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Damage spreading in mode-coupling theory for glasses
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Abstract. We examine the problem of damage spreading in the off-equilibrium mode coupling
equations. This study is conducted for the spherieapin model introduced by Crisanti, Horner

and Sommers. Fop > 2 we show the existence of a temperature transifipmell above any
relevant thermodynamic transition temperature. Abfiy¢éhe asymptotic damage decays to zero
while below Ty it decays to a finite value independent of the initial damage. This transition is
stable in the presence of asymmetry in the interactions. We discuss the physical origin of this
peculiar phase transition which occurs as a consequence of the nonlinear coupling between the
damage and the two-time correlation functions.

The theoretical understanding of the dynamical behaviour of glasses is a long outstanding
problem in statistical physics which has recently revealed new aspects related to the
underlying mechanism responsible of the glass transition [1, 2]. The scenario for the
dynamical behaviour of glasses can be summarized in two different temperatures which
separate three different regimes. In the high-temperature re@ime 7, the system
behaves as a liquid and is described very well by the mode-coupling equationstzd G

in the equilibrium regime [3]. A crossover takes placeTatwhere there is a dynamical
singularity and the correlation functions do not decay to zero in the infinite-time limit
(ergodicity breaking). This dynamical singularity is a genuine mean-field effect which turns
out to be a crossover temperature when activated processes are taken into account. Below
T, the relaxation time (or viscosity) starts to grow dramatically fast and seems to diverge
at T, where the configurational entropy apparently vanishes. The essentials of this scenario
have been corroborated in the context of mean-field spin glasses, and in particular in those
models with a one-step replica symmetry breaking transition [4].

The purpose of this paper is the study of the damage spreading in mode-coupling theory.
Damage spreading is the study of the time propagation of a perturbation or damage in the
initial condition of a system. This dynamical effect has deserved considerable attention in
the past (especially in the context of dynamical systems, for instance, networks of Boolean
automata [5]) because it allows us to explore the structure of the phase space of the system.
To investigate damage spreading we consider two random initial configurdsions} with
a given initial distanceD, for two identical systems which evolve under identical noise
realizations and compute the distanbér) as a function of time. Of particular interest
is the asymptotic long-time behaviour of the distareg), i.e. D, = lim, o D). In
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general, three different regimes can be distinguished. A high-temperature r&gimé,
whereD,, = 0 independently of the initial distand®,. A intermediate regimé&; < T < Ty

where D, = D (T) is not zero but independent of the initial distance. And finally a low-
temperature regim@ < T; where D, = D (T, Do) depends on both temperature and
initial distance. Although it is widely believed th&4 corresponds to a thermodynamic
phase transition it is not clear what the physical meanin@yok. Here we will show the
existence of the temperatufy in glasses well abov&,; and T in the high-temperature
phase. We show that this new transition is a consequence of the nonlinear coupling between
the damage and the corresponding two-time correlation function. This effect is an essential
ingredient of the mode-coupling equations and should be generally valid even beyond the
mean-field limit. We believe the appearance of this damage transition is a quite general
result in glassy models (with and without disorder) where the scenariddtfeGor mode-
coupling transitions is valid.

The simplest solvable model described by the off-equilibrium mode-coupling equations
is the sphericalp-spin glass model [6]. In this case, the configurations are described by
N continuous spin variable®;; 1 < i < N} which satisfy the spherical global constraint
>N, 02 = N. The Langevin dynamics of the model is given by,

80,-
FYe Fi({o}) — poi +ni (1)
where F; is the force acting on the spi due to the interaction with the rest of the spins,
oH 1 iz
F,' === J-lz’l&m’lp i50iy . .0} 2
do; — (p— D! (izi;i) i 120l - -~ %y @

and is a Hamiltonian. The/;>"* " are quenched random variables with zero mean and
variance p!/(2N”~1) which we take to be symmetric under permutation of the different
superindices. The calculations presented here can be easily generalized to asymmetric
couplings [7]. Obviously, in this last case there is no enekgwhich drives the system
to thermal equilibrium. The term in equation (2) is a Lagrange multiplier which ensures
that the spherical constraint is satisfied at all times and the mogsdisfies the fluctuation—
dissipation relationn; (1)n;(s)) = 2T §(t — s5)8;; where(- - -) denotes the noise average.
We define the overlap between two configurations of the spins by the relation

