)

T 2
eff = 2E2(s) +

4J
K2∆2

2fEN(s)
∂E2(s)
∂s

− εQ(s) +
(
εQ(s)

−ε2 2E2(s)
K1K2

)
K1∆

2
1

∫ t

s

dt′fEN (t′)

×e
K2∆

2
2−K1∆

2
1

2

R t′
s
fEN (x)dx. (89)

The expression for the total effective temperature is just:

T Teff =

∂C1(t, s)
∂s

+
∂C1(t, s)

∂s
G1(t, s) +G2(t, s)

(90)

where the correlations are given by expressions (65, 66),
and the responses are given by (80, 81).

As in the case without coupling, the interesting dy-
namics is when the temperature of the bath is zero. In
this case, the energies and the overlap decay to zero log-
arithmically which implies that fEN(t) vanishes like 1/t.
A careful evaluation of the integrals contributing to the
ε2 term shown in equations (88, 89) reveals that they are
a function of t/s which stays finite provided that ratio is
finite. As we discussed in the previous uncoupled or se-
quential case the effective temperatures (88, 89) have full
sense when we consider times t/s finite so no apprecia-
ble transfer of energy between the two systems has still
occurred.

It is clear from the asymptotic expressions for the ener-
gies and the overlap that in the long-time limit (s→∞) :

(
Q(s)− ε2E1(s)

K1K2

)
≈
(
Q(s)− ε2E2(s)

K1K2

)
≈ 1

log2(s)
· (91)

While the energies themselves decay as 1/ log(s) the rela-
tive difference (Q(s)/E1(s)− ε 2

K1K2
) decays like 1/ log(s).

Up to order ε2 we may write, in the limit s −→ ∞ (with
t
s finite):

T 1
eff = 2E1(s)− εQ(s), T 2

eff = 2E2(s)− εQ(s), (92)

because the asymptotic values of the E1(s) and E2(s) are
the same the effective temperatures for the subsystems
become identical in the long-time limit. Note that the
case with dynamic coupling or parallel dynamics is quali-
tatively different from the case without dynamic coupling
or sequential, because now all the degrees of freedom are
at the same effective temperature in the long-time limit.
Moreover, if we consider the global system it is easy to
prove that the total effective temperature defined in (18)
is, in the limit s→∞ with t

s finite:

T Teff = T 1
eff = T 2

eff = 2E(s)− εQ(s) (93)

whereE = E1 = E2 andQ are given by (56). This is a con-
sequence of the fact that the energies of the two systems
equalize due to the dynamic coupling. Then, the whole
system has the same effective temperature and we can de-
fine an effective temperature for the global system using
FDT. The situation is the same as in equilibrium systems.
If we have two systems in equilibrium at a certain temper-
ature T , FDT not only holds for each subsystem but also
holds for the whole system bringing the temperature of
the bath T . At higher-orders in ε we expect that all terms
with be subleading for t/s to be finite and asymptotically
all three temperatures coincide.

If we restrict to the case in which the coupling
constant vanishes, ε = 0, then the systems are still
coupled only through the dynamics and we obtain the
same qualitatively results:

T Teff = T 1
eff = T 2

eff = 2E(s) (94)
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with E(s) ≈ J
8 log(s) . We conclude that the dynamic cou-

pling does not allow the presence of more than one ef-
fective temperature in the whole system because even in
the absence of explicit coupling in the Hamiltonian, the
dynamics itself makes the energies to equalize in the long-
time limit regime.

7 Conclusions

In this paper we have solved exactly the dynamics of two
systems of harmonic oscillators. We focused our atten-
tion on the concept of the effective temperature defined
through the FDR equation (1). The effective temperature,
a parameter defined by a relation of the correlation and
response functions, has been introduced in the context of
glass theory in order to understand the physics behind the
dynamic behavior of these out-off-equilibrium systems. In
this paper we hope to have clarified some aspects behind
the physical meaning of this effective temperature.

