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Abstract

We examine the phase diagram of the p-interaction spin glass model in a transverse ficld. We
consider a spherical version of the model and compare with results obtained in the Ising case.
The analysis of the spherical model, with and without quantization, reveals a phase diagram very
similar to that obtained in the Ising case. In particular, using the static approximation, reentrance
is observed at low temperatures in both the quantum spherical and [sing models. This is an
artifact of the approximation and disappears when the imaginary time dependence of the order
parameter is taken into account, The resulting phase diagram is checked by accurate numerical
investigation of the phase boundaries. (€ 1998 Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

The interplay between thermal and quantum effects in condensed matter physics is a
longly debated problem [ 1-4]. The main differences between both type of effects re-
lies on their dissipative nature. Thermal physics is inherently dissipative and cnergy 1s
not conserved, while quantum physics is governed by the Schrodinger equation where
energy is conserved if the Hamillonian does not depend on time. How to include relax-
ational effects in a systematic way in the regime where quantum effects are dominant
is a very interesting dpen problem [5].

This question is of the most relevance concerning glassy systems (for instance struc-
tural glasses or spin glasses) which are mantifestly non-equilibrium phenomena. Recent
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developments in the understanding of the connections between real glasses and spin
glasses [6,7] suggest that it is of inferest to investigate that family of glassy models
where the static-phase transition is continuous from a thermodynamic point of view
(i.e. there is no latent heat) but the order parameter is discontinuous at the transition
temperature. These models are characterized by a one-step replica symmetry-breaking
(IRSB) solution at low temperatures |9 11] and the existence of a dynamic singularity
reminiscent of a spinodal instability [12,13]. Let us summarize here the glassy scenario
for this type of mean-ficld models. At a certain temperature (to be called Ty) in the
paramagnetic regime, the phase space splits up nto different components or metastable
states separated by high-energy barriers (divergent with the size of the system), hence
they have infinite lifetime in the thermodynamic limit. The number of these compo-
nents is exponentially large with the size of the system . V", = exp(8.) where S, is the
configurational cntropy or complexity, From a thermodynamic point of view, the ap-
pearance of a large numoer of states does not induce a thermodynamic phase transition
at Iy, Only at a “Kauzmann” temperature Ty lower than 7, a true thermodynamic
phase transition (with replica symmetry breaking) is observed. At 7y the complexity
S, vanishes. Hence, the glass transition is driven by a collapse of the complexily {cn-
tropy crisis) { 12-14]. This is the mean-field version of the Gibbs-DiMarzio scenario
[15,16] for the glass trunsition. The dynamical behavior of the system in the region
Ty < T < T, is then dominated by the existence of a large number of components
which trap the system for exponentially long time scales (v ~ e*¥, where N is the
system size). Whether a sharp Ty exists in finite dimensions is stll a largely unsolved
problem (for recent numerical simulations see [17]7.

In this direction, a thermodynamic picture of cooling experiments in spherical p-spin
maodels [18] has been recently proposed. This new thermodynamic approach gives
an explanation for the paradox of the Ehrenfest relations at the glass transition. The
main new point in this approach is thal the configurational entropy changes along the
transition line [19].

If the glass transition is driven by a collapse of the configurational entropy, it is
natural to ask how this scenario is modified in the presence of quantum fluctuations.
Generally speaking, gquantum-phase transitions appear when an external perturbation
reaches a critical value at zero temperature. Because at zero temperature the entropy
vanishes at any value of the external field. it is expected that the complexity should also
vanish everywhere at zero temperature (at least if there is no ground-state degeneracy,
and this is the situation for the mean-ficld models we will consider here). In the absence
of complexity it is natural to suppose that any adiabatic process at zero temperature
{for instance, a process in which the external field is slowly turned off) could take
the systern to the ground state of the system. If complexity were not fully removed
al zero temperature such expectation would fail since at zero temperature, quantum
tunneling processes could not take the system out of the traps during any adiabatic
process, mainly because the height of the barricrs is extremely large [62].

A hint to this problem was recently reported in Refs. [20,21] where it was shown that
in a certain class of mean-field models where the Gibbs—DiMarzio scenario is valid,
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like the random orthogonal model [8], the complexity vanishes at zero temperature. The
transition turned out to be second order at zero temperature. That proof was obtained in
the framework of the static approximation introduced by Bray and Moore [22]. How
much general is this result bevond the static approximation and in other family of
models (for instance, the quantum Potts model [23]} is still unclear.

A family of models which has received considerable attention during the past years
are the spherical [24,25] and Ising [26,27] p-interactions spin-glass models, These mod-
els are also characterized by a classical continuous thermodynamic transition with a
discontinuous jump in the order parameter, The purpose of this work is the study of
the quantum-phase iransition in this family of models in an external transverse field.
The Ising case has been already considered in the literature and has revealed novel
properties in the phase diagram. In particular, Goldschmide [28] computed the phase
diagram in the p - oc case, ic. the random energy modcl of Derrida (hereafter
referred as REM [29]) in a transverse ficld. In this case the static approximation is
exact and compuiationg can be easily carried out. Goldschmidt found a phase diagram
with three different thermodynamic phases, two of them are paramagnetic and sepa-
rated by a first-order thermodynamic phase transition with latent heat. The existence of
first-order phase trarsitions in spin-glass models with a discontinuous transition has to
be traced back to Mottishaw who studied the random energy mode! (REM) in an ex-
ternal antsotropy field [30]. Computations for finite p were done later on by Thirumalai
and Dobrosavljevic [31]. They found that the thermodynamic first-order transition line
ended in a critical point. Such a critical point is pushed up to infinite temperature in
the p - oo limit, Thirumalai and Dobrosavljevic went further and computed correc-
tions to the static approximation finding similar qualitative results at high temperatures.
Such an investigation has been recently extended by De Cesare et al. [32] 1o the low
T region. Correctiors to the p — oo limit are generally complicated specially in the
fi —» 20 limit where the two limits have to be taken in the appropriate way. In a similar
context, recent resulls by Franz and Parisi [33] also show the existence of a first-order
line when two replicas are coupled in the 7" — ¢ plane where ¢ is the strength of the
coupling between thes replicas.

Some computations done in disordered quantum-phase transitions involve the static
approximation (hereafter rcferred as SA) introduced by Bray and Moore [22]. This is a
reasonable approximation close to the classical transition linc (in particular, it predicts
a decrease of the transition temperature as the external field is switched on), but turns
out to be inaccurate at low temperatures where dynamical correlations in imaginary
time start to play a role (this is the reason why the approximation is called static).
To clarify better the physical mcaning of the SA, we present an allernative detiva-
tion of the mean-field equations by introducing a solvable spherical version of the
guantum-Ising model, We will show that the same scenario for the quantum transition
is valid in both the guantum-spherical and quantum-lsing models in the SA as well as
beyond it.

For pedagogical reasons we will analyze in detail first the spherical version of the
classical model which is much simpler (o solve. After that, we consider a quantum
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version of the spherica. spin system (recently introduced in Ref. [34}). We give all
the details that occur in the definition and evaluation of the cohercnt state-path inte-
gral. After considering a few toy examples, we analyze the guantum-spherical p-spin
model.

Nex!, we will consider the [sing case and estimate the corrections to the SA numer-
ically solving the self-consistent mean-field equations. We will show that the approxi-
mation gives a reasonable estimate (within 10%) of the position of the line boundaries
which progressively improves as p increases. Deficiencies ol the SA for both mod-
cls will be also identifizd at low enough temperatures, in particular, reentrance of the
T - I boundary line is observed.

The paper is organized as follows. In Section 2 we introduce the p-spin spherical
spin-glass model and a derivation of the thermodynamic behavior in a transverse ficld is
obtained with classical and quantum spins. Section 3 presents the solution of the Ising
case, the analysis in the SA and also beyond it. Section 4 presents the conclusions.
Finally, some appendic2s are devoted to scveral technical points.

2. Spherical spins

In this section we will consider multi-spin interaction spherical models without and
with quantization. The spherical model is defined by

Ho= = S, SIS S 1Y ST (1)

fy iy e iy,

whete I is the transverse field. The indices #1,/2....7, tun from 1 o N where N is
the number of sites. The J, ;. ;, are couplings Gaussian distributed with zero mean and
variance pl7*/(2NP 7). The spins have m components and are subject to the spherical
condition

N it

ZZS}’Z = Nma | (2

-1 a-]

where @ is a given coastant.
In what follows, we first consider the classical case.

