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Abstract. We study the statistical mechanics of a Ddimensional array of Josephson junctions 
in the presence of a magnetic field on a lattice of side 2. In the high-temperature region the 
thermodynamical properlies can be computed in the limit D + m. A conjectural form of the 
lhermodynamic properties in the low-temperature phase is obtained by assunung that they are the 
same as an appropriate spin-glass system, based on quenched disordered couplings. Numerical 
simulations show that this conjecture is very accurate in one regime of the magnetic field, while 
it is probably slightly inaccurate in a second regime. 

1. Introduction 

In this paper we pursue our research programme on the relation between systems based on 
a Hamiltonian containing quenched disorder and systems with a fixed frustrated but non- 
random Hamiltonian [l, 21. Here we study the statistical mechanics of arrays of Josephson 
junctions [3] in D dimensions, in the limit where D -+ 03 on a lattice of size 2 (i.e. on 
a single hypercube with 2D points). The case of a fully-frustrated lattice has been already 
discussed in [4]. 

In the framework of the spherical approximation the thermodynamic properties can be 
computed by using the results obtained in 131. It is possible to prove that the spherical 
approximation gives the correct results even for the XY model (the one that will mainly 
interest us here) in the high-temperature phase. At T = Tc the system undergoes a phase 
transition. In the low-temperature region the spherical approximation breaks down. We 
conjecture that the thermodynamical properties of the system are the same as an appropriate 
spin-glass model, constructed in such a way as to have the same high-temperature expansion 
as the original deterministic model. We solve the disordered model by using the replica 
approach. 

We have simulated numerically systems of dimension D, ranging from 3 to 16. We find 
that the comparison of the numerical simulation with the theoretical results is extremely 
good in the high-temperature phase (as expected). In the low-temperature phase things 
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seem to work quite well when we move toward the fully-frustrated model (starting from a 
magnetic field 0 = 5 and increasing 0),~ but when decreasing 0 (towards the ferromagnetic 
system) we find a rather disturbing phenomenon. Indeed, in this region a naive extrapolation 
for D + CO gives a result which differs slightly from the analytic results (obtained by 
applying replica theory to the model which contains quenched disorder). Such a discrepancy 
becomes larger and larger when decreasing the frustration. We are unable to decide if in this 
regime our analytic results are only a good approximation to the behaviour of the system 
without quenched disorder, or if they are exact and the finite-D corrections have a peculiar 
dependence on D. An analytic computation inside our theoretical framework of the 
corrections would be extremely useful, but goes beyond the aims of this paper. 

In section 2 we give a short summary of the results obtained in [3]. In section 3 we 
describe our strategy, and define the model with quenched disorder which we will substitute 
for the original deterministic model. In section 4 we will discuss the high-T expansion. In 
section 5 we will use replica theory to solve the random model for T < TP In section 6 we 
will describe our numerical simulations, and compare them to the analytic results obtained 
in the former sections. Findly, in the appendix we close a gap in the proof of [3] about the 
connection of the high-temperature expansion and the Green functions of the q-deformed 
harmonic oscillator. 

2. Diagram counting, Josephson junctions and q-deformations 

We will start here by defining the relevant statistical models, and by reviewing in a very 
cursory manner the results of [3]. The prototype model is the Gaussian model, defined by 
the Hamiltonian 

Here c ( D )  is a normalization constant, which will be useful later to rescale the Hamiltonian 
in order to obtain a non-trivial limit when D goes to infinity. c ( D )  will be & for the usual 
ferromagnetic XY model (and in this case we will get a phase transition at p = 1). For a 
model with random couplings, and for the frustrated models we will be mainly discussing 
in this paper, we will have to take c ( D )  Y (2D)-1/2 in order to ensure a sensible infinite- 
dimensional l i t .  

The real and imaginary parts of the complex qj lattice variables can take values that 
range from --oo to fw. We will consistently indicate with the fields of the Gaussian 
model. With @; we will denote the fields of the XY model, which are constrained to be, on 
every site, of modulus 1, i.e. for all sites i 

l@i12= 1. (2) 
Their dynamics are govemed by the Hamiltonian 

With U< we will denote the fields of the spherical model, which satisfy the constraint 

CIO;~~=N (4) 

with the Hamiltonian 
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We can rewrite the spherical model Hamiltonian by including the constraint by means of a 
Lagrange multiplier F. We can write 

for unconstrained variables. Integration over p ensures that the spherical constraint is 
implemented. 

The U couplings are non-zero only for the first neighbouring site couples. They are 
complex numbers of modulus 1. In the following we will always have that 

i.e. the link couplings are oriented, and when coming back on a link one takes the opposite 
phase to when following it in the positive direction. Using the language of gauge theories 
one says that the U couplings are U(1) lattice gauge fields [5]. 

Here we will be discussing hypercubic models. For a D-dimensional model the field 
variables live on a D-dimensional hypercube which is made of 2D points. We only include 
link couplings which are internal to the cube, i.e. we use open boundary conditions. The 
number of independent link couplings in our lattice is DZD-'. In this approach the limit 
of a large number of dimensions is taken by letting the dimensionality of the hypercube 
increase (as opposed to the usual limit of an infinite-range interaction). 