We have studied two types of couplings between the
two subsystems of oscillators, both in an aging state, find-
ing that the way we couple them is crucial for the validity
of the zero-temperature law in the off-equilibrium regime
to hold. The two cases we studied are the dynamically
uncoupled or sequential case and the dynamically coupled
or parallel case. In short, for the sequential case the cou-
pling between the variables of the two subsystems in the
resulting dynamics arises only through the Hamiltonian
term εQ. For the parallel case, the variables of the two
subsystems are simultaneously updated leading to further
interaction between the two subsystems (on top of the εQ
coupling term in the energy).

We have discovered that for the dynamically uncou-
pled or sequential case the two subsystems asymptotically
reach different effective temperatures which never equal-
ize. So the whole system is divided in two parts, each part
characterized by its own effective temperature. The expla-
nation for this odd behavior lies behind the time depen-
dence of the off-equilibrium thermal conductivity which
decays very quickly to allow for an asymptotic equaliza-
tion of the two effective temperatures. This raises the
question whether different interacting degrees of freedom
do eventually reach the same effective temperature in the
asymptotic regime, condition tightly related to the valid-
ity of the zeroth law for the off-equilibrium aging state.
Our conclusion is that the zeroth law is probably valid
but hardly effective due to the very small conductivity
between the two subsystems in the aging state. A calcu-
lation of the thermal conductivity in this model will be
shown elsewhere [16] and reveals that it decreases very
quickly with time, the heat transfer being unable to com-
pensate for the difference of the effective temperatures of
the two subsystems.

For the dynamically coupled or parallel case, the two
effective temperatures equalize and the two subsystems
are in a sort of thermal equilibrium between them in the
aging state. Consequently, the union of the two subsys-
tems has an effective temperature which coincides with

the temperature of each subsystem. In this case, the di-
rect coupling of the two subsystems through the parallel
dynamics makes the conductivity much larger than in the
sequential case so in this case a zero-th law for the aging
state is effective and holds. In fact, these results are also
valid when we consider the particular case ε = 0 in which
the dynamics in itself is enough to equalize the effective
temperatures.

From these two type of couplings the first one is the
only realistic. Dynamics in real structural glasses involves
short scale motions of atoms and coupling between the
different degrees of freedom occurs at the level of the en-
ergy or Hamiltonian and never at the level of the dynamics
(at least in the classical regime). The results of this paper
explain then why different degrees of freedom in struc-
tural glasses can stay at different effective temperatures
forever. The off-equilibrium conductivity or heat transfer
between the different degrees of freedom is small enough
for the equalization of the effective temperatures associ-
ated to the different degrees to never occur. This explains
why when we touch a piece of glass we feel it at the room
temperature. The heat transfer coming from the hotter
non-thermalized degrees of freedom is extremely small.
Before finishing we must note one particular feature of
our model. All the calculations were done at zero temper-
ature where the energy vanishes asymptotically. The fact
that the energy (and consequently the conductivity) of the
system is exhausted in the asymptotic limit can lead to a
pathological behavior not present in structural glasses at
finite temperature. Nevertheless, the fact that the thermal
conductivity vanishes much faster than the energy itself,
suggests that the vanishing of the conductivity is not re-
lated to zero-temperature dynamics.

In the present calculation we have focused on the inter-
action between two subsystems, both in the aging state.
When one of the subsystems is in an aging state and the
other is in equilibrium the analysis proceeds similarly, the
conclusion being that the non-thermalized subsystem de-
termines the rate of heat transfer and hence the measure-
ment of the effective temperature. The value of the effec-
tive temperature measured by a thermometer and other
related questions can be analyzed in detail in the present
model and will be presented elsewhere [16].

To conclude, although a zeroth law for non-equilibrium
glassy systems may hold, it is hardly effective because
of the small energy transfer occurring between degrees
of freedom at different effective temperatures. It would
be very interesting to pursue this investigation further by
studying other solvable examples and showing that what
we have exemplified here is a generally valid for structural
glasses as well as for other glassy systems.

We are grateful to M. Picco for a careful reading of the
manuscript. A.G. is supported by a grant from the University
of Barcelona. F.R. is supported by the Ministerio de Educación
y Ciencia in Spain (PB97-0971).