2.1 Classical siruation
The replica calculation for the classical spherical model without transverse field

was described by Crisanti and Sommers (CS) [24,25]. The steps arc straight{orward:
(1) consider Z%; (2) average it over disorder; (3) rewrite it in terms of
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gxp = (1/N) Z,\=| 57, 55: (4) insert factors

ke o)

’ N
. 1 o
= / Gy 0 (w Y ZSJXSJ‘H)
—x . ' i=1
2 i()f) Ndé . . -
/ af / 47 ¢ (3)
o — i

A similar representation of the spherical constraints introduces as Lagrange multipliers
the “chemical potentals™ g,. Afier these steps, onc interchanges the order of integrals,
The remaining integrals over 57, are all Gaussian (this is the benefit of the spherical
approximation) and an be integrated out. One is left with an integral over g.4. §,,
and u, which can be taken at its saddle point. As for I' = 0, the fields 4,; can be
integrated out [24,25], and onc ends up with the replicated free energy

. P B
2BF, = —ﬁ]og(ZJ) = %; qi’ﬁ —irlng

+ Z {ﬁﬂx(qm —ma) — '{J:—h +{m—1)In (ﬂ,u,[)} . (4)

As for the case I — 0, we assume a one-step replica symmetry-breaking pattern. This
involves parameters o, ¢y, g, and x. These arc the chemical potential (y, = p), the
replica self-overlap (y,, = ¢y). the overlap between different replicas inside diagonal
IRSB blocks (¢, = g for (%, fi) inside a block, while vanishing outside the x x.x blocks)
and the breaking parameter in the Parisi scheme {x is size of block), respectively. Note
that ¢, are fess than ine since the spins can tum perpendicular to the z-axis. Following
CS we obtain for # - + 0 the “classical” free cnergy Foq = Fp/n:

22

- 1 .
2fF = — (g5 — &q”) — ;hl(f}d —<g)— 1

F

-2
£

+§lﬂ((]d — g} + Bulgy — mo) — P + (m ~ Dn(fiu), (5)

where & — | — x. Oplimization with respect 10 g, ¢4, ¢, and x yields the saddle-point
relations

2 w — T ,
gd + F—~,. + = )T =ma, (6)
IS It
BB s T (7
i 5 (g g7 ) gd -7
L . R (8)
2 (g2 — 9)ga — q)
£, 1 =g q
N + —In - ” =0, (9)
24 2 gr—g  xgs — Ig)
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The latter equation expresses that dF/dx — 0. This means that we consider thermo-
dynamic cquilibrium. For a discussion of the thermodynamics of slow cooling experi-
ments, sec Refs, [18,19].

2.2, The paramagnet and its pre-freezing line

Let us first consider the paramagnet. where ¢ = 0. Like in the case of the p-spin
Ising glass in a transverse field (see the next section), we find a first-order transition
line separating two paramagnetic phases. This line is comparable with the boiling line
of a liquid and has a critical endpoint. To find it we insert Eq. (7) with ¢ = 0 in
Eq. (6) and obtain

. J: TN
Fz—(md—qd)(-pg 7y I+—)
Ga

it T )
e D[P 1Y
( ) ( > q ry

(10)

At large T and I this has just one real positive solution 0 < g4 < ma. However, below
a critical value T, there is a regime of '-values where there occur three solutions
rather than one. The ower ones are stable, while the middle one is unstable. This critical
endpoint (cep) has coordinates (7i.,. Fep) determined by dI/dgy = d*F/dgs = 0.
From this point, a first-order transition line originates towards the spin-glass phase
and intersects it at the multi-critical point (e p ep) [35]. Along this line there is a
finite latent heat that vanishes at the critical end point. It separates a small transverse
field phase with large crdering in the z-direction (g, ) from a phase with smaller (g7 )
ordering in the z-direction on the large feld side,

In analogy with wetting phenomena, where a pre-wetting line occurs oft coexistence,
we call this the pre-frerzing line. In order to motivate this term, let us first explain the
situation of first-order wetting of a bulk fluid A by a thin layer of a fluid B [36,37].
At bulk coexistence of A and B phases there is a wetting temperature 7. For 7 below
T & finite layer (“wetting layer”) of B atoms will cover the A phase; for first-order
wetting this layer remzins finite in the limit T — 7. For 7 > 7, there will be an
infinite B layer (“complete wetting”™). When the fluids A and B are off coexistence
there is a difference in chemical potential Au. Let us take the convention that on the
Au < O-side the B layer is always finite. Then when Ap — 07 for 7' < T, the
B layer will reach its finilc thickness discussed for Ay = 0. For g > 0% it will
be infinite however, leading to a discontinuous transition. For T > 1, however, the
thickness of the B-laycer will diverge continuously in the limit Ay -» 0, in order to be
infinite at Ag = 0, and it will remain infinite for Ag > 0. In that temperature regime
there is a continucus transition at Ay = 0. Thermadynamics Tequires coexistence at a
first-order transition line (called the “pre-wetting line™} which separates the regime of
continuous and first-order wetting. The endpoint of this line is called the “pre-wetting
critical point”. The pre-wetting line, vceurrence of hysteresis, and, near the pre-wetting
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critical point, scaling of the jump in coverage across the line have been observed in
“He on Ce [38] and for methanol-cyclohexane mixtures [39,40].

Io our spin glass a similar situation occurs. The 8G-PM™ line is a continuous
transition line (in the sense that there is no latent heat), whereas we will find a finite
latent heat at the SG-PM< transition. Also, in this situation a first-order line with
non-vanishing latent heat must emerge from the point (Twep. Doep) and divide the
puramagnel into two regimes. It is the line discussed, and by analogy we propose to
call it the pre-freezing linc. Its critical endpoint can then be called the “pre-freezing
critical point”.

2.3, The spin-glass phase

This discontipuity of the paramagnet has no analog in the spin glass. There is only
one spin-glass phase, namely the continuation of the g7 paramagnet, with continuous
gq at the transition linc x = . We stress that this also holds when the PM < phase is
the thermodynamically stable phase: also then the (metastable) SG phase merges with
the {metastable)} PM™ phase at the x — 1 line.

To check this continuity of the SG-phase, let us insert Eq. (8) into Eq. (9) and
replace the x-dependence by dependence on a new variable i via

pol-ndi—4

x= (11)
" q
Eq. (9) then becomes
-1 -1 - -1
e el e ) (12)
7 i

which has a solution @ < y < 1. This shows that » is independent of /" and T. (For
[ - 0 this was noted already by Crisanti and Sommers [24,25].) Once y is known,
we can choose x anc sobve ¢ = {p— 1 — m)qe/(p — 1 — ¢n) from Eq. (11} Eg. (%)
will then yield

. 0 2 1ip

-1 —Cp (2T p~1—yF

e b (AT Ly 1)
p—1-n\ xnpplp—1)

At fixed x we can vary 7. We thus know gy and g. and therelore find a curve I'(T),.
At small cnough 7 'wo values of x can lead to a given point (7.7}, we need the
smallest of these two x-values. By varying x between 1 and 0O this procedure then
uniguely determines the spin-glass phase.

The pre-freezing line interscets the PM”-8G transition line at a multi-critical point
(Tep Dcp) 135].

Just as at I = 0 the transition PM ™ -S( occurs with x = 1. This is a thermodynamic
continuous-phase transition. The SG free energy exceeds the PM™ one by an amount
of order &2, The transition PM<-SG is thermodynamically first order and occurs with
¢ < L. The transition line is fixed by equating the free energics of the PM™ and the
SG solutions.
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2.4, Low-temperature behavior
The transition line between PM < and SG will continue down to T = 0. Everywhere

along this line there will be a latent heat accorded by a jump in entropy. For studying
the low-7 behavior we set

ge = (1 + Tr)g (14)
which implies
-1 - -,
Ul AN AV Y A N (15)
n 25
g p--1
_i(l__‘ﬂ,,_,il ! ] (18)
gr (p— 1T qr
At T = () this vields u = (5 + 1)/gr and then
o TV
/_f?r b
[ <P = oma (7N
- D v 1Y
For p =3 it can be solved exactly
2 2 S
me | meT nl (18)

L A A . A

showing that the SG phase cannot exist at large . For small [ the spin-glass phase
is stable; for larger values it becomes meta-stable and for still larger values it will be
unstable. The free energy may be expanded in powers of 7