Apart from the two cases we have already quoted (i.e. the ferromagnetic model with all 
U fields equal to 1 and the XY spin glass, where U,.k = exp(irj,k), and the r1.t are random 
numbers uniformly distributed in the interval (0,271) we will mainly be interested here 
in models where the couplings are such as to generate a constant magnetic field 8. The 
magnetic field which flows to a given elementary plaquette P isi 

where the sign of the exponents determines if the field is flowing in the positive or in the 
negative direction. We will be interested in the case where 8p  = 8 is constant on all the 
lattice, i.e. the plaquettes undergo a constant, uniform frustration. The case 8 = 0 gives the 
ferromagnetic model, while the case 8 = R gives the fully-frustrated model, which we have 
discussed in detail in [4]. If we let 8 p  be a random variable we obtain a so-called gauge 

The values of the~signs of the exponents that enter (8) are in part arbitrary. Parallel 
plaquettes have to be cut by a flux flowing in the same direction, i.e. the signs must have 
the srmcme SQ, where S is a tensor, which is automatically antisymmetric because of the 
way we have defined the U fields. We are interested in the choice of a generic structure 
of S (for the reasons we have discussed in [l,  21 and we will discuss more  fully^ in the 
following). We need a generic representative of the ensemble of the possible choices of S. 
One can see that for D =- 3 the choice Sw,p = 1 is not a good choice (this is not true in 3 
and 2 0 ,  where all choices of S are equivalent). We also need to define the parameter 

q cos(8) (9) 

glass [&SI. 

which will play an important role in the following. 

the antisymmetric tensor 
Let us be more explicit and summarize. Our model lives in a magnetic field given by 

t The plaqueue is the elementary lattice closed circuit, made from four oriented links forming a minimal square. 
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where in the continuum 0,.p becomes &A@ - +A, .  This is a condition of complex 
frustration on the elementary plaquettes. For 0 = i( we recover the fully-frustrated model. 
On our hypercubic lattice the construction of the U fields that generate a B frustration is 
unique modulo gauge transformations, and can be easily given. We define U,(j) as the 
coupling U which goes from site j in  direction p (we only have first neighbour non-zero 
coupling). p goes from 1 to D, since we only need to set couplings in the positive direction 
(the one going in the negative direction is set by the relation (7)). We set 

ul(j) = 1 (11) 

(12) ug(A = e  

and for p z 1 
iex::: Sp.uju 

For example, in four dimensions we get 

Ul(j) = 1 U z ( j )  = e  i @ ( & . d  

ie(&,,j,+Sw3 u4(j) = ,'S(S,,,l!+S3,~h+S3.,j,) W j )  = e 
In this paper we will obtain a generic S by picking up at random the i 1  components of 
the antisymmetric tensor &,p. This is only a small amount of randomness. The system 
is determined by DZD-' couplings, i.e. a number of couplings exponentially large in D, 
while we are using only order of Dz random numbers to pick up phases which make the 
magnetic field tensor generic. It is maybe possible to imagine simple forms of the tensor S 
which give a generic magnetic field (i.e. with the correct moments). 

Let us start from the discussion of the Gaussian model, where the 9 fields are 
unconstrained (equation (I)), and summarize the steps taken in [3]. Later we will introduce 
the modifications needed to discuss the XY (equations (Z), (3)) and the spherical model 
(equations (4), (5)). We will assume in the following that we are taking the D + CO limit 
by the hypercubic lattice approach we have described previously. . On general grounds the free energy F of a statistical model like the ones we have 
defined in (l), (3) and (5)  can be written through its high-temperature expansion as [9] 

where the sum runs over all oriented circuit lengths n, N(n) is the number of rooted closed 
circuits of length n, and (W(C)) ,  is the average over all circuits of length n of the value of 
the Wilson loop W ( C )  (defined as the oriented product of the couplings that one encounters 
when following the closed circuit). We will be interested in the D -+ 00 limit, and define 

With the superscript (q) we are indicating the dependence of G over the value of 0, i.e. of 
q. Using this definition in the D -P 00 limit the free energy reads 

In order to obtain the free energy of the system we will have to compute the functions G$). 
In the ferromagnetic case (where 0 = 0 and q = 1) everything is easy, since 

(W(C)) ,  = 1 for all values of n. Here it is easy to recover all the usual results of the 
high-T expansion in the D + cc l i t  [3]. 

The next step can be started by discussing the D -P 00 limit of a Gaussian, XI' or 
spherical spin glass, i.e. the situation where UT., = exp(irj.k), and the r1.k are random 
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numbers uniformly distributed in the interval (0.2~1, and one eventually averages over the 
r random variables. We have already reminded the reader that this is a usual spin glass (the 
replica-symmetric solution for the XY case is already discussed in [lo]). This is not one of 
the non-random models that we want to study here, but we @e using it just in order to go 
back to our models in the magnetic field # with a bit more knowledge. In this case one can 
easily see that the only (closed) diagrams contributing to the free energy are backtracking 
diagrams. For any steps going from i to j we need the opposite step going from j to i ,  or 
the integrals over the quenched r variables give us zero. 

This step is completed by noticing that the backtracking diagrams are also the only ones 
which survive (in the D + ca limit) in the .G = model, which we call halffrusrrured. 
Here on all elementary plaquettes the product of theplaquette couplings is purely imaginary, 
hi. It is easy to see why. In the D + w limit each step is taken in a different direction. 
So each time we find a phase i which enters our Wilson loop, we will  have^ to consider the 
contribution of another path with the conjugate phase -i (in D finite two steps in the same 
direction can create a situation where this cancellation no longer holds). 

In this way we have associated backtracking diagrams to one particular case of our 
frustrated models, the one in which # = 5, and the plaquette frustration has the constant 
imaginary value i (apart from a sign). The next step consists of associating to each 
backtracking diagram a planar diagram. 