A. Garriga and F. Ritort: Validity of the zeroth law in off-equilibrium coupled harmonic oscillators 117

Appendix A: A short review of the BPR model

In this appendix we show how derive the results for the
correlation and the response functions in [8] in order to
understand the techniques we will use throughout this
paper. In that model, the system is constituted by N
uncoupled harmonic oscillators which evolve with Monte
Carlo dynamics. The energy of this system is

E(xi) =
1
2
K
∑
i

x2
i . (95)

The result for the dynamical evolution for the energy is:

∂E

∂t
=
ac

2

(
1− 4Eβ
acβ

f(t) + erfc(α)
)
, (96)

where we have defined the quantities

ac =
1
2
K∆2, α =

√
K∆2

16E
,

erfc(x) =
2√
π

∫ ∞
x

exp(−x2)dx, (97)

f(t) = acβ exp
(
−βK∆

2

2
(1− 2E(t)β)

)
× erfc(α(t)(4E(t)β − 1)). (98)

The stationary solution is just E = 1
2T as expected.

Another important quantity is the acceptance rate which
is the number of accepted Monte Carlo movements at a
time t:

A(t) =
1
2

(
f(t)
acβ

+ erfc(α)
)
. (99)

In the same way we can compute the equation for the
correlation function defined as:

C(t, s) =
1
N

N∑
i=1

xi(t)xi(s), (100)

and the evolution of the correlation function is given by
the equation

∂C(t, s)
∂t

= −f(t)C(t, s), (101)

where the quantity f(t) has been previously defined
in (98). The solution for the correlation function (which
depends explicitly on two times) is:

C(t, s) =
2E(s)
K

exp
(
−
∫ t

s

f(x)dx
)
, (102)

where we have to add the initial condition C(s, s) = 2E(s)
K .

In order to compute the equation for the response function
defined by,

G(t, s) =
(
δM(t)
δh(s)

)
h=0

, (103)

we have to consider the Hamiltonian perturbed by a small
external field

H =
K

2

N∑
i=1

x2
i − h

∑
i

xi. (104)

Then we compute the dynamical evolution for the magne-
tization, which in our model is defined by: M = 1

N

∑N
i=1 xi

yielding:

∂M(t)
∂t

= −
(
M(t)− h

K

)
fE′(t)Θ(t− s), (105)

where we have defined a ‘new’ energy as:

E′ = E −Mh+
h2

2K
· (106)

The quantity fE′(t) is identically defined as in (98) but
with the new energy E′. Note that in the case in which
h = 0 the magnetization will always be zero because of the
initial condition we consider, i.e. M(0) = 0. Also, when
we compute the evolution for the response function, the
first term in the right hand side of the (105) is just the
response. Then we have to analyze carefully the second
term (which is proportional to the external field) in the
right hand side of (105). First of all, we write

G(t, s) ≈ ∆M(t)
h∆s

,
∂G(t, s)
∂t

≈
∆M(t)
∆t
h∆s

· (107)

We consider the variation of the magnetization as follows

∆M

∆t
= ∆s

∂

∂s

(
∂M(t)
∂t

)
Θ(t− s) +∆s

∂M(t)
∂t

δ(t− s),

(108)

and by keeping only the linear term in h in the second
term of the r.h.s in (108) we get

∆M

∆t
= ∆s

h

K

∂f(t)
∂s

Θ(t− s) +∆s
h

K
f(t)δ(t− s). (109)

The first term in the r.h.s of (109) is obviously zero and
only the the second term gives a non-vanishing contribu-
tion. So the evolution for the response function is

∂G(t, s)
∂t

= −f(t)
(
G(t, s)− 1

K
δ(t− s)

)
, (110)

whose solution is

G(t, s) =
f(s)
K

exp
(
−
∫ t

s

f(x)dx
)
Θ(t− s). (111)
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Now, we are in position to compute the effective temper-
ature based on the violation of FDT

Teff =

 ∂C(t, s)
∂s

G(t, s)

 = 2E(s) +
1

f(s)
∂E(s)
∂s

· (112)

Note that the effective temperature only depends on the
smallest time s. This feature is due to the simplicity of
the model. In this model, due to the finite amplitude of
the Monte Carlo movements the system never reaches the
ground state {xi = 0}. In fact, Monte Carlo dynamics
induces entropic barriers which manifest as activated be-
havior for the relaxation time. The interesting dynamics
is found when we study the relaxation of the system at
zero temperature. To obtain the dynamical equations at
zero temperature we have to consider only the negative
changes in the energy. It can be seen that in the long
time limit the relaxation of the energy is logarithmic