F= F(,+r(—§1nr+ﬁ.)+ C(T?Y . (19)
One finds
.
FI-‘—%(’JJFI"‘("”—U]H(F]—{—I){ mlngr). (20)
In the paramagnet PM< one has g4 == T\/ma/l. j= 1"/ \/mo, implying

Fy = —T'me, (2h)

Fiwd (1 +mln L) . (22)
me

Equating the 7 = 0 results we find a transition at some ['.. For small T we get
Fag — Fem = AL = T.) + BT {23)

with 4 > 0 becausc thi stable phase has lowest [ree energy, and

1 m ma
R PR m . _me_ 24
B 2(11 ln(np + 1)+ 4lnmr7—q {24)
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Fig. 1. Phase diagram lov the classical spherical mode! tor p = 4, mo = 1, m = 2. The multi-critical point
and the critical point are given by T p = 0.3703, Vg p = O.R208. 10y p = 04767, — 0.5878 while at
70 .= 1503,

also positive, For small T the transition linc has a linear slope

B
I'=1.—-T, '
AT (25)

showing that there occurs no reentrance. For the case m = 2 and in units where ma = 1,
the full-phase diagram for p = 4 is shown in Fig. 1. In Fig. 2 we show the latent
heat as a function of the temperature. 1t has been computed along the boundary lines
starting from the critical point, following the PM™-PM~ and the PM=-8G lines. Note
the existence of a sharp maximum at 7 = 7,,.,.

2.5. Quantum spherical spins

Duc to the form, Eq. (19), the entropy of spherical models diverges as (m/2)In T
for small T. The related zero-temperature specific heat ¢ = m/2, occurring due to
the Gaussian nature of the spins, is analogous to the Dulong-Petit law of classical
harmonic oscillators. In order to have a physical description in the low-T regime,
ane of us recently proposed quantization by analogy with harmonic oscillators [34].
Here we present some details of this approach. It follows the standard Trotter-Suzuki
approach of thermal ficld theories, see e.g. the book of Negele and Orland [41].

The approach starrs from the Trotter formula of the path-intcgral representation of
the partition sum, in which the cohcrent-state representation of the identity is restricted
to coherent-states described by parameters which satisfy the spherical constraint. For a
set of harmonic oscillators $ = {87} with (i = 1,...,N, ¢ = 1,....m) a coherent state
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Fig. 2. [atent heat for the classical sphevical model for p = 4 versus T along the boundary line which
separates the PM < phase from the PM™ (right part above the muiti-critical point) and SG phases (left part
below the multi-critical point). There 1s a maximum al the multi-critical point (indicated by the dashed line}.

is defined by

Sy =SS0 =] Z{"f)“ ENRS (26)

i

where S, op 18 the creation operator of the harmonic oscillator (i,a) and 57 is 4 c-number.

The coherent states are overcomplete and have inner product
18y =¢"5% (27)

which can be checked in various ways. The coherent-state representation of the identity
in Fock space reads in zeneral

H Z ‘nm ”ml

=20

_ /H E{Sf*ffsfe__s* 5
. i

i

SHS | . (28)

It was proposed by one of us [34] to enforce the spherical constraint by restricting this
representation to coherent states which satisfy the sphetical constraint

N m

§-8=1 ") "S55 =Nms. (29)

i=l a=|
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This is done by replacing

t-- 1.\;nfmf‘i'c‘:r.'

SEASE g s el socs
EC]HE—'K—'—e"S S 8MS|d(S' -8 — Nmo) . (30)

e

where the constant € will be fixed later. In a Trotter approach one calculates

. _ t g st
7 = tre AHGLE0) o tr{e .‘.H(SM,_S”,)),L;' (31)

with ¢ = f§/M. Between all factors exp{—zH ) one inserts the cohereni-state representa-
tion of the identity. For our spherical spins we have to choose the truncated versions,
Eg. (30). Let us number them by j=1,....: Af. It was shown by Negele and Orland
that for normal-ordered Hamiltonians

— oIS . " S IS S
(Sjle .,HlSw,,S..,,)ij l) = S S I HHISIS (32)

The term cxp(S;‘ -8,_1) arises from the overlap of the coherent states, Eg. (27), while
the #H correction can be found by expanding the exponential, using S,,|8; ;) =
S;—1/8;-1) and its Hermitean conjugate S|‘SIP — {88}, and re-exponentiating the
result. Cotrections ae of order o* and can be neglected in the limit M — o (for a
discussion, see Ref. [41]). Introducing the imaginary time variable 1 = je = jfi/M and
writing out the spherical constraints in lerms of an imaginary-valued chemical potential
wi7). this leads to the cohcrent-state path integral representation or thermal field theory
for spherical spins

Z =~ /DyDS‘DS exp(—A) (33}

with integration mcasure

/DS"DS - II / / d3(S7(eNdR (S;’(T_D.

bis

it oo ho

[ 8

' ! el ji(7) .
fonmcat ] 422

—ine

involving the constant Cyy = C* to be fixed below and the action

N dS(1) e )
A —de{S{r)‘ —% + u(T XS (1Y 8{1) — Nms)

+H{8 (1) 5(1 — d‘c))}, (35

where dt = ¢ and dS(7)/dt = (S(1) - S(t — dr)/dt involves §(1) due to Eq. (30) and
S(r — dt) due to Fc. (32). The trace structure leads to periodic boundary conditions
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S(B) = 8(0), related to the bosonic nature of the spherical spins. One might be tempted
to take the continuum limit of Eq. (33). However, note that this is a dangerous Hmit
since problems can arise that do not occur in our discrete formulation [41]. For a
concrete example, we have discussed in Appendix A what is the origin of the problem.

251 Free spins in a field

The simple case of free spherical spins in an external field is already non-trivial
[34]. This is because the spherical constraint couples the spins. Let us consider the
Hamiltonian

Ho=—IY (S5, +Sh,). (36)

We can introduce imaginary time Fourier transforms

Si(T) - Z Si(oe_“ ”a

1 : fet y
S, — o Z S (1), (37)

where = =2naT (s a Masubara frequency with T <<n <M and 1= /M with 1 <j<M.
Integrating out the spins we obtain

£ = /Duexp{fN/!) (38)
with (denoting imaginary times again by j = /&),

4= 7—81naz;t(_jﬁ)-+ mir, ]nB—szl'ZZB;J . {39)

7 i

where

By = (1 4 cp(ge))dse — & 5 (40)
with 81 4.1 = | due to the periodic boundary condition. We write

plje) = p+ (1 +eu), (41)

where ut is the saddle-point value, that will turmn out to be real, whereas the deviations
g, arc imaginary and turn out to be ('(N ') We expand to second order in ;. The
matrix

= Bl (42)
Ji 1+ i (1)
has diagonal elements 1 and off-diagonal elements —a — —1/(1+¢eu). Its inverse is [41]
e .
y T g 127
! . ;
= L i< (43)

1“3";.
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We can now ¢xpand the action to second order in p;. This gives after some algebra

A:AO+A1+,421 (44)

A 15 the saddle-point free energy

BF = Ay = —fiume ~mln[(1 — ey — 1] — B

2
; i1
— —Bume —mln [ ~ 11— f — (45)
Ji
This gives the saddlz-point equation
m o

T 7 + “—2 = m . (46)
Al zero ficld onc has ™ = g/(c — 1), yielding it = —8, with infinite temperature
entropy

S = mlonag - (a— Din{z — 1)]. (47)

Due to the scaling of the spherical constraint with m and the harmonic nature of the
spherical spins, this vields an equal amount of entropy for each spin direction,

For non-zero ficld the large temperature behavior is still of this form. For small
temperatures, however, excitations will have a gap AF = (T = 0) = I'/\/m(o — 1).
This follows sinece

! { e—,’f.dl'.'
\/m((r —elf(eb — 1Y) Vle — 1) 2o —1)
Note that this gap scales linearly in the field I'. as expected for free spins in a
field. Other quantization schemes have been proposed where the action involved a
second-order derivative in imaginary time [42 44]. Physically, this is due to a kinetic
term of the form (d5/dt)? rather than our lirst-order derivative 5*dS/dr arising from
the Trotter approact. The kinetic terms describe different physics, ¢.g. the quantized

(48)

kinetic energy of a rotor. Such a sysiem always has a finite-energy gap due to its
harmonic oscillator character. Spin syslems are fundamentalty different. Spins have no
kinetic energy, and for quantized spherical spins the energy gap, indeed, vanishes when
the field vanishes.

The next terms in Eq. (44} fix the prefactor of the path integral. They are discussed
in Appendix B.