The instructions are the following. In order to compute Gg’ consider 2n letters, equal 
at couples, i.e. take two a’s, two b’s, two c’s, up to n couples. The letters represent the 
different directions of the path. To form a closed path one has to come back in all selected 
directions. Form a word by ordering these letters, and put the ordered letters on a circle. 
Now connect equal letters with lines. Count the number of intersections of these lines. 
Call In(m) the number of words done of n couples which have m intersections. In(m) is a 
topological invariant, and only depends on the order of the letters. The condition of zero 
intersections implies that the diagram is planar. One has that, for the Gaussian model, 

GA’) = l, (0) . (16) 
This shows 131 that the problem of the Gaussian half-frustrated model (and of the Gaussian 
spin glass) is solved by counting planar diagrams. I,(O) has been computed in [ll],  and 
the generalization to the XY and spherical model is straightforward. 

The next step of the deduction of [3] is the one that concems our model which lives in 
a constant magnetic field. It is a generalization of the counting argument discussed before, 
and it says that we can solve our problem by counting non-planar diagrams, i.e. by counting 
words which have a non-zero number of intersections. There are two crucial results. The 
first states that, in a large number of dimensions D ,  

W ( W  

where A(w) is the signed area associated with the dia,pm represented by the word w. 
Planar diagrams, with zero intersections, have zero area. In the D + w limit all the steps 
which form the diagram are taken in different directions, and the projected signed area over 
the plane (p,  v )  AN.” can only take the values 0 and f l .  The total area A has been defined 
as the sum of the modulus of the individual signed areas 

The second part of this step shows that A(w) is equal to the number of intersections of the 
line drawing associated to the word w. Considering diagrams which have a non-zero area 
means considering words whose line drawings have a non-zero number of intersections. 
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This generalization of the counting of planar diagrams to a counting on non-planar 
diagrams has shown in a last step to have an underlying powerful algebraic structure. 
Indeed [3] shows that (and we complete the proof of this statement here) 

where the operator X, is 

X,=R,+L, (20) 
and the operators Lq and R, satisfy the commutation relations of the annihilation and the 
creation operators of a q-deformed harmonic oscillator 

L,R, - qIL,L, = 1. (21) 
The vacuum state 10) (for the model with charge q )  is defined by the conditio11 

L,~O)=O. (22) 
L, may be identified with the annihilation operator and R, with the creation operator for a 
q-deformed harmonic oscillator. They can be represented as 

R,Im) = [ m l a 2 ~ m  + 1) 
L,lm) = [m - l]:/*lm - 1) (23) 

where 

and m takes integral values in the interval (0 - CO]. 

For q = 1 we have the usual ferromagnet, for q = -1 the fully-frustrated model [4], 
and for q = 0 our half-frustrated model (which has the same diagrammatic expansion as 
the spin-glass model). 

These are the basis on which we will try to build here, mainly trying to gather 
information about the behaviour of these frustrated models in the low-T, glassy phase. 

3. Our strategy and the definition of the random model 

Here we will use a strategy we have introduced in [I, 21 (see also [121 for the development 
of closely connected ideas). We start with a model which does not contain quenched 
disorder, but that is complex enough to make us suspicious of the possible presence of a 
spin-glass-like phase for temperatures T low enough. We look for a model which contains 
quenched disorder, and that is similar enough to the original model to have potentially the 
same behaviour (even in the low-T phase, if we are very ambitious). Replica theory allows 
us to solve the random model, and to try and get information about the deterministic model. 
References [l, 21 discuss successful examples of the use of this strategy. 

Here we will adopt the same approach. We will introduce a model containing random 
quenched disorder. In this new model the new D couplings will be chosen at random (as 
opposed to the original U couplings which are determined by the deteTinistic algorithm 
(12) to give us the needed complex frustration). The random values of U will be selected, 
following [Z]. such that the new free energy will have the same high-temperature expansion 
as the original model. So, we will be in the typical situation described in [ 1,2]. We will have 
a model where the couplings U will be dishibuted according to a probability distribution, 
determined from the need to find the same high-T expansion as in the original frustrated 
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model. In this way the original model will be, by construction, a given (hopefully typical) 
realization of the coupling constants constructed according to this probability distribution. 

Because of these remarks, and our constructive procedure, the deterministic model and 
the random one coincide in the high-T phase. We hope to learn as much as possible about 
the low-T phase, and that the two models are also very similar in this phase. 

We will have to start by computing the high-temperature expansion forour model with 
complex frustration. Knowing that, we will use a reverse engneering procedure in order 
to find out the probability distribution of random couplings U that have the same high- 
temperature expansion. Finally we will use replica theory to compute the low-temperature 
behaviour of the random model. For the sake of simplicity, here we will present the 
computation done under the hypothesis of no replica-symmetry breaking. We will compare 
these analytic results to numerical simulations of the frustrated model. . 

We will consider a model containing quenched disorder that has the same form as the 
original model with complex deterministic frustration. In the random model the couplings 
5 will be taken randomly among all matrices having the same spectral distribution of the 
deterministic model. More precisely for finite D we extract a set of Z D  values of the 
eigenvalues A, such that 

where P A  is the spectral density of the Laplacian operator, and will be discussed in more 
detail in the next section. Finally, we set - 

Ui.a = VT, A, Vj,k 
j=l,ZD 

where V is a random unitary matrix in a ZD-dimensional space. 