E(t) ≈ K∆2

16
1

log
(

2t√
π

)
+

1
2

log(log
(

2t√
π

)
)
, (113)

moreover, we obtain the following asymptotic behavior of
the function f(t) and the acceptance rate:

f(t) ≈ 1
t

1 +

1
2 log(log

(
2t√
π

)
)

log
(

2t√
π

)


1
2

,

A(t) ≈ 1

4t log
(

2t√
π

) · (114)

For the long time behavior of the correlation and
the response functions we obtain to leading order in
log(s)/ log(t)

C(t, s) =
2E(s)
K

Cnorm(t, s),

Cnorm(t, s) ≈
s log2

(
2s√
π

)
t log2

(
2t√
π

) ,

G(t, s) ≈ 1
Kt

 log
(

2s√
π

)
log
(

2t√
π

)


2

· (115)

Appendix B: Solution of the dynamically
uncoupled or sequential case

In this appendix we show explicitly the detailed calcula-
tions for the case in which we sequentially update the two
subsystems. Note that each subsystem is updated in par-
allel but no simultaneous updating of the whole system is
performed so there is no direct coupling of the two subsys-
tems through the dynamics but only through an explicit
coupling term εQ in the Hamiltonian. We have to take
into account this fact when we compute the distribution
probability for a change in the energy. The Hamiltonian
we have to deal with is

H =
K1

2

N∑
i=1

x2
i +

K2

2

N∑
i=1

y2
i − ε

N∑
i=1

xiyi. (116)

The main quantities we work with are

E1 =
K1

2N

N∑
i=1

x2
i , E2 =

K2

2N

N∑
i=1

y2
i , Q =

1
N

N∑
i=1

xiyi,

(117)

where E1 and E2 are the energy of the bare systems while
Q is the overlap between them.

The Monte Carlo updating procedure is the following.
First all the xi are moved to xi + ri/

√
N where the ri are

random variables Gaussian distributed with zero average
and variance ∆2

1. The move is accepted according to a rule
defined by an acceptance probability W (∆E) which sat-
isfies detailed balance: W (∆E) = W (−∆E) exp(−β∆E),
where ∆E is the change in the Hamiltonian. Later all
the yi are moved to yi + si/

√
N , where the si are random

variables Gaussian distributed with zero average and vari-
ance ∆2

2. The same transition probability is now applied
for the yi variables. This sequential updating of the xi
and yi variables is then iterated. Note that the coupling
in the dynamics only appears through the change ε∆Q of
the total energy.

Now we compute the distribution probability of a
change in the energy of the first system. This probabil-
ity distribution can be expressed

P (δE1) =
∫ ∞
−∞

δ

(
δE1 −K1

∑
i

(
rixi√
N

+
r2
i

2N

)

+ε
∑
i

riyi√
N

)(∏
i

dri√
2π∆2

1

exp
(
− r2

i

2∆2
1

))
(118)

and in the same way we can compute the probability for
the other system:

P (δE2) =
∫ ∞
−∞

δ

(
δE2 −K2

∑
i

(
siyi√
N

+
s2
i

2N

)

+ε
∑
i

sixi√
N

)(∏
i

dsi√
2π∆2

2

exp
(
− s2

i

2∆2
2

))
· (119)
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Using the integral representation of the delta function:

δ(m) =
1

2π

∫ ∞
−∞

exp (iλm) dλ, (120)

we obtain

P (δE1) =
1√

4πK1R1∆2
1

exp

−
(
δE1 −

K1∆
2
1

2

)2

4K1R1∆2
1

 ,

(121)

P (δE2) =
1√

4πK2R2∆2
2

exp

−
(
δE2 −

K2∆
2
2

2

)2

4K2R2∆2
2

 ,

(122)

with the quantities

R1 = E1 − εQ+
ε2E2

K1K2
, R2 = E2 − εQ+

ε2E1

K1K2
·

(123)