Q= % Zf\’zl 0;7; S0 the Hamming distance between these two configurations is

1-0

2 )
in such a way that identical configurations have zero distance and opposite configurations
have maximal distance. Then we consider two copies of the sygterm} which evolve
under the same noise (1) but with different initial conditions. Here we restrict ourselves to
random initial configurations (i.e. equilibrium configurations at infinite temperature) with
initial overlap Q(0). The different set of correlation functions which describe the dynamics
of the system are given by

D =

N N
C(t,s) = (1/N) Z(a,-(t)a,-(S)) = (1/N) Z(Ti(l)Ti(S)) @)
i=1 i=1
N a0 Y o
R = @y o = am Y 5 (5)
i=1 " i=1 M

N
Q(t,5) = (1/N) Y (0:()7i(s)) (6)

i=1
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whereh?, hf are fields coupled to the spins, t; respectively. In what follows we take
the conventiorr > s. The previous correlation functions satisfy the boundary conditions,
C(t,t) =1, R(s,1) =0, lim,_, 5+ R(t, s) = 1 while the two-replica overla@(z, s) defines

the equal time overla@, (1) = Q(z, t) which yields the Hamming distance at equal times

or damageD(¢) through the relation (3). Following standard functional methods [8, 9] it is
possible to write a closed set of equations for the previous correlation functions,

aC(t, s) + u()C(t,s) = gfs du R(s, u)CP~(t, u)
0

ot
+p(pT—1)/ du R(t, u)C (s, u)CP~2(1, u) "
0
aRE()? D WORGLs) = 8 —5) + p(pT_l)/ du R(t, ) R(u, $)C" (1. u) ®)
0D 4 o s) = B/S du R(s, 1) Q" (t. u)
ot 2Jo

+p(pT_1)/ du R(t, u) Q(u, $)CP~2(t, u) 9)
0

while the Lagrange multipliepw(t) and the diagonal correlation functiaf, () obey the
equations,

2 t
w(t) =T + %/ du R(t, u)CP~X(t, u) (10)
0

1—3Qd(t)
2 0t

b Qut) = T + gfo du R(t, 1) 0"t u)

+p(pT_1)/ du R(t, ) Q(t, u)CP2(t, u). ()
0

This set of equations is quite involved. For the correlatidrand response functions
R (equations (7), (8) and (10)) several results are known, in particular their behaviour in
the stationary regime (where time translational invariance is satisfied and the fluctuation—
dissipation theorem is obeyed) as well as in the ageing regime [9].

A first glance at equations (9), (11) reveals that the ovetdp, s) and its diagonal
part Q,(t) are coupled to each other through the correlatin, s) and response function
R(t,s). The trivial solutionQ(t, s) = C(¢t, s) and Q,(¢t) = 1 corresponds to the case where
the initial conditions are the sam&),;(0) = 1 and the distancé(r) = 0 for all times.
This solution (hereafter denoted by HT) is reached asymptotically by the dynamics for high
enough temperatures. The typical time needed to reach that solution grows if temperature
decreases. At a given temperature (which we identify Wighthere is an instability in the
dynamical equations (9), (11) and the asymptotic solution differs from the HT one. We
did not succeed in finding an explicit expression fgrbut we have been able to show its
existence and find lower and upper bounds for its value.

To show the existence @b we focus on the high-temperature FDT regitne s)/t <« 1
with ¢, s both large and’'R(z,s) = TR(t — 5) = % Writing Q(¢, s) = Qd(s)Q(t, ),
using the inequalitie®) (1, s) < C(t — s), % > 0 and inserting these results into (9) it
is possible to get the following inequality,

1 - gu + P4 g 1 > 5720

A trivial solution which always satisfies that inequality 8,(t) = 1. Expanding
Qq(t) around Q,(t) = 1 it can be checked that any previous inequality is violated if

> 0. (12)
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T < /(p—2)/2. This yields a lower bound for the temperature at which there is an
instability in the condition (12), leading t&% > +/(p — 2)/2. Note that, to obtain this last
inequality, it is crucial to suppose tha,(r) is a monotonous increasing function of time.
This assumption breaks down beldlly, hence our argument applies only in the high-
regime above the instability.