2.5.2. Pair couplings

Another non-trivial situation is quantized spherical spins that are coupled in pairs in
the presence of an external field, This covers both the ferromagnet and the spin-glass
cases:

H = - ZJ,;,—SL,_,SJ,—G,, - z r"{s;fr-‘ S} (49)
if i
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We can diagonalize the coupling matrix, and introducc imaginary time Fourjer
transforms

Si(7) = Z Z b/rr)""A"—nya

Sio = 7 Z ()¢ ef, (50)

where ef is the normal'zed eigenvector of Jy with eigenvaluc J;. Integrating out the
spins we obtain the intensive free energy

BF = —Bumag + mid In (1 + gu) — % Z (FNID“ —a?) - %) (31)
2
s Bume +m / P In(ef — oy — / Pl ﬁr} {52)

where I'; — Y., ¢fI; is the projection of the ficld on cigenstate /. The thermally
averaged occupation numbers are

7

S g}(.) = T AT et
( ) ft— (-Q.,) - Ji.eia')

Geut (533)
These results have been analyzed for a ferromagnet on a simple cubic lattice. One
has J; — J(k) = 2/ (cesky 4+ coshy — cosk: ), with integration measure djk.;"(Zn)';. In
particular, one finds a low-temperature specific heat C ~ mT*? due to spin waves
in m-directions. Note that the spherical constraint also allows longitudinal spin waves
[34].

When spins are only coupled in the z-direction, while the field acts in the transverse
(x) direction, one has in the limit M > o>

pr?
©ooeJ

BE = Buma + / %mw — ey 4 — D™ 1)
(54)

From these equations the zero-temperature quantum-phase iransition in a transverse
field can be analyzed. Some results were given in Ref. [34].

The case of a spherical spin glass with pair couplings between the z-components will
be useful for a check of the results of next section. Here J;; are random Gaussian with
average zero and variance J*/¥. The distribution of eigenvalues is the semi-spherical
law

P = 547 =] (55)

1
2n?
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with —2J < J, < 2J. For any M one can now calculate the thermal occupation
numbers

qna'm = / p(Jf )d j_, (:S:“)S).(H,\l:

T
= J,' ] d], —_———
/ P( ) U fQ“] — J; et
_ 27
- i, i — 4gzg

(56)

Below the phase transition the system will have condensed partly in the mode with
largest cigenvalue 2J. Its occupation number Ng = 87,5, will be extensive. For o =0
one then has the expcctation value

2T
§ = o=t = ¢+ —— === 57)
G =0 q i + \/m (
The free energy reads
BF = —Pumo + / pUIAT; < Il ag= (14 8;)e7)
S e
+{(m — I)Zln{l + gt — ey — + i — 2.0, (58)
7]

wr

where the (m — I)-terms arise from the transverse spin components and the last term
from the ordering fizld, respectively. Using

" T a13 IS TR

) a—vat — 4k’ o — Vad —4p? )

S Jin(z — A1)y =1n + — 39%
/ P Jilnd ) 2 2a + Va? —4b?) ¢

for @ =14 ep — ™, b = g, we can cxpress the integral as
152
=1+ fudg, —gq) - (Mg, —g)) — ——{q, — 4}
= . - . ~ ﬁz‘jz Jiniy ~2
+ L[_l + ﬁ(“ o IQ’U )(Idm - In[\"uqa'(u) - 2 4 qdm] ' (60)

(Bl

Variation of Eq. (58) wrt, Sy vields g = 85,8/ — 0 or w=2J, ¢ = 0. In the
lateer case Eq. (37) vields §, = g + I/J. We may therefore make the replacement
fJ'sz . BEJ! g

¢ — LI ) (61)
2 f 2 1 44— 49

—2fJg + pIq.q —
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This finally leads to

2
S q = )——q——q—l—fﬁu(qd - ma)

2 o

fF =

“In [ﬁu(c}d )_ﬁ%: Fomnf(l 4 oM 1}

-3 [ — 14 Bl - 180Gy, — IN(AGE = i) 4.)
)

32,72 - !
/ ‘ZHanm} ] (62)

2
In the next section we shall recover this expression as the p = 2, x — 0 case of
Eqs. (65) and (67). The condition £ = 0 occurs due to absence of replica symmetry
breaking. This should be expected since the system condenses in only one mode, the
one having the largest cigenvalue [45]. When also short-range ferromagnetic interac-
tions are present, thermodynamics and correlation functions can be solved exactly. The
largest mode may then be due to the onset of spin-glass ordering or of ferromagnetism
|46].
For low 7 the represcntation, Bq. (51), shows that the specific heat behaves as T%7.
One can also determine the time-dependent correlation function

ga(T) =3 G,e"
(45}

. ez(;nff,l
—'] P(J:.)dj.ﬁm (-f <1<0). (63)

At T =0 it is unity in 7 = 0 and 7zero in 0%, while it decays as gu(7) ~ 1|32 for
T — - X

2.6. Spin glass in a wansverse field

It is koown that a given classical Hamiltonian may come from several quantum
Hamiltonians. A similar situation occurs here. The simplest case is where the classical
Hamiltonian contains complex-valued spins [47], which can be replaced by operators.
We thus consider the case where H depends at each site either on the creation or the
annihilation operator. For p = 4 we have the Hamiltonian

E J'M gmp jop AupSth

T ohjkd=1
rz(‘sf\o} + S.";Jp (64)

with Hermitean J;;; [47]. (For odd p we have to add Hermitean conjugate terms; here
they are included alreacly.) This means that for each quartet (1. j, kNDwithi < j k<]
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there are four indcpendent random variables, J) . and J{',, cach having average zero
and variance 9/%/N°. In terms of J,» = J{, - if{', the couplings in Eq. (64) read
it = Ty = J1 +idy and Sy, = S5, = Ji — i, These results hold for i < j, &k < 1.
The other sectors follow, of course, by symmetry: Jiy = Sy = Jyu = Jun. A similar
approach will work for general even p.

In the replicated free energy, we look for a saddle point with g,(t) = u and
Gud T, T') = (SHTVSUTY) = qu{t — ) and with g,4(1,7°) = {Sj(r)*S[-}(r')} = gy
independent of w.7" for « # f. For M Trotter steps the free energy for a one step
replica symmetry-breaking solution with plateau ¢ and breakpoint ¥ = | — ¢ reads

F = F\'lah'(' + Fq'uzm.' (65)
with
2 5z = ¢
Jo . ] — &
BFaic =L 4g8 — gy - tn%
2 roqs— 4
. - fir? fin
+Bu(g, — ma) - In[fu(d, - q)] — ~ + mlnfe™ — 1] (66)
being mainly twice as large as Flueie 10 Lg. (5). due to doubling of spin degrees
of freedom (now ccmplex, previously real). A more important difference is the re-

placement m1In fx — mln(e™ — 1), As we shall see, this improves quite a bit on the
not-too-low-temperature behavior. After deriving this expression at finite M we have
replaced a term m1n (1 + 20 — 1] (see also Eq. (62)), by its limit mIn[e™ 1], we
shall come back to this point below. The quantum correction reads at finite M

)GP 'qmml

=D 11 Blr 190y, — (B~ i82)4,,)]

10
BT o o - gt
“Su Z‘qd {e+T)gy (-1 + 5 di- (67)
Here we have Fourier transforms
4i(0) = D Gual™ g~ % > qal)e™" (68)
“ T

and denoted g, =¢,,, -

If one inserts in the J? term of Fowan that gu(t) = 4, is independent of 7, the
J*-terms cancel, Then the g,,'s can he solved, after which the whole F,., vanishes
identicalty, This is closely rclated 1o the static approximation (SA) of Ising mod-
els (see below) introduced by Bray and Moore [22]. This approximation neglects the
time dependence of the correlator gy(t} where g (1) — ¢4 is also independent of .
The remaining difference with previous classical theory is the replacement mIn i —
min(exp(fe) — 1} ir going from 285 t0 Fugne. This replacement already improves
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Fig, 3. Phase diagram for the quantum spherical model for g = 4. The multicritical point and the critical point
are given in the static approximation [SAY by Tuep = Q12781 Py = 0486, Tipp = 02118, 1 pp — 03743
The coentinuous line is the $A and the dotted line s the A -+ oo extrapolation which yields ', = 0.5453
at T =10

the low-temperature behavior. The phase diagram in the SA can be numerically com-

puted and is shown in Fig. 3. 11 is qualitatively similar to that computed in the clas-

sical case {see Fig. 1). We find a thermodynamically first-order transition linc with

a multi-critical point teminating in the high-T phase in a critical end point. At low

temperatures the first-onder line shows the phenomena of reentrance and negative latent

heat along that line down to 7 — 0. This is a failure of the SA as we will show below.
Beyond the static approximation the saddle-point cquations read