Note that due to the explicit coupling ε the probability of
a change in the energy of one system not only depends on
their energy, but also on the energy of the other system
and the overlap. Now, we can compute the evolution of
the energies

∂E1

∂t
=
∫ 0

−∞
d(δE1)δE1P (δE1)

+
∫ ∞

0

d(δE1)δE1P (δE1) exp(−βδE1), (124)

∂E2

∂t
=
∫ 0

−∞
d(δE2)δE2P (δE2)

+
∫ ∞

0

d(δE2)δE2P (δE2) exp(−βδE2), (125)

yielding

∂E1

∂t
= −(2E1 − εQ)fR1(t)

+
1
2

(
fR1(t)
β

+
K1∆

2
1

2
ercf(α1)

)
, (126)

∂E2

∂t
= −(2E2 − εQ)fR1(t)

+
1
2

(
fR2(t)
β

+
K2∆

2
2

2
ercf(α2)

)
. (127)

We compute the equation for the evolution of the overlap
in two steps. The first is the change in the overlap when
the variables of the first system are moved; and the second

one is when the variables of the second system are moved.
So we must to compute two joint probability distributions

P (δE1, δQ) =∫ ∞
−∞

δ

(
δE1 −K1

∑
i

(
rixi√
N

+
r2
i

2N

)
+ ε
∑
i

riyi√
N

)

× δ
(
δQ−

∑
i

riyi√
N

)(∏
i

dri√
2π∆2

1

exp
(
− r2

i

2∆2
1

))
(128)

P (δE2, δQ) =∫ ∞
−∞

δ

(
δE2 −K2

∑
i

(
siyi√
N

+
s2
i

2N

)
+ ε
∑
i

sixi√
N

)

× δ
(
δQ−

∑
i

sixi√
N

)(∏
i

dsi√
2π∆2

2

exp
(
− s2

i

2∆2
2

))
·

(129)

Then we compute the evolution equation for the overlap
in each step and sum the two equations

∂Q(1st))
∂t

=
∫ 0

−∞
d(δE1)

∫ ∞
−∞

d(δQ)δQP (δE1, δQ)

+
∫ ∞

0

d(δE1)e−βδE1

∫ ∞
−∞

d(δQ)δQP (δE1, δQ), (130)

∂Q(2nd)
∂t

=
∫ 0

−∞
d(δE2)

∫ ∞
−∞

d(δQ)δQP (δE2, δQ)

+
∫ ∞

0

d(δE2)e−βδE2

∫ ∞
−∞

d(δQ)δQP (δE2, δQ). (131)

The solution of these equations is

∂Q(1st)
∂t

= −
(
Q− 2εE2

K1K2

)
fR1(t),

∂Q(2nd)
∂t

= −
(
Q− 2εE1

K1K2

)
fR2(t) (132)

which yields the final equation

∂Q

∂t
= −

(
Q− 2εE2

K1K2

)
fR1(t)−

(
Q− 2εE1

K1K2

)
fR2(t),

(133)

with the quantities defined in (27, 97). In the same way
we can compute the equation for the correlation and over-
lap functions defined in (11, 12). To compute their evolu-
tion equations we must evaluate the joint probability of
a change in the energy and a change in the correlation
function. Note that when we consider the change in the
variables xi we have to consider the energy of the system
one, and when we consider the change in the variables
yi we have to take into account the energy of the other
system. The joint probability can be decomposed into
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the probability distribution for a change in the energy
multiplied by a conditional probability

P (δE1, δC1) = P (δE1)P (δC1|δE1),

P (δE2, δC2) = P (δE2)P (δC2|δE2), (134)

P (δE2, δQ1) = P (δE2)P (δQ1|δE2),

P (δE1, δQ2) = P (δE1)P (δQ2|δE1). (135)

Then the evolution for the correlation functions can be
computed using

∂C1(t, s)
∂t

=
∫ 0

−∞
d(δE1)

∫ ∞
−∞

d(δC1)δC1P (δE1, δC1)

+
∫ ∞

0

d(δE1)e−βδE1

∫ ∞
−∞

d(δC1)δC1P (δE1, δC1),

(136)

∂C2(t, s)
∂t

=
∫ 0

−∞
d(δE2)