On the other hand, a linear stability analysis of equations (9), (11) around the HT
solution, Q,(t) =1 —€f(t), Q(t,s) =C(t —s) —e€g(t,s) where f(0) =1, g(t, 1) = f(t)
yields for equation (11) in the largelimit,

}%—_ _ﬁ _ ! -1, ag(tvu)
597 = (T Z)f ﬂp/o du CP7(¢ u)—au . (13)

Finally, the inequality’.-* > 0 yields,

[p [p
Z_1<To< /5. 14
5 0 5 (14)

As said previously, it is very difficult to find an explicit expression fgr The reason is
that bothQ,(¢) and Q(t, s) (or equivalently,f () andg(z, s) in the linear stability analysis)
are not related by any fluctuation—dissipation relation in the long-time limit. Consequently,
the analysis of the dynamic instability turns out to be more difficult.

Note that for the particular cage = 2 the inequality (14) yieldd, < 1. Taking into
account that (14) was derived under the assumptipee 7, = 1 that yields7; = 1. The
simpler casep = 2 has been already considered by Stariolo [10]

In the general casg > 3 a dynamical instability appears at temperatures well above any
relevant thermodynamic temperature. In particular, goe 3, numerical integration of the
dynamical equations as well as the use of series expansions (see below) yields a dynamical
transition atTy(p = 3) = 1.04+ 02 in agreement with the inequalities (14). Note thgt
is much higher tharf;(p = 3) = 0.6125 or7,(p = 3) = 0.5 (in generalT; goes like
1/./2log(p) for p large butT, converges to the finite value/4/2¢ [8]). The relaxation
time 1,¢1ax @ssociated with the decay of the distaeé) to zero diverges according to a
power lawtieax >~ (T — To) ™V with y ~ 1.1+ 0.1.

It is important to note thafl, is not related to any thermodynamic singularity. In

the largep limit the inequality (14) yieldsT; — \/g which gives a temperature much

above the temperaturErap Where an exponentially large number of states start to appear
(Trap — /log(p)). Indeed, the origin of the damage spreading transition is purely
dynamical and is not related to any thermodynamic singularity or even to the existence
of an exponentially large number of metastable states in the system.

We now discuss the behaviour of the asymptotic distance bdigw In principle
a new transition atT; (which we identify asTj) is expected inQ,(t) because the
correlationC develops the mode-coupling instability. Our better numerical estimates for the
asymptotic distancé®,, suggest that no singularity is found &t but we cannot exclude
this possibility from theoretical arguments. It is very difficult to get a precise estimate of
the asymptotic distance from the set of equations (7)—(11). A possible way to investigate
the asymptotic long-time limit oD, in the low-temperature regime (i.e. beldfy) is to
integrate numerically the set of dynamical equations (7)—(11). Unfortunately, the CPU
time and the memory needed to integrate them grows very fast with the maximum time
(approximately liker?). Consequently, it is very difficult to extrapolate the numerical data
to the infinite-time limit.

An alternative method was recently proposed in [11] were the series expansion for
correlation and response functions was used to investigate the asymptotic long-time limit
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of quantities such as the internal energy. Here we follow [11] but extend their method

within the constrained formalism to include the series expansions for the correlation function
Q(t, s). To this end, we decompose in Taylor series the correlation, the response as well
as the overlap,

C(t,s) = i <ickl(t —s)ltk_l) (15)
k=0 \ [=0

R(t,s) = i (Zk: ru(t — s)ltk_l> (16)
k=0 N [=0

o(t,5) = i( k qu(t —s)lr"—f> (17)
k=0 »I=0

u(t) = ,2‘: it (18)