¢ r e
7 =0 gt s == D = e (69)

a 1 EJZ

,i =0 flu= — — E%——qpfl
Cqy Gq— Y -

pp? 220, 02
' qu (¢ — g e+ 1), (70)

L:O_xﬂq,p—lz § 9 (71)
dq 2 (G —aMd,; — <q)

ol 27 1 5o =
LIS S A LT T L) (72)
ox 2 gy g gy — <y)

The latter equation is solved by x = (p — 1 — n)(§, - ¢)/(ng) with the same » as in
the classical case Eq. (12).
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Both for o # 0 and for @ = t we multiply &F0./64,,, by ¢4, and go to the time
domain. This yields

Brqa(z) + M{ga(t) — ga(t — £))

&y
= fV[a B oz - "
TG g -
PRI 22— oz
+ Y, ")_Jqd[r—i-'a—r’)qff ](J—;fr')q(f (c + 1) (73)
1
with t=je, j —1,2...., M, and « = /A Note that now Eq. (70) becomes redundant,

as it follows already by summing Eq. (73) over 1.

2.6.1. Numerical solution at finite M

We have numerically studied the quantum equations with m = ¢ = 2. In order
to compare with the classical case where {1/N}3°5% — 1, we have rescaled spins
S — 8/ mo, 57 — 57/ /ma to yield a unit constraint also in the quantum case. This
amounts to scaling tzmperatures and fields to T — Ti{me ), I' — I'/(ma)*?,

The Trotter limit A — o¢ should be taken. This set of non-lincar equations can
be numerically solved for a different values of M. We find that depending on the
regularization term [48] we use for the static part of the free energy eq. Eq. (66) the
low-temperature behavior of the first-order line shows quite strong finite A/ corrections
and the numerical extrapolation to the limit M -- o is not safe. To overcome this
preblem we did the following: we took two different regularizations for Fo.., i.e. we
replaced the term mlog(e' -~ |) by the general s, dependent expression

. oo M
(m i Ylog(e™ - 1) + anlog ((] + T;) — 1) . (74)

Note that in the limit M — oc this expression coincides with the term m log(e — 1)
for any value of m,. For finite M the behavior of the first-order transition line at very
low temperatures strongly depends on the value of M. This is a direct conseqguence
of the correct order of limits in the saddle point equations where the limit M — o
should be taken before the limit T - 0. Consequently, the behavior of the line in the
limit 7 — 0 is quitc different if these limits are taken in the opposite way (i.e first,
T — 0 and later on W — o)

In the classical model we had A — 1, m) — m. We found that the first-order line
matches the 7 = 0 axis with a neagative slope without reentrance (see Fig. [). In the
quantum case with 21 = 1. M =1 this situation persist with smaller value for I at
T = 0 and larger stope of the transition line, [n the static approximation (Eq. (66))
one has my = 0, s0 the regularization term coincides with the M — oc limit itself.
[n this case the mocel shows the phenomena of reentrance for finite M close to zero
temperature (like in “he SA of the Ising model, see below). As we expect the transition
linc to have infinite slope, this mdicates that for each M an optimal value for m, exists
between 0 and 1 where the slope is infinite.
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Numerically, we proceed in the following way: {or a given value of M we determined
the value of m, such that the first-order transition line meets the 7 — 0 axis with
infinite slope. The optimal lines obtained in this way for different values of M (we
took M = 1,3,57.9,11,21,41) are then extrapolated to M - » oc. We found that a
second degree polynomial in 1/M is enough for such extrapolation to be accurate {even
if higher-order polynomials are needed at very low temperatures),

At zero temperature we obtain T, = 05453 for p = 4 and my =~ (.033. The
resulting extrapolated boundary line for p = 4 is depicled m Fig. 3, Only at very
low-temperatures deviations form the SA are important, The phenomena of reentrance
has now disappeared since this was an artifact of the SA. The latent heat at very low
temperatures, across the first-order transition line. vanishes exponentially with 1/7. At
high-temperatures correciions to the SA are, indeed. very small and the value of the
transition field in the SA is always larger than the exact M — o extrapolated value.
The opposite result is found at very low temperatures.

In Section 3 we will see that a similar scenario s valid for Ising spins in the SA
and also heyond it

2.6.2. Continuum limit: M — x
Let us now take the limit M — oc. We set

qa{1) = g + p(1) (75}
with p(t) = p(t+ f). Eq. (73) implies a discontinuity for T = 0%: p(07) = p(0) — 1
with p being left-continuous at 0. At other 7 one gets

B2

dp(x) _ p(r)
dr [ dtv p(z)

Ej— / dt'{p(ty - plz 1 7))

-2

x[(g + pa ™ g — p(=t W gt ] (76)

Further, one has

r m— |
q<). ﬂ({))%‘ F - 'lm = MG . (77)
P(ﬂ_.i,)'.]_z povo_ M4 78
o 1 T Ty (78)
1
(-
! [dv pz")
. Al
J‘ ‘ y 2 — 32 —
15 / d7'l(g + pN" T g+ pl-T N =g (79)
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The internal energy reads
B2

dtlig + p(0)" g + p(=1)"* - q7]

oy

!

]
e

5
dip(t) — L—ﬂ-; . (80)

For p =4 its Fourier representation reads

U= ‘ﬁJZ Z c?rfz.u- q"d(!}g q-du);édma + ﬂ'fzq4

Wy it =iy

(p—1 g 277
—__-—_—j = - H
" B pu=o 2

(81)

where §,., = pw + ¢dun.

These equations are particularly useful at 7 — 0. It can then be seen that p(7) ~
L/t* for © — Zoc, implying that p,, = T [ drp{t)e™" ~ T(1 + || + iw). Expanding
the sums in Eq. (81} in powers of p we find sums over 1, 2, and 3 frequencies.
The one-frequency sum can be calculated as follows. We extend the Luler—Maclauren
formula to complex functions with non-analyticities of the form ||, and obtain

. dew Tt d .
T Z fo = /_2;_;({”_)— —6—~R d—({' . (82)
o w - IDV

w=2nnT
The two and three frequency sums are convolutions of this and produce also 7° + T°
terms. This vields a behavior {/ == Uy + /;72, which implies a linear specific heat,
C = 25T, in the spin-glass phase. This result holds for the present p-spin medel.
Unlike stated previously [47], C ~ T also holds for the p = 2+ 4 model with infinite
replica symmectry breaking. For p = 2 only there is no replica symmetry breaking, and
the system is in another universality class. As discussed above, one then has € ~ 7%,

3. Ising spins

The Ising p spin-glass model in a transverse field is defined by

A== D i, GL0 0], - FZG;‘ . (83)

i< <ip

where 7,07 are the Pauli spin matrices and I' is the transverse field. The indices
i1,62....f, run from | to N where N is the number of sites. The Ji,..s, are couplings
Gaussian distributed with zero mean and variance pl/2/2N77'). We shall choose
units in which ./ = 1.



Th M. Niewwenfiizen, F. Ritarr! Phyvsicn A 250 ( [998) 8—45 29

Here we will computes in the SA, the phase diagram of the model Eq. (83) and
show that coincides in its essentials with that reported in the previous sections. Detailed
computations of the quairtum Ising model Eq. (83) have been already presented in the
literature. Here we only sketch the main steps of the derivation of the saddle-point
equations skipping the details, The interested reader will find more details about their
derivation in Refs, [28,31,32].