∫ ∞
−∞

d(δC2)δC2P (δE2, δC2)

+
∫ ∞

0

d(δE2)e−βδE2

∫ ∞
−∞

d(δC2)δC2P (δE2, δC2),

(137)

∂Q1(t, s)
∂t

=
∫ 0

−∞
d(δE2)

∫ ∞
−∞

d(δQ1)δQ1P (δE2, δQ1)

+
∫ ∞

0

d(δE2)e−βδE2

∫ ∞
−∞

d(δQ1)δQ1P (δE2, δQ1),

(138)

∂Q2(t, s)
∂t

=
∫ 0

−∞
d(δE1)

∫ ∞
−∞

d(δQ2)δQ2P (δE1, δQ2)

+
∫ ∞

0

d(δE1)e−βδE1

∫ ∞
−∞

d(δQ2)δQ2P (δE1, δQ2),

(139)

yielding

∂

∂t

C1(t, s)
C2(t, s)
Q1(t, s)
Q2(t, s)

 =

−


fR1(t) 0 − ε

K1
fR1(t) 0

0 fR2(t) 0 − ε
K2
fR2(t)

− ε
K2
fR2(t) 0 fR2(t) 0
0 − ε

K1
fR1(t) 0 fR1(t)



×

C1(t, s)
C2(t, s)
Q1(t, s)
Q2(t, s)

 · (140)

For the response functions we have to compute the dy-
namic evolution equations for the magnetizations. We con-
sider an external field coupled to each system, so the new
Hamiltonian is

H =
K1

2

N∑
i=1

x2
i +

K2

2

N∑
i=1

y2
i

−
∑
i

(h1xi + h2yi)− ε
∑
i

xiyi. (141)

We define the magnetizations as follows

M1 =
N∑
i=1

xi, M2 =
N∑
i=1

yi. (142)

Then, we perform the same steps as we did for the other
quantities. First of all we have to compute the joint
probability of a change in the magnetization and a change
in the energy. For example, for computing the response
function for the first system we make h2 = 0 and h1 6= 0;
then we compute the joint probability distribution for
a change in M1 and E1. After that we can obtain the
evolution for the magnetization of this system

∂M1(t)
∂t

= −
(
M1(t)− h1

K1
− εM2(t)

K1

)
fA1(t) (143)

A1 = R1 +
h2

1∆
2
1

2
− h1K1∆

2
1M1 + εh1∆

2
1M2. (144)

Note that in this case we are considering h2 = 0 but still
the equation for M1 depends on M2. For the sequential
updating procedure we have to consider the evolution for
M2(t) with h1 = 0 and h2 6= 0 which is, by symmetry
considerations

∂M2(t)
∂t

= −
(
M2(t)− h2

K2
− εM1(t)

K2

)
fA2(t), (145)

A2 = R2 +
h2

2∆
2
2

2
− h2K2∆

2
2M2 + εh2∆

2
2M1. (146)

We finally get the equations for the four different response
functions using the same procedure we followed for the
single system (see Appendix A). This yields

∂G1(t, s)
∂t

= −
(
G1(t, s)fR1(t)− fR1(t)

K1
δ(t− s)

− ε

K1
G′2(t, s)fR1(t)

)
, (147)

∂G2(t, s)
∂t

= −
(
G2(t, s)fR2(t)− fR2(t)

K2
δ(t− s)

− ε

K2
G′1(t, s)fR2(t)

)
, (148)

∂G′1(t, s)
∂t

= −
(
G′1(t, s)fR1(t)− ε

K1
G2(t, s)fR1(t)

)
,

(149)
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∂G′2(t, s)
∂t

= −
(
G′2(t, s)fR2(t)− ε

K2
G1(t, s)fR2(t)

)
.

(150)

In order to compute the effective temperatures we shall use
a perturbative expansion in terms of the coupling constant
described in Appendix C.