wherecyg = ro = 8o and Qu(¢) = Z,‘j‘;o grot®. In this case, it is possible to write some
recurrence relations between the different coefficiepts;, g, ux. The time necessary to
calculate the first coefficients of the series is not very large and takes a few hours in a work
station to reach the first 70 terms of the sefrieBhe radius of convergence of these series
is quite small. To enlarge their radius of convergence we have usesl &gatoximants
to get an estimate of the asymptotic value of the distafigéx). Although the method
works very well in case of the asymptotic value of the energy [11] (which depends on the
Lagrange multipliepc via the relationn = T — pE(¢)) it is less effective for the asymptotic
distance. The reason is that, whilgr) is always a monotonous increasing function of
time, Q,(¢) is not. In fact, belowly the overlapQ,(¢) has a maximum as a function of
time for some values of' and the initial conditionQ,(0). Consequently, the complex
function Q,(z) turns out to have zeros close to the real axis and therefore a smaller radius
of convergence of the Péad It is still possible, however, to obtain some estimates for the
asymptotic distance. Numerical integrations of the dynamical equations have been used to
check that our extrapolations in the infinite-time limit are correct.

Some of our results are shown in figures 1 and 2 for gase3. We have studied three
different initial conditions: (a) anticorrelated random initial conditions with(0) = —1,
(b) uncorrelated random initial conditions wit@,(0) = 0 and (c) partially correlated
random initial conditions withQ,(0) = 0.5. Case (a) was analysed using diagonal
and the first off-diagonal P&dapproximants assuming an asymptotic power-law decay
Q4() = Q4(c0) + Ar~7 and finding estimates for the exponentusing approximants for
1Qh(1)/ Q). Cases (b) and (c) turned out to be more difficult to analyse due to the small
radius of convergence of the series as well as to the presence of poles in && Pad

The behaviour ofQ,(¢) for case (b) is shown in figure 1 for different temperatures.
The full curves correspond to the numerical integration of the dynamical equations while
the broken curves are the reconstructed functionsér) obtained from the Pa&danalysis.
Note the presence of a maximum @y, () for several different temperatures. This feature
is a consequence of the nonlinear characterg)nof equations (9), (11) fop > 3 and is
absent forp = 2 [10].

Figure 2 shows the asymptotic distanég, for cases (a)—(c) as a function of the
temperature. We find that the asymptotic distance is independent of the initial correlation.
This is an interesting result since one would expect (at least b&lgva dependence on

t This is true for case = 3 while for larger values op the computational effort is larger.
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Figure 1. Q4(¢) with Q,(0) = 0 as a function of time for different temperatures. From top to
bottom7 = 0.9,0.7,0.5,0.3,0.1. The full curves are the numerical integrations with time step
Ar = 0.01 and the broken curves are the reconstructed functions obtained from tharfdykis.
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Figure 2. Asymptotic distanceD, for p = 3 obtained from the P&danalysis of the series
expansions for different initial condition®g = 1 (circles), Dg = 0.5 (triangles),Dy = 0.25
(stars). Typical error bars are shown for the last case.
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the initial condition. We have to note that the dependence on the initial conditions is
expected for models with the symmetsy— —o and with a simple free energy landscape.
Consequently, the asymptotic distance depends on the initial valuey.of Here, such
behaviour is only found fop = 2 [10].

In summary, we have studied the spreading of damage in the off-equilibrium mode-
coupling equations. We have explicitly shown the existence of a damage spreading transition
To and also found lower and upper bounds for its value. This transition takes place at
very high temperatures. On the other hand, this transition is completely unrelated to the
existence of metastable states in the system. In fact, we have observed that this transition
is quite stable to the inclusion of any degree of asymmetry. Indeed in the asymmetric case
(¢ = 0 in [7]) we find thatTy ~ 0.71 for p = 3. Consequently, the damage spreading
transition persists in the absence of the spin-glass phase or even in the absence of metastable
states. This result corroborates some results already found for other disordered spin-glass
models [12, 13]. Interestingly, equations (9), (11) show that, onlypfor 2, the coupling
between the damage, (r) and the two-time correlation functio@(z, s) is nonlinear. This
nonlinear coupling is crucial for the appearance of the damage trangiiarhich is well
aboveT;. We have also shown that beldily the asymptotic distance is independent of the
initial distance. This was unexpected since such a dependence has been usually found in
numerical investigations of several spin-glass models [14]. It would be interesting to know
if this result is a direct consequence of the first-order nature of the glass transition. This
and other issues, such as the scaling behaviour of the ovériap) in the ageing regime
and the existence of this transition in nondisordered glass forming liquids, are left for future
investigations.
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