The free energy of the model is compuwted using the replica method as in the pre-
vious scction. After diseretizing the imaginary time direction using the Trotter—Suzuki
decomposition we obtain a problem described by an effective Hamillonian

(ﬁ—AZJ}}ZO‘J —‘—BZJ"]—C. (84)
i

where the time index v nns from 1 to M and the spins o rake the values -1,
The constants 4, B and C are given by A = f(/M; B = %]n(coth{ﬁ!’,’M});C =
{MN;‘Z)ln(%sinh(ﬂ)’F/M)}. Now, we apply the replica trick and compute the average
over the disorder of the replicated partition function

Zj:/[dJ]Zexp (Z HE ) (85)

Computations are casily done and the problem ¢an be reduced to a dynamical equation
involving Ising spins in a one-dimensional chain, The free energy reads

-0 14
where
nC | A0t In(H (A 87
FQ.A) = = + 35 THQA) = 5 3 (04) -~ In(H(A)) (87)

=
ahit’

with 07, ., A" being the order parameter and the trace Tr is done over the replica and
time indices. The term (A) is given by

H(A)-—Zcxp( WZAub o', +BZ a; ‘*') (88)

[

The most general time translation-invardant solution of these equations is given by

0% = 0w (ad b), Al=An (a#86), (89)
Qg(’r = Qd(f - [,)s Ag; = n;.d(f — l"] R (90)

Because at zero transverse [icld the classical solution is a one step of replica sym-
metry breaking we look also for solutions of this type in the quantum case. We divide
the n replicas into nj/m boxes K of size m such that m divides n. The saddle- point
solution when a #£ & takes the form Qm = q,A” =4 ifab < K and Q:jb = Agb -0

un



30 Th.M. Nicuwendnaizen, FoRitoref Phvsien A 250) (1998) §- 45

otherwise. If ¢ = b we have O, = g¢4(i —1'), Ai,’; = +4(r—1"). Finally, the free encrgy
reads

2

_ 5. , B e
Bf=—C— flm- D¢ s ;(qd(r — )y
B m — l} ﬁ-
——In / dp.Z"(x) {91)
m
and dp, = dxexp(—x2);(27)"? is the Gaussian mecasure. The order parameters are
determined by solving the saddle-point cquations
‘_f - :_/ oy, (92)
Jg 04 (m
& - cf —0. (93)

('{qd([ -- f") 7 [::J;,(j(f f")

where Z(x} is given by

Z{x) = Z exp @(x, {a,} ) (94)
{a}

with
AR -
O {a 1) =D Galt = ') = i)aser
o
+BY o6 + AV ar (95)
i !

Solving Eqgs. (92) and (93) we get

p=Pgr =ty = Eigue- 1y, (96)
2 2
g =@, qu— )= @ (97)

1 — p)fPgr 1 JE
4—( z)! 4 = Fln / dP\‘-:m(I)
e

~ L. (98)
m
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where the averages {{..}} and (-} are defined by

':‘Cd _':" oA
(A = f}’t;o Py, (99)

o P E (XY

_______ Z{m] Bla Yexp(&x. {a,} )
E(x) ’

(100)

where &(x, {#,}) is given in Eq. (95).

The solution of this system of coupled equations is quite complex because there is
an infinity of parameters (g,(r — )} which needs to be computed in a self-consistent
way. For p=2 (the 5K model in a transverse ficld) the transition is continuous in
the presence of the transverse field and therce is only onc quantum paramagnetic phase.
For p=72 these equations have been studied using five different methods. These are:
(1) doing a self-consistznt approach [49] or a Ginzburg--Landau expansion [50,51],
(2) performing exact small M caleulations [52.53] (3} Perturbative expansions in the
field [54,55], (4) numerically solving the Schrodinger equation [56,57] and (3) doing
guantum Monte Carlo calculations [ 58-60]. In the case p 23, the transition is discon-
tinuous and Egs. (97) aad (98) have been perturbatively solved by expanding around
the p — o limit [31,32] where the SA (see below) is exact. Here we will revisit the
SA showing that the phase diagram of the model coincides in its essentials with that
presented previously for the sphencal model. We will go beyond the SA later on and
numerically salve Egs. (96)—(98) by doing finite M calculations in order to check the
reliability of that approximation.

3.1, Zeroth-order solutiwn: The static approximaiion

The SA amounts to consider gg(¢) and 4,(¢) independent of ¢ This corresponds
to supress quantum fucluations. This is exact at zero transverse field but it turns out
to be inaccurate at finite field and crucial for the thermodynamic properties at zero
temperature. The failure of the SA i very clear in case of continuous quantum-phase
transitions where the quantum critical point is characterized by the dynamical exponent
z, an exponent which camot be computed within the SA. The situation is slightly better
in first-order quantum-phase transitions where there is no critical point. Ience, there
is no divergent correlazion length and imaginary time correlation functions can be
well approximated by constant values |19]. Generally, this approximation can be the
source of pathologies at low femperatures where the third principle of thermodynamics
is usually violated. At not too low temperatures we will see that this approximation
yields a phase diagram in qualitative and quantitative agreement {within 10% in the
worst case p = 3) with the full dynamical solution.

Let us first analyze the solution of the mean-ficld equations in this approximation
and study the phase diagram of the model.
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Introducing At — t') = Ay, gq(t — ') = q4 in the free energy Eq. (91) we get

e WT—"*Z pe E?_(_‘__%_:‘*f)?js In(2)
~ o [ apEer. (101)
where
E(x):/i dp.cosh(T(x,2)), (102)
T(x,z) = (b* + 772 (103)

The A, i4,m are determined by solving previous equations Egs. (96)—(98) and ¢, g4
are determined by salving the following equations [61]:

g = {(sinh(TW/TY'}} (104)
qa = {{(cosh(T)H/TY + (§7Fsinh(T)}/T3))) . (103)

where the average {({.)} was previously defined in Eq. (99) and the average (.) is
given by
O
. o idp.Bix,z)
B(x,z) = [1_,7 . (106)
=(x)

The phase diagram of the model can now be computed for any arbitrary value of p.
As in the spherical case we find two different paramagnetic phases. Putting ¢ = 4 =0
and m — (0 in Egs. {104} and (103} they reduce to a single equation

}fx, dpx-"'z( sinh(®{x}) }’,“(I]{:x )
| _xx dp,cosh{Pix))

qs = (107)

with @(x) = /212 + BAx? and 4y = pq;ff';'z. This equation can be numerically
solved. Like in the spherical case one finds two paramagnetic solutions separated by
a first-order transition line with latent heat. Let us call QP” and QP~ the quantum
paramagnetic phases associated to the largest and smaller value of g, respectively. The
transition line can be constructed using the Maxwell rule. As temperature increases the
latent heat decreases, Consequently, the first-order line ends in a critical point (8., 1)
with mean-field eritical exponents, The existence of this critical point has been already
pointed out by Dobrosavljevic and Thirumalai [31]. We have numerically computed it
for several values of p. Details of these computations are given in thc Appendix C.
In the infinite p lirait this critical point is pushed up to infinite temperature [28] and
its scaling behavior in the large p limit has been analytically obtained in Ref. [31]
finding ', = 0.757%, 7, = 02593,/ p.

As temperature is lowered the first-order line finishes in a multicritical point which
separates the three phases of the model (lwo paramagnetic QP” and QP* and one
quantum glass QG). The boundary lines which separate the puramagnetic phases from
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Fig. 4. Phase diagram for p = 3 with Ising spins. The critical point is given by T.p - 03328, 1., = 1.1074.
The multicritical point is extremely close to the critical one and is indistinguishable from it in the figure.
At 7ero temperature, I' = 1,174, The dashed line is the dynamical wansition.

the QG phase correspond to different thermodynamic phase transitions. The line which
separatcs QP™ from QG has no latent heat (this is the continuation of the usual
first-order classical phasz transition at I” = 0). The line which separates QP~ from
QG is a first-order transition with latent heat. The latent heat is positive when crossing
the QP — QP” line as well as the QP* — QG line. Lowering the temperature the
QP~ — QG line is deicrmined by the Maxwell construction but allowing m to be
different tfrom 1 and ¢,/ jump to a higher value when crossing the QP - QG line.
For low values of 7 the breaking point m is nearly proportional to the temperature and
the difference between g, and g proportional to the temperature in the paramagnetic (in
this case ¢ is equal to 0 and gy is proportional to T') as well as in the quantum-glass
side (where ¢ and ¢, reach a finite value smaller than 1).

The behavior of the lztent heat in the boundary lines QP — QP and QP~ — QG
as a function as a function of the temperature is the following: starting from the
critical point (whers there is no latent heat) and lowering the temperature the latent
heat increases as a function of the temperature reaching a maximum in the multicritical
point. Then the latent heat decreases and vanishes like 7077 at low temperatures.