B.1 Equilibrium results

In equilibrium the matrices for correlations and responses
can be exactly diagonalised. The results are

C1(t, s) =
2E1(s)
K1

(
λ2 − a
λ2 − λ1

exp(λ1(t− s))

− λ1 − a
λ2 − λ1

exp(λ2(t− s))
)

+
b

λ2 − λ1
Q(s) (exp(λ2(t− s))

− exp(λ1(t− s))) , (151)

Q1(t, s) = Q(s)
(
λ2 − a
λ2 − λ1

exp(λ2(t− s))

− λ1 − a
λ2 − λ1

exp(λ1(t− s))
)

+
2E1(s)
K1

c(λ2 − a)
(λ2 − λ1)(λ1 − d)

× (exp(λ2(t− s))− exp(λ1(t− s))) , (152)

G1(t, s) =
fR1(s)
K1

(
λ2 − a
λ2 − λ1

exp(λ1(t− s))

− λ1 − a
λ2 − λ1

exp(λ2(t− s))
)
, (153)

with the values of the constants

a = −fR1 , b =
ε

K1
fR1 , c =

ε

K2
fR2 , d = −fR2 ,

(154)

and the two eigenvalues:

λ1 =
a+ d

2
+

√
(a+ d)2 − 4(ad− cb)

2
,

λ2 =
a+ d

2
−
√

(a+ d)2 − 4(ad− cb)
2

· (155)

The results for the other two correlation functions have
the same form

C2(t, s) =
2E2(s)
K2

(
λ2 − a
λ2 − λ1

exp(λ1(t− s))

− λ1 − a
λ2 − λ1

exp(λ2(t− s))
)

+
b

λ2 − λ1
Q(s) (exp(λ2(t− s))

− exp(λ1(t− s))) , (156)

Q2(t, s) = Q(s)
(
λ2 − a
λ2 − λ1

exp(λ2(t− s))

− λ1 − a
λ2 − λ1

exp(λ1(t− s))
)

+
2E2(s)
K2

c(λ2 − a)
(λ2 − λ1)(λ1 − d)

× (exp(λ2(t− s))− exp(λ1(t− s))) , (157)

G2(t, s) =
fR2(s)
K2

(
λ2 − a
λ2 − λ1

exp(λ1(t− s))

− λ1 − a
λ2 − λ1

exp(λ2(t− s))
)
, (158)

with the new values of the constants

a = −fR2 , b =
ε

K2
fR2 , c =

ε

K1
fR1 , d = −fR1

(159)

and the same expressions as in equations (155) for λ1, λ2.

Appendix C: Solution for the off-equilibrium
correlations and responses in the interaction
representation

In general we have to solve the following equation

∂v
∂t

= A(t)v, (160)

with the initial condition v(t) = v(s). A(t) is the matrix
with the time-dependent coefficients of our problem. It
can be decomposed as:

A(t) = A0(t) + εAI(t), (161)

where A0(t) is the diagonal part and AI(t) is the interac-
tion part of the matrix. We work in the interaction repre-
sentation. Therefore we start by doing the transformation

w(t) =
(

exp
(
−
∫ t

s

A0(t′)dt′
))

v(t). (162)

The derivative of this new vector is simply:

dw
dt

= ε exp
(
−
∫ t

s

A0(t′)dt′
)
AI(t)v(t), (163)
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which can be written as

dw
dt

= εBI(t)w(t), (164)

where

BI(t) = exp
(
−
∫ t

s

A0(t′)dt′
)
AI(t) exp

(∫ t

s

A0(t′)dt′
)
.

(165)

Now we must solve (164) with the initial condition w(s) =
v(s). The formal solution for this equation is

w(t) = w(s) + ε

∫ t

s

BI(t′)w(t′), (166)

or equivalently

w(t) = T exp
(
ε

∫ t

s

BI(s′)
)
w(s). (167)

Where T stands for the time ordered product. This equa-
tion can be iterated and solved to any order in ε. Up to
order ε2 we find

Order zero: w(t) = v(s), (168)

Order ε : w(t) = v(s) + ε

∫ t

s

BI(t′)v(s), (169)

Order ε2: w(t) = v(s) + ε

∫ t

s

BI(t′)v(s)

+ ε2
∫ t

s

dt′
∫ t′

s

dt′′BI(t′)BI(t′′)v(s). (170)

This is the procedure we have used in order to obtain
the equations for the responses and correlations for the
dynamically coupled and uncoupled cases.
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