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Abstract. We study a spin glass hypercubie cell in D dimensions (i e. hypercubic lattice
with L =2 where L 15 the lattice size} for 4ifferent values of 2 by means of Monte Carlo
simuolation Inthelimit D - cothis model converges to the sk model as well as for hypercubie
laitices. We confirm the wiual interpretation of the spin glass phase Smnce our model 15
more similar to hypercubic iattices than to the mnfinte-range model these resnlts suggest
that broken replica symmetry is useful to study finite.dimensional hypercubice Iatiices above
2 certain crrtical dimension. .

i. Intreduction

Since the sk model was first solved in 1373 [1] and the instability found aterwards
[2] there have been several attempis to find the correct solution. Among them there
has been one proposal [3] which nowadays seems to be correct and has been one of
the main sources of new results in spin glasses and eptimization problems.

Up to now the problem of testing ike correctness of this solution has not been
theoretically and numerically feasible. In the Brst case, ithe crucial assumption of
ultrametricity has not been fully tested. Although the solution is locally stable [4)], this
does not necessarily imply that this soluiion 1s the cotrect one, because there is no
availabie classification of all possible solutions of the saddlepoint equations in replica
space, so there is rro proof that there are other solutions to the replica equations which
better describe the system. NMumerical tests supporting the correcipess of this solution
are very important; unfortunately, the enormous amount of tirse needed te make Monte
Carle simulations for systems with a number of spins greater than 500 makes them
untfeasitie 5],

It would be of great inicrest to look for finite-range models which converge to the .
mean-field solution and entsil less amount of computation time than the sk model.

Hypercubic lattices in finlte dimensions ate good candidates to this end. Concreicly,
an Ising model in a hypercubic lattice converges to mean field when the dimension
goes to infinity [6]. The same happens in spin glesses Werking with a hypercubic
lattice has the inconvenience that the lattice size I aad the dimensionality D are two
parameters to control in the rumerical simulation.
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We propose a new model which we think behaves similarly to the sk model and
does not have the inconvenience of the usual lattice. It is a hypercubic cell (i.e. a
hypercubic lattice with lattice size L =2} of dimension D with comnectivity to its D
nearest neighbours and free boundaries.

For ordered systems it can be proven that the Ising model in 2 hypercubic cell
topology also goes to meain-field theory when the dimension goes to infinity. We feel
that the same wiil kappen in the spin glass case.

On the other haad, expansions-in inverse powers of dimensionality for the free
energy in erdered systemns show that the hypercubic cell (in dimension 2D) and lattice
(in dimension D) resemble each othir closely at finite dimensions. For this reason,
the results in the hypercubic cell in finite dimensions will show us if the sk model is
really pathological [7] or, on ihe other hand, if the same features appear in finite-
cimensional lattices [8, 19].

From the theoretical point of view we expect the thermodynamics of this model
to coincide with that of the usual sk model, and io differ only by terms which disappear
when N ->co, In this respect this model differs by thece terms defined on a randem
graph of fixed connectivity z [20], where the thermodynamics in the N+ jimitis a
function of z, which can be controlled theoretically only for asymptotically large z
using an expansion in i/z

If we want to compare our system with the Bethe lattice we have to take account
of the fact that its behaviowr is strongly dependent on the specific boundary conditions
[25]. Concrerely, the Bethe lattice with correlated boundary conditions shows the same
behaviour ag the random lattice [26], where there is replica symuieiry breaking and a
iot of thermodynamic states. For uncorrelated boundary conditions (for example, fixing
randomly the spins in the tips of the iree) the behaviour of the Bethe laitice changes
completely and the replica-symmetric solution becomes stable {271, Since in both cases
small loops are rare (in the first case they occur with probability O(1/ N) and in the
second case there are no loops), we think thai the first specific boundary conditions
will better reproduce the properiies of the hypercubic czll (where there are small loops).
Since in this case the Bethe lattice behaves as the random graph, we think i suffices
to compare our resulis with this last model and, concretely, the case of fixed connectivity
rather than that of average cornectivity since it reproducss our specific topology with
move Gdelity.

The system has 27 spins (each with D nearest neighbours) and is described by an
Ising Hamiltonian of the usual type.

H=~3 L0

(r)
and probability of couplings,
where we have taken J = 1/VD with J, =0, }Tﬁ = 1/ [} to normalize extensive magnitudes
{{...} denotes average over samples}

For this system we have taken as the order parvameter the overlap probabiiity
distribuiion £(q) defined in the s model by

_dx(g)

P{g) P

where g(x) is the order parameter function. To find P{g) numerically in the sk model
it is useful 1o consider certain properties of correlation funcuons at zero external field.
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One evaluates
P(g)="P:(q) (1
with
Py(g)=(8(q~ a3

where {...)3 denotes the thermal average over two systems 1 and 2 with identical
conplings J, . The superscript J recalls the fact that this average is sirongly dependent
on coupling realization.

The parameter g, is calculated in the sk model in two different ways:

(i) In the first case, the fact that {g\os... o) —-L, g"(x) dx allows us to write
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(ii} In the second case, from Calien's identity,
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This work can be splii into two main paris: (1) eguilibration of the hypercube
system and (ii) study of equilibrium properties in different dimensions.

In the equilibration we have started with expression (2) for P(g). In thes study of
equilibrium properiies we have used expression (3). In any case, we have discovered
that {2} and (3) vield the same resulis,

The use of expression (3) to study eguilibrium properiies has the advantage of
avoiding discretization for ¢, which appears in (2) when the size of the system is
small (less than approximately 1000 spins). In flns way, a continuous and soft P(q)
withoui irregularities can be obtained.

2. Eguilibrstion

Cne of the most Important preblems in disorderad systems with strong metasiabiliy
is the great amount of numerical time needed to reach equilibrium at a cerlain
temperature siarting from random configurations, To discover the minimal number 4,
of Monte Carlo steps needed to equilibrate samples we have caleulated P{g) from
expression {2) following a useful procedure proposed in earlier works [9]

We make 2 system evolve during 2 number 1, of Monte Carlo steps from an arbitrary