We have analyzed in detail the phase diagram for two different values of p. We
have chosen a small (g = 3) and a large value of p (p = 10). The phase diagram
for p =3 is shown in Fig. 4 and that of p = 10 is depicted in Fig. 5. The latent heat
along the thermodynamic first order transition line is shown in Fig. 6 (for p =3,10, o
respectively). For sake of completeness we also show the dynamical transition line for
different values of I' in the QP phase (sce Refs. [20.21] for more details how this
line has been computed in the random orthogonal (ROM) mode!). The main result



4 Th M. Nievwenhwizen, F Rivort] Plivsica A 250 (1988) 8—45

1.0 | ]
LT e T -
Qr” |
<
Twlbo o ap
3.4 | || i
QG 1
22 b b
]O I E— b L 1 . i N R SRR S I PO
00 02 04 08 0.8 10

Fig. 5. Phase diagram for p = 10 with Ising spins. The critical point and rmulticritical point are given by
Tep = 07765, F p = 0803, Ty = 0.5543, ey = 0834 At zero temperature J'. = (8B5S, The dashed
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Fig. 6. Latent heat for fic p-spin Ising spin-glass model with p - 3.10.2¢ (from left to right). The last
case are the results obtained by Goldschmidt [28]. It is shown along the boundary lines which separate the
PM < phase from the other phases as a function of the temperature. There is 1 maximum al the multicritical
point.

concerning this dynamical line is that it crosses the first-order transition QP> —QP~
below the ending critical point.

The main difference between Tigs. 4 and 3 is that for p = 3 the critical point is
hardly observable (but it is there!. the difference between T, and 7, being of order
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1077). Also the latent heat corresponding to p = 3 is smaller than that of p = 10.
Being the case p =3 so close to p = 2 (where the transition is continuous and there
is no multicritical pont) it is natural to find that the transition is nearly continuous.
Note that also for p — 3 the dynamical and the staric transition lines are both very
close to the multicritical point.

As anticipated in thz previous sections we observe in Fig. 6 that the latent heat
becomes negative at very low temperatures. For p = 3 this happens below T ~ 0.1
while for p = 10 this eflect persits but is hardly observable. This is a small effect
because the latent heat is already of order - 10 3 for p =3 and —107% for p = 10.
The same comments prasented in the spherical model also apply here. A negative latent
heat mmplies reentrace close to zero temperature. Consider the Clapeyron equation for
first-order transition lines dF/dT = L/ TAM.,), where L is the latent heat and AM, is
the change in transversc magnetisation when crossing the PG* — QG line. Because
AM; is always negative (increasing [ the transverse ordering M, increases) a negative
latent heat implies df'/dT > 0, i.e. reentrance. In fact, reentrance is observed in Fig. 3
for p = 3 and hardly observable (but there is) in Fig. 4 for p = 10. In the limit p — x
reentrance disappears [28)]. Like in the case of spherical quantums spins reentrance for
finite p 1s an artifact of the SA.

Perturbing around p=2 we expect the following scepario for p=2 the transition
is continuous (there is no latent heat) and there is no multicritical point. Above a
critical value ;7?”22 it appears a multicritical point which separates a first-order tran-
sition line (with latent heat) from a thermodynamic second-order transition line. The
second-order transition line has associated a dynamical transition line (the dynamical
transition predicted in the framework of Mode Coupling theories) which meets the
static line precisely at rhe multicritical point,

[n the regime 2< p< pf‘]' there is a unique quantum paramagnetic phase. Ahove

a given value p&' such that pi™'z p!" a first-order transition line appears with two
paramagnetic phases in both sides. Whether pﬁ.z) is lurger or smaller than 3 1s unclear.
Within the SA, we expact pf-z' to be guite close to 3. A definitive answer 1o this ques-
tion requires a full analysis of the theory beyond the SA. In this sense a perturbative
study in p == 2+ ¢ would be usctul. The fact that p = 3 is close to pf\m explains why
the transitions looks like a continuous one with very small latent heat (see Fig. 6).

3.2, Beyond the static approximation

As said in the previous section it is natural to expect that the SA works well enough
if the transition is not continuous. In fact. we expect it should yield better and better
results when p increases (in the p — ¢ limit it is exact) even if it is always wrong
because it definitcly violates the third law of thermodynamics at zero temperature [31].
For smaller values of p it should be progressively worst being uncontroiled close to
the guantumn transition point at p o2 pﬁ.ﬂ.

To go beyond the SA we have numerically solved Eqs. (96)—(98) for different values
of M for a fixed value of f§ and exirapolating the results to the M — oo limut. This is
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Fig. 7. Free encrgy as a function of the transverse field {7 in the lsing case for p = 3 and T = 0.3 for
different values ol Af. The dotted lines comrespond (from below to abave) to A/ — 4,68, 12. The long-dashed
line 15 the [ree energy extrapolated Lo the A — oo limit. The dashed line which connects the flled circles
cantains the {ransition points for different values of A/, the last one is the extrapolated transition in the
M — oo limit, The gontinuous line is the free energy in the SA and the star indicates the transilion point
in that approximation.

a method which usually vields good results and has been applied in several cases to
continuous quantum-phase transtions in disordered systems [52,53,60]. The essentials of
the method has heen already presented in Section 3.6 for the spherical quantum model.
Here we will show how the method works for first-order quantum-phase transitions
in [sing models. Qur procedure is quite simple: we solve the system of non-linear
equations, Eqs. (96)-(98) for different values of M looking for a quantum paramagnetic
QP* and a quantum glass QG solution. We have used periodic boundary conditions
such that oy, = ;. The QP* solution is described by g = / = 0 and qffp(t — ")
different from zero. Without much effort the equations can be solved in the QP phase
up to M ~ 16. In the QG phase the solution of the set of non-lincar equations requires
more computational effort (because .. and m1 are now finite and some one dimensional
integrals cannot be avoided). In this case we were able to solve the equations only up
to M = 12. Looking at the crossing point between the free energies of the two phases
we can obtain the transition point for different values of M. Then we extrapolate the
free energies, latent heat as well as the transition point, to the M — oc limit. A second
degree polynomial jn 1/8 fits quite well the data.

In Figs. 7 and 8 we show the free energy as u function of the transverse field I’
for p =3, 7 =03 and p = [0, T == 04. The M — oc extrapolation is compared
1o the static ansatz which appears to be a reasonable approximation in this case. The
error in predicting the value of the critical field is =~ 10% for p = 3 (/77" —
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Fig. 8. Free energy as a function of the transverse lield I in the Ising casc for p = 10 and T = 04
fur different values of M. The dotted lines correspond (from below to above) to M = 2,4,6,8,10,14. The
long-dashed line is the free vnergy extrapolated to the & — oo limit. The dashed line which connects the
filled circles contains the transition points for different values of M, the tast one is the extrapolated transition
in the M — oc limit. The continuous line s the frec encrgy in the SA and the star indicates the transition
point in that appreximation.

1.021 + 0.002, 73 = 1.14604) and 2% for p = 10 (JT7°F = 0.841 + 0001, =
0.8798). This error should increase at lower temperatures. The latent heat is shown
in Fig, 9 for different values of M as well as the extrapolation to M — oc compared
to the value obtained in the SA. The agreement is very good for p = 10 but not for
p =3 where the SA predicts a latent heat nearly 4 times larger than expected.

Another interesting result in Figs. 7 and ¥ concemns the jump in the transverse mag-
netisation, Using the relation &, = —2F/00 this jump manifests 1n a discontinuous
change of the slope of the free energy as a function of . From the figures it can
be observed that the transverse magnetisation always decreascs going from the QP
to the QG phase. The jump is very small for p = 3 and increases for larger values
of p.

It is very difficult 10 perform numerical calculations at much low temperatures,
mainly because the scaling behavior in M is found when the ratio /M is small in
order to extrapolate o the continuum limit i » 00 At T = 0.1 we have studicd
the case p =3 for values M = 8,9,10,12. 13, 14, this last case being the limit of our
computational capabilities. The results are shown in Figs. 9 and 10 where we plot the
latent heat as a function of 1/M. 1t is difficult to extrapolate to M — o because we
do not have large enough values of' A in order to do that. The data is compatible with
the fact that at very low temperatures the latent heat is negligible in the M — oc limit.
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4. Discussion and conclusions

In this work we have investigated the quantumi-phase transition in spin glasses with
multispin interactions in a transverse field. We have introduced a solvable spherical
model which yields a phase diagram gualitatively similar to that found in the lsing
case (in the static appraximation (8A) and also beyond). Details of the quantization
of the spherical model have been given. We find indications that the specific heat 1s
linear at low 7. This is possibly related to a finite densily of two level systems in
the free energy fandscape. We have also seen that p-spin models in a transverse ficld
{spherical and lsing) tynically have a first-order transition ling in the paramagnet, that
we have called the pre-freezing line.