4. The high-temperature expansion 

We have explained that we will construct the model based on the random couplings v̂  
by requiring that the high-T expansion is the same as in the original model with complex 
frustration (and no disorder). Let us remark that both these models, the random one and 
the deterministic one, are regular, i.e. t h ~  are no couplings of O(1) when D +- ca. In 
other words all the U couplings and the U ones, after being multiplied by the appropriate 
c ( D )  factor, go to zero in this h i t .  Under this condition the high-temperature expansion 
for the XY model (defined in (2) and (3)) is equal to the one of the spherical model (4) and 
(5). One can verify this statement by checking that in the two cases (i.e. for the spherical 
and for the X Y  model) the same diagrams survive in the D -+ ca limit. The regularity 
condition guarantees the absence of diverging couplings which could break the equivalence. 

Thanks to this result we will be able to start by computing the high-T expansion of the 
spherical model (4) and (3, in order to work out results valid for the XY model (which is  
the one we study numerically). That will make our task far easier. 

We introduce the Laplacian operator A defined as 

( A f ) j  E C U j . k f k .  (27) 
k 

We denote its spectral density by PA@), and we express the trace of its nth moment as 

2-O Tr(A') = pA(h)  A". s 
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Here the trace is taken over a space of dimensionality 2D, and the normalizing factor 2-D 
is such that the spectral density of the identity operator p l (h )  is 8(h - 1). 

We start by remarking that the internal energy density of the Gaussian model is given 
in terms of by 

By using the expression of the Hamiltonian which includes the spherical constraint, 
equation (6), we see that analogously to (29) we find 

h 
Es = 1 dh ~4@) P(B)  - Bh 

where p is a funckon of B. It is fixed by the condition 
1 1 p(B) - @A = 

which tells that (xi lu(12) = N, i.e. that the U variables satisfy the sphe: 
Equations (30) and (31) can be written in a more compact form as 

B P(@) = R ( - )  
P(B) 

P - 1  
E(B) = - B 

where the function R is given by 
1 

R(Z) =  PA(^) E. s 

:on 

One uses (32) to determine p, and inserting it in (33) one determines the internal energy 
density of the system. 

The critical temperature p;' is fixed by the condition that (32) does not admit a solution 
for p > &, i.e. is such that 

~s R ( z d  = B c  (35) 
where ze is the inverse of the largest eigenvalue of A. 

In the limit D -+ 03, the function R ( z )  has been computed in [3Jt. One finds that 

GLq) = / dh  p ~ ( A ) h ~  = (OlX,lO) (36) 

where X, has been defined in (20). 

2 2 112 

It can be shown [3] that the function R ( z )  has a singularity of the form 

(37) R(z)  = A(z ,  - z ) 
where 

zc = - (38) 

The critical behaviour does not depend on q. 
The coefficients of the Taylor expansion of R(z )  around z = 0 can be easily evaluated 

on a computer. The time cost of the computation increases as the square of the order of the 

2 .  

t In the appendix to this papa we close a gap of the proof given in 131. 
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highest coefficient one wants to compute. The asymptotic behaviour of the coefficients for 
large z is controlled by the singularity closer to z = 0. If we define 

R(z )  = RnzZn (39) ” 
we have that 

lim Rnzc znn3/2 
n+m 

is finite and is given by 

Azc 
&I/Z 

-- 

We want now to estimate the function R(z )  starting from the knowledge of the first N 
coefficients of its expansion around z = 0. 

Let us consider the function 

Since 
n-31Z 

r, 2 - 
2/;? 

equation (40) tells us that for large n 

(43) 

R, 2 2 A z;’~+’ r,, . (44) 
Let  us^ say we have computed the coefficients R, for n < N. We can use the two higher 
orders of the series to estimate A and zc, which we will denote by A(N) and z!”. They are 
determined by the relations 

( N ) I - ~ N + I )  (N)i-2n-l) RN = A‘” rr z ,  R N - ~  A(N) rN-1 Z ,  

where rN is the Nth coefficient of the expansion of (42) 

Now we assume that A(N) and zLN) are a good estimate for A and ze, and that for n > N 
the coefficients R. of the function R(z )  are 

R, = A(N)rnz, (46) 
(N)i-l”+ll 

We find that our assumption is equivalent to assuming that 

The first N coefficients of the Taylor expansion of this function are exactly the R,,, since 
the two terms containing A(” cancel. The higher-order terms of the Taylor expansion of 
(47) are given by the terms (46). 

We have tried in our computation two large values of N, i.e. N = 3 x lo3 and 
N = 3 x 10‘. We have computed the expansion of R(z )  around z = 0 up to order N 
in the two cases, and we have found a very similar estimate for R(z ) .  In the case where 
q = 0 the function R(z)  can be computed exactly [3], and it is given by r ($ .  In this case 
one can compute the exact expression for E ( p ) .  
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Figure 1. Energy of the q = 0 model versus T in the high-[emperatwe phase. The continuous 
line is from the resummalion of the high-T expansion, the paints come from Monte Carlo 
simulaiions (for details see later in the text). In order to give a feeling for the finite-size effects 
we plot with full squares rhe data obtained on our larger lanice, D = 15 and 32768 sites, and 
with open triangles data from a smaller lanice, with D = 12, i.e. 4096 sites. 

Figure 2. As in figure 1 but for the specific heat. 
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Figure 3. Energy and specific heat of the three models with q = -0.078, -0.233 and -0.5 
versus T in the high-temperature phase. The full c w e  comes from the resummation of the 
high-T expansion, the points are from Monte Carlo simulations (for details see later in the text). 
Full squares are for the data obtained on our larger lattice, D = 15 and 32768 sites. 

We plot E ( 0 )  and the corresponding specific heat for the case q = 0 in figures 1 and 
2. For all values of q the specific heat at the transition point has the value of 1. The 
figures depict the high-T phase, i.e. the region of T > T, (which we h o w  analytically). 
The agreement of the Monte Carlo data (which we will discuss in detail in the following) 
with the analytic solution looks quite good, even if on our larger lattice size we can still 
distinguish a clear finite-size effect. 

In figure 3 we plot the energy and the specific heat for the three cases of q = -0.078, 
-0.233 and -0.5. The horizontal scale starts with the critical point. One can observe that 
the critical point shifts with q. In the specific heat finite-size effects are manifest close to 
T,. 

In figure 4 we plot the energy and the specific heat for the three analogous cases of 
positive 4 = 0.078, 0.233 and 0.5. Here the specific heat has a very sharp variation near the 
critical temperature. The variation becomes more and more abrupt for increasing values of 
q. The situation is dramatic at q = 0.5. Our analytic result does not succeed in reproducing 
the very sharp peak of the specific heat. Here we would have needed a very high accuracy 
in order to approximate the correct result. In this case in the high-T side of the transition 
the points obtained by numerical simulations show, close to the critical point, very strong 
finite-size effects. It is remarkable how non-symmetric around 4 = 0 the situation is. For 
4 negative, i.e. in the direction of the fully-frustrated model, the system is changing quite 
smoothly. In contrast, for positive q,  i.e. when approaching the ferromagnetic limit, the 
system changes very drastically. Indeed figure 4 shows that the change from q = 0.233 to 
4 = 0.5 is very dramatic. 
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Figure 4. As in figure 3. but for q = 0.078, 0.233 and 0.5. Here we also add open uiangles 
far a smaller lattice size, wilh the same natation as figure 1. 

We can now summarize. Apart from the presence of such strong finite-size effects for 
high positive q the high-temperature analysis shows a very good agreement with the Monte 
Carlo data, which we will discuss in more detail in the following. 

The spherical approximation is also correct in the high-temperature phase also for the 
model with quenched disorder. In fact, since the coupling matrices of the disordered 
model and of the deterministic one are isospectral the two models coincide in the spherical 
approximation and consequently in the high-temperature phase. 

A last delicate point we want to discuss here is about the D -+ 00 limit. The reader 
may wonder about the interchange of the limit D + 00 with the limit @ + pc. Is that 
safe? Could our theorems which allow us to solve the high-temperature phase of the model 
with complex frustration by using the q-deformed harmonic oscillator be spoiled by such an 
interchange? In order to be sure that nothing horrible happens (and also as an independent 
check of our numerical simulations) we have computed the function RD(z) for a generic 
value of the dimension D up to the order z'*. This can be done by considering all different 
(apart from permutations) closed paths of up to 18 elements, and by computing their area 
and multiplicity. Since the total number of diagrams is 6 859 315 116 this computation can 
hardly be done by hand by simple enumeration. We preferred to let a computer accomplish 
the task for us. 

We define the Taylor series for the finite-dimensional function RD(z )  as 

RD(z )  = 1 R;z2 .  (4) 
k=O.m 

We also define 

q,, = cos(n8) (49) 
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where, obviously, q1 = q. Here we give the full expression for the first five coefficients we 
have computed: 

RI ' -  R; = 1 D - l  

( D  - 2 ) ( D  - 1) 
(56 + 86q1 f 52qt + 16q:) 

~ D 3  

Let us also define the leading contribution to Rk as the terms of order one which multiply 
the different powers of 41. and the first one over D corrections analogously, i.e. 

since the leading and the subleading terms in D contains only powers of q1 and not of the 
other qn. In tables 1-9 we give all the and the Sk." we have computed. We hope that 
this information maybe useful for a possible analytic computation of the & corrections. 

Table 1. The ccefhcients 'Rk.@ for U going from 0 to 6. 

Q 

k O  1 2 3 4 5 6 

0 1 
1 1 

4 14 28 28 20 10 4 1 
5 42 120 ~ 180 195 I 65 1 I7 70 
6 132 495 990 1430 1650 1617 1386 
7 429 2002 5005 9009 13013 16016 17381 
8 1430 8008 24024 51688 89180 131040 169988 
9 4862 31824 111384 278460 556920 946764 1419432 

Table 2. As in table 1 but for U going from 7 to 12. 

a 

k 7  8 9 IO 11 12 

5 35 15 5 I 
6 1056 726 45 I 252 I 26 56 
7 16991 15197 12558 9616 6916 4641 
8 199264 214578 214760 201460 178248 149464 
9 1922904 2394450 2775080 3021444 3112632 3051024 



4494 E Marinari et a1 

Table 3. As in table 1 but for U going from 13 to 18. 

U 

k 13 14 15 16 17 18 

6 21 6 1 
7 2912 1703 924 462 210 84 
8 119168 90540 65640 45438 30024 18908 
9 2858040 2567340 2217480 1845486 1482264 1150220 

TaMe 4. As in able 1 but for U going from 19 10 25. 

U 

k 19 20 21 22 23 24 25 

7 28 7 1 
8 11320 6420 3432 1716 792 330 120 
9 862920 626076 439263 297891 195075 123165 74817 

Table 5. As in table 1 but for U going from 26 to 36. 

cl 

k 26 27 28 29 30 31 32 33 34 35 36 

8 36 8 1 
9 43605 24293 12870 6435 3003 1287 495 165 45 9 1 

Table 6, The coefficients Sk.a for U zoinz from 2 to 6. 