For the p-spin models the study indicates (as expected) that the static approximation
{SA) can be considered as a classical approximation where quantum tluctuations are
fully neglected. A zero-order calculation shows that the SA seems to yield qualita-
tive good results for first-order (but notl oo weak) phase transitions at not too low
temperatures, The situation is different for continuous guantum-phase transitions. In
particular, we have checked the approximate validity of the SA in both the spherical
(with quantized spins) and the Ising model numerically computing the {ree energy and
the transition line. This has been done solving the tme correlator g4(r - ') for finite
values of M and extradolating to M — nc. The SA predicts the phase diagram of
the model with reasonable accuracy. For mstance, for p — 3 in the [sing case the SA
vields the phase boundaries with a precision within 10% improving for larger values
of p. The approximate validity of the SA is restricted to high temperatures. Indeed,
at very low temperatures the SA fails, This manifests in the phase diagram of both
the Ising and spherical cases {this last one with quantized spins) which display the
phenomena of reeentrance. This pathology is related to the incorrectness of the SA and
disappears when taking into account quantum Huctuations,

In the simplest scenario the multicritical point should appear as soon as 1 < pf,” < p.
In this case the phase diagram should be qualitatively similar to that of Fig. 4 with only
one quantum paramagnetic phase. Above a second critical value pE?’ the multicritical
point would develop a Ine ending in a critical point restoring the two different guantum
paramagnetic phascs like is observed in Fig. 5. It would be interesting to understand
(in the spherical as well as in the Ising cases) how the phase diagram of the model
changes when expandirg in p = 2+ ¢ If 2 < pspi” the transition should remain
continuous for smatl ¢ Then it would be interesting to investigate the dependence (if
any) of the dynamical exponent z with & Reeent results in the ROM model [20,21]
suggest that the quanium dynamical exponent could be not universal within mean-field
theory. This suggests that models with the same classical behavior may display different
quantum behavior in presence of the same type of perturbation,

It would be very inleresting to investigate the problem of the existence of more
than one quanturn paramagnetic phase in the quantum Potts model where it has been
suggested (like in the ROM model) that the transilion becomes continueus at zero
temperature [23], These are subjects for future research,
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Appendix A, Other discretizations of the coherent-state path integral

The coherent-state path integral has an obvious cxpression in the continuum limit
M — oc, dt — 0. However, that is a dangerous limit, which may introduce problems
that do not occur in its finite M expression [41]. A typical case is the following sum
over Matsubara frequencies «w = 2anT (n=1,.... M)

P = In(Bu - if,) — A7, (A1)

where .47 is an appropiate notmalization and
0, =iMT(l — "} =, (|ea] €1). (A.2)

This sum can be carried out after expanding in powers of " and vields in the lmit
M — x

P=1In[(1+&0)™ —1] = Infe™ — 1]. (A.3)
provided we choose 4" = M In M. The common approach, however, is to approximate
2., = w, choose 4" =3 log{—iw), and to extend to sum from —M/2 < nsM/2—

—o¢ <X p < g, which yields the result
P =1n2sinhif = In[e — []1— fu/2. (A.4)

This ill-defined proczdure thus brings a different result for the non-singular part. Thosc
terms also show up in the zero point energy, that is to say, terms that may arise when
normal-ordering of the creation and annihilation operators. The commeon approach also
yields a different answer for the first derivative of £ wrt p. For the second derivative
the convergence is quick enough to yield the same answer in both approaches.

Appendix B. Normalization of the path integral: free spherical spins in a field

The second term in Eq. (44) is

N

m I+
AI_(-mO'ﬂLl_aM+L—2)ZE!{:- (B.1}

¥
4
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As expected, it vanishes when u s taken at the saddle point. The quadratic fluctuations
yield

3 A s 1—2
—2 ) (mn‘ + ‘v)
i

o

Al

2 . ma 12 gli=i o qM-li=i)
Fe Y iy [ s b .
;HH ((l — gy t e 1 — g (B.2)

The ;:f and g;p; terms can be calculated by going to Fourier space. Using the equation
of motion A; can be rewritien as

v . Mmet
— 24> = Mz Z“ Healt—1o {U = du0 (m}}
rz 1 qe e
+— - - . i
12 K] — gt + | —ae "”‘)] (B.3)
Thus, the u-integrals yizld
] f N :
. C + (2My/Bu "
Z= . o L 2My/B) R (B4)
QrMNeYE2\| o + MmePuj(ef 1y + (2My/fho)
1 +a3 | “’,‘;G'(] _ az) — gett . gpTimE
p=%"In I — :
; (] _ aeu-u:)(] _ ac,—uul:) (B 5)
The w-sums can be carried out using
> (1 — ety — In(1 - 6. (B.6)
For the leading behavior at 1" # 0t we get with b =1 —1"/25/u
1 P YT
D=~ Ml +2In(1 -6 )x\/MVf (B.7)
If we choose
Cyr — (2rMNo Y2, (B.8)

it follows for I' # 0 that the free energy has, on top of the extensive part TiAq,
a non-universal coniribution of order N°M'2. For I' strictly equal to 0, there is a
universal term NY1n M. Both terms are non-cxtensive and can be omitted il onc first
takes N large and then M [34]. Actually, this is also the limit that underlies the saddle
point approximation. Physically it is also the natural limit, as for fixed small 7' the
M = ~ limit is reached alrcady for M ~ 1/T independent of M. This cxample shows
that the extensive part of the free energy of quantum spherical spins is a well defined,
natural object. Non-extensive parts are more delicate,
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Appendix C. Critical endpoint in the static approximation: Ising case
Here we give the cquations which yields the critical endpoint in the SA in the Ising

case (see also [31) lor the original derivation).
Starting from Eq. (107) we define the function g{x},

gq) = g — @(x) " 'x*sinhd(x), (C.1)
where @(x) = /T2 + B24? and A = pg” '/2 and the average () is defined by
_ [_xx dp,A(x)

Ay = Ao _
) {7 dp. coshix)

(C2)

The paramagnetic shases are found by solving the equation g(g,) = 0. This yields
one solution at very high temperatures and three solutions at lower temperatures. Of
these three solutions two of them are stable (the ones with largest and smallest values
of ¢4) while the other one (that with an intermediate value of ¢,) is unstable. This is
the same scenaric as in the spherical model. The critical point is then determined by
the coalescence of these two stable solutions. This gives the equations

by &
glgu) = (—) = (Jj) =0. (C.3)
©4 7 =g, T/ g

These three cquations read

ga = FNq0)y = g4, (C.4)
32 -1y ,. .
Rre =D gr pivgy =1, (€5)

Bpp Dgi!

2= PP = FMqa) . (C.6)

4
where fﬂ”, 52’, 3) are the first three cumulants associated to the functions FU(n =
1,2,3)
Y =@ Ix2sinhd, (C.7
£ = @ i(Pcosh @ sinh @) (C.8)
£ = @-3x%( P2 sinh @ ~ 3P cosh ® — Isinh @) . {(C.9

These equations can be exactly solved yielding T,,,I'cp,q5" for different values of
p. Is not difficult to generalize this sct of equations beyond the SA in the general case.

Appendix D. Equations for the energy in the Ising case

In this appendix we give the exact cxpressions for the internal energy used to com-
pute the latent heat in Section 4.2. We start from Eq. (91) by evaluating the derivative
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u — OB f/0. This yields

_ 0 Bm-et o B "y
YT : e %g{""(’_t g

i .
Hon— Dgr s DS g - i1
N
U7 dp BT x)EE A
AL . (D.1)
m 7 dpEm(x)
where C and S(x) were defined in Egs. (84) and (94) respectively and dp. is the
Gaussian measure. Doing the last integral by parls and rearranging terms we get the
final expression

i

— P
u = —[coth (%) - P—(m—i}lg—

4 D lgar—inr 4

~ 5373 2 qga(l). (D.2)

r
sinh(2/M}

In the continuum limit M — > the gg(t) becomes a continuous function of time
yielding

P
] f; _ "
= (fif!f_’..) _ Bm=g” 1/(%(;)):’ di . (D.3)
! =0 2 2

0

In the (P~ phase at zero temperature in the large I' regime we have g (r) ~
exp{—:I") yielding « ~ —I — 1/(2pl"). Note that the SA is only exact in the limit
p — o> where the energy is given by v = —T.

It is also easy to check that in the SA the energy is simply given by

P
2

w= =gl — (I —m)g?) — BN T(x, 2 ) T 2))) (D.4)

where the averages (), {{{..)}} and 7(x.z) where previously defined in Eqgs. (99),
{106) and (103), respectively.
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