U 

k O  I 2 3 4 5 6 

2 1 ~ 

3 9 . 6  
4 56 86 52 16 
5 300 740 880 690 370 140 30 
6 I485 5082 8904 10818 10MO 7 494 4611 
7 7007 30758 70707 114471 145264 153377 139286 
8 32032 171808 486920 976520 1548952 2064048 2395464 
9 143208 908208 3052656 7265664 13712319 21806163 30323493 

Table 7. As in table 6 but for U going from 7 to 12. 

U 

k 7  8 9 10 I I  12 

6 2310 927 276 48 
7 110691 77 882 48727 26 964 13 MO 5 397 
8 2476448 2316576 1981972 1560904 1135608 764856 
9 37176564 42883740 44909478 43774344 39972618 34364322 
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Table 8. As in table 6 but for (Y going from 13 to 18. 

4495 

8 476704 273784 143804 68424 29116 I0800 
9 27912096 21466764 15650046 10819422 7090146 4396734 

Table 9. As in table 6 but for (Y going from 19 to 28. 

(Y 

k 19 20 21 22 23 ' 24 25 26 27 28 

8 

Figure 5. R' versus k going from 2 to 9. The 
axis labelled with 2. 4, 6 and 8, on the left, is 
k - 1. The axis with labels going up to IO. on 
the right, is the B axis. 8 goes from 0 to n, 
B = 0 coincides with the tick I ,  8 = 5 with 
the tick6 and 8 = x with the tick 11. q = 1 on 
the left limit of the axis (ferromagnet). q = 0 
(spin glass) in the centre and q = -1 (fully- 
frustrated model) on the right edge of the axis. 
The vertical axis is for 0'. Decreasing values 
of R~ are drawn with heavier  shading.^ 

For analysing the large D behaviour of our series is useful to define the expansion 

R(z)  =CzzxCi?fD" (52) 
k 8 

where the 6 = 0 contribution is the leading term of the D-' expansion. We define the 
quantity 

which is related to the convergence radius of the kth term in D-'. It is indeed easy to see 
that in the large D and large4 limit 

Qk(0) N k(C(D) - c(03)) (54) 

where c(03) is the radius of convergence of the perturbative series in D = 03, and C(D)  
is the radius of convergence of the series in a finite number of dimensions D. 

We plot the Q surface as a function of k and 0 in figure 5. It is interesting to note that 
moving away from 0 = 2 in the direction of the fully-frustrated model, i.e. increasing 0, Q 
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changes quite smoothly. In convast when 0 becomes smaller than e = f the change is far 
more abrupt. This is coherent with what we find from figure 3 where for negative values 
of q the system does not change much, and figure 4 where q > 0 the system undergoes 
a strong quantitative change around q = $. This point is where in figure 5 we can find a 
maximal change of a as a function of q. 

We have also checked that the results are in reasonable agreement with the ansatz 

where the function b(w) does not seem to have a fast divergence for large values of w .  
Apparently the limit D + 00 is smooth. 

5. The low-temperature region 

In the previous section we have discussed the high-T region of the deterministic model 
with complex frustration. We have shown that the Monte Carlo data reproduce well (but 
for the case of high, positive q ,  where finite-size effects are dramatic) the series obtained 
by computing the Green functions of the q-deformed harmonic oscillator. Together with 
the results of [3] and the appendix of this paper that makes the status of the high-T phase 
clear. We also h o w  that in the high-T phase the model with quenched disorder coincides 
by construction with the deterministic model, but we will see that better in the following. 

In order to get information about the low-T phase we have to use the random model, 
which we have defined in (25) and (26). We will use replica theory to solve it both in the 
high-T phase (where we will again find the same high-T series) and in the low-T phase. 
We will try to understand how much the replica formulation of the system is connected 
to the Monte Carlo data we will get directly from the deterministic model with complex 
frushation. 

Let us solve the random model by using the techniques introduced in [l,  21. The 
computation follows quite closely the one of [I, 21, and here we will give only the main 
derails. One introduces n replicas, where n has to be sent to zero at the end of the 
computation. The n-dependent free energy is given by 

where the bar denotes the average over the random couplings and the replicated partition 
function Zb depends over the noise and can be written as 

Z; /[do]e-8z--l 'i. (57) 

The integration over the unitary group can be done explicitly. After some algebra one finds 
that one has to evaluate the stationary points of the following free energy: 

(58) A t Q , A l =  -TrG(BQ) +Tr(AQ) - F ( A )  
where Q and A are n x n matrices, the function G is related to the one defined in (33) by 

dG 
dz 
-- = E(z) (59) 

and 
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In the high-temperature phase the off-diagonal terms of the two matrices Q and A are zero. 
If we set 

Qa.6 = &.b 4 &.b 8a.b A (61) 

q = l  and A = E ( B ) .  (62) 

we find that the stationary equations imply that 

Finally we find that in the high-temperature phase 

where E @ )  is the function defined in (59). In this way we have again derived the 
equivalence of the model with quenched disorder and the deterministic model with complex 
frustration in the high-temperature phase. 

In the low-temperature region the off-diagonal terms of the two matrices are non-zero. 
If we assume that replica symmehy is unbroken, we, have that the off-diagonal termst are 
given by 

Qa.6 = 4 A0.b = A. (64) 

(65) 

In this way we find that we have to minimize the free energy 

4))  + BqE(B(1-  4 ) )  - % + f ( A )  
where the function f is given by 

In(/ dh exp(-h2/2)) 1n(/ du, du:i(u: +U! - 1)exp(-A'''hur) . 
The energy turns out to be 

(66) 1 
E(B) = G'(B(1- 4))  - BqU - qW"(B(1 - 4 ) ) .  (67) 

CV(&9 = CV(B'3 = 1. (68) 

,3:G"(Bc) = 1.  (69) 

Cv(c0) = 6 (70) 

By deriving this expression and evaluating it for p = pc we find that 

The critical temperature can also be determined through the relation 

One also finds that at zero temperature 

in agreement with the equipartition theorem. 
The equations which determine the minimum of such free energy can be solved 

numerically. 
We will show and discuss their solution in the next section, for different q values, 

together with the Monte Carlo results in the low-T phase. 
We expect the unbroken replica solution to give rather accurate values for the free 

energy. In the SK model the error over the correct, replica-broken result is smaller than 
3%. and it is likely to be even smaller in the present case. It is interesting to note that the 
replica-symmetric solution normally gives a lower bound to the true free energy and to the 
true internal energy of the system. Our numerical simulations show that when we compare 
numerical simulations of the deterministic model to the replica-symmetric solution of the 
disordered model in the cold phase this is not aIways the case in our system, pointing to a 
non-complete coincidence of the two models. 

t We set Q,,.=l. The value we chose for Aa,n is irrelevant, and does not change the results. 
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6. Computer simulations 

Here we will describe our numerical simulations of the model with complex frustration 
and no quenched disorder (but for the small one needed for constructing the antisymmetric 
tensor S), defined with the couplings of (12), and compare them with the analytic solution 
of the model with quenched disorder that we have discussed in the previous section. Here 
we will mainly focus on the low-T phase. 

We have simulated systems with D going from 3 to 15 or 16, i.e. containing from 8 
to 32768 or 65 536 sites. We have been starting from all fields set to 1 at high T, and 
decreased the temperature in small steps. A typical pattem has been starting from T = 4.05, 
and decreasing it down with 80 steps of AT = 0.05 (but for some runs we only used 40 
steps and a lower starting point). At each next T we have been continuing from the last 
configuration obtained at T 4- AT. At each T value we have used 500 full sweeps of the 
system to obtain an acceptance value of the Monte Carlo procedure of 50% (by tuning the 
angular increment we would propose for updating the.field phase in a given site). After that 
we have used 1250 full sweeps to thermalize the system, and 5000 full sweeps to measure 
the intemal energy. We have run some longer simulations to check that we have indeed 
reached thermal equilibrium, and it seems to be the case. We believe that the statistical 
error on our data points is always smaller than the symbols we use to plot them. In the 
final plots we have always only used the data from a single realization of the antisymmetric 
tensor S (even if we have checked the size of typical fluctuations by simulating more than 
one S set, and the induced uncertainty turned out to be not very large, but detectable). 

As a first check we have verified we could reproduce the results obtained in [4] for the 
fully-frustrated model. 

A second preliminary question was concerning the equality of the traces of the nth 
powers of the coupling mamx and the expectation values of the operators which appear in 
the formalism of the q-deformed harmonic oscillator. This is a point which has been proved 
in [3] and in this paper, and verifying it was meant to constitute both a check of our codes 
and of our theorems. So given the couplings we have selected, according to (12) and to a 
random choice of the S (over which in this case we have averaged) we have verified that 

2-’Tr(A:) = (0lX;IO) . (71) 
In this case we have kept the statistical error (given in this case by the distribution of the 
S, and not by a Monte Carlo: there is no Monte Carlo here!) under careful control. All 
momenta up to n = 8 coincide with the q-deformed result with a precision better than 
Our best fits give the right answer, with a x 2  of the order of one per degree of freedom. So, 
this check has been positive, and it is an important check of the equivalence of the model 
with complex frustration and the random model in the high-T phase. 

We now come to the main point of our investigation, i.e. the low-T phase. Here we 
will compare the analytic solutiont of the random model (25) with the numerical simulation 
of the deterministic model. We will see that the data are indicative of a strong similarity, 
but not of a complete equivalence of the two models. 

In figure 6 we plot the energy of the q = 0 model versus T, in both phases (the 
critical point is at T, = 1). Here and in the following figures the point where the broken 
curve becomes continuous is the critical point. We plot the analytic result from the high-T 
expansion with a broken curve, while the result obtained by minimizing (65) is plotted with 
a full curve, for T < Tc. Here we include the data from all our simulations. The starred 

t We will use the replicasymmeuic solution. which we believe is not too wrong, as we have explained in the 
previous section. 
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4.2 

4.8 

-1 
0 1 2 3 

T 

Figure 6. Energy of the q = 0 model versus T. Here we M looking at bath phases (the critical 
point is at T, = 1). See the text for the explanation of the different symbols. The point where 
the broken curve becomes continuous is the critical point here and in the following figures. 

dots, lying at the top, are from D = 3. Crosses are for intermediate values of D (lower 
poink for higher D values). For the four higher values of D (in this case D = 13, 14, 15 
and 16) we change symbol again, and use open triangles, open squares, full triangles and 
full squares, respectively. 

The agreement of Monte Carlo data for the deterministic model and replica-symmetric 
solution of the random model is also quite good in the broken phase, for T < T,. We expect 
that the solution with broken replica symmetry will have an energy slightly higher than the 
unbroken one (as we have already said, in the general case the replica-symmetric energy is 
a lower bound to the true energy of the physical system). The very small residual finite-size 
effect, and this small energy drift to the breaking of replica symmetry should explain the 
small discrepancy between the numerical data and the analytic curve. So in the case of the 
q = 0 model things seem to go smoothly. 

When moving on the side of negative q values things do not change much, and if there 
is a  discrepancy it is very small. This is completely consistent with the discussion of the 
behaviour of the coefficients of the high-T expansion of the previous section. 

Figures 7 and 8 allow, by presenting the results together, a direct comparison of the 
effect of the q perturbations of opposite sign. In figure 7(a) the results for q = -0.233 are 
shown (where the angle is already different by 15% from 8 = 5). The agreement of our 
data with the analytic solution is still quite good. F i g e s  6 and 7(a) are on the same scale 
(as will be all the following energy plots). This allows the reader to appreciate that the 
two energy plots are indeed quite different. To show even better that things are basically 
working in this regime of negative q values we plot in figure 8(a) the specific heat for 
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0 1 2 S 
T 

-1  -1 
0 I 2 3 

T 

Figure 7. As in figure 6, but for (a) q = -0.233; (b) q = -0.5; (c) q = +0.078; (d )  
q = +0.233. 

q = -0.233. The small gap in the analytic curve close to the maximum is because we 
stopped our numerical evaluation of the high-T series early. Here we cannot detect any 
clear discrepancy. 

We show in figures 7(b)  and 8(b) that even at very high negative values of q (i.e. at least 
down to q = -0.5) our replica solution of the model with quenched disorder gives a very 
accurate description of the behaviour of the deterministic model with complex frustration 
in the low-T phase. Even the specific heat very close to the critical point is reconstructed 
with good accuracy. 

The situation is different on the side of B c I. i.e. for positive values of q .  At low 
positive q there are again no dramatic problems, and if the two models differ they differ 
only in a very minor way. In figure 7(c) we add a broken straight line, from Tc down to 
T = 0, to give the result one would obtain for the spherical model [13], where the energy 
becomes linear in T below the critical point. In  figure 8(c) we again plot the specific heat. 
If there is a discrepancy it is small, even if we already want to notice the small bump just 
under T,, which makes the Monte Carlo data slightly different from the disordered model 
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Figure 8. As in figure 7, but the spcific heat Cv, with the same four q values. For the sake 
of clarity here we only use crosses for D = 12 data and full squares for D = 16, and we join 
the data points with dotted lines. 

result. This effect was not there for negative q values, and it is not clear here if it is due 
to a true difference or if i t  is connected to a finite-size effect. 

The situation becomes more clear (in a negative sense) when we increase q slightly. In 
figures 7(d) and 8(d) we give the results for q = 0.233, and here there is a clear discrepancy, 
which is difficult to justify by means of finite-size effects. Indeed here the energy of the 
Monte Carlo simulations at low-T is for D = 16 already lower than the analytic result 
one gets for the spherical random model in the infinitevolume limit. Since the energy is 
decreasing with D ,  and we expect the energy of the spherical model to be a lower bound 
at all T to our XY case, this seems to show that in this case the two models do indeed 
differ, even if only by a small amount. In order to explain this effect one would have to 
assume that the sign of the corrections changes with the dimensionality, and that the energy 
will go up again for D large enough. This is not impossible, but not so plausible, and 
we have no numerical indications of such an effect to be taking place. The specific heat 
picture (figure 8(d)) is even more self-explanatory than the energy, since it is quite difficult 
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to believe that the big bump of the Monte Carlo data will be reabsorbed in the D -+ 00 

limit. 
In conclusion, it seems that for q < 0 and even for small q positive values the replica 

theory describes the deterministic model with very high accuracy. In contrast, for q > 0 
and not so small there is a clear, even if quite small discrepancy between the two models. 

Appendix 

In this short appendix we will fill a gap in the proof of (36). We only sketch the main steps 
of the proof, which is absolutely inelegant. It i s  quite liiely that a more elegant proof, e.g. 
based on the braid group, does exist, but we have not found it. 

In [3] it was proved that 

GF' = /" dA p&(A) A" = N(k, n)q" 
n=o,m 

where N(k, n)  is the number of ways in which one can piecewise connect k points on a 
circle, with n intersections. 

In order to compute N(k, n)  it may be convenient to consider the quantity N(k, n,  m),  
i.e. the number of ways in which k + 1 points on the circle may be connected in such a 
way that a line starts from each of the first k points and m lines arrive in the last (k + 1)th 
point, the total number of intersections being n. It is evident that 

(4 N ( k ,  n )  = N(k, n, 0). 

A simple pictorial argument can be used to prove that 

N(k + 1 , n , m )  = N(k, n, m - 1) + N(k, n - j ,  m + 1). (A31 
j=O.m 

We can now check that this relation is satisfied if we set 

Gi*)(m) = (mlYk[O) N(k, n, m)q" 
n=o.m 

where the In) (for n = 0, CO) form a basis in a Hilbert space, 

Y - A + A +  

and 

Aln) = In - 1) for n # O  
AIO) = 0 

The operator X in (36) and Y are related by the simple transformation X = MYM- ' ,  where 
the operator M is diagonal in the basis we have used. Finally we find that 

G;@(O) = (mly'lo) = (mlx'lo) (A7) 

which is the result announced in [3]. 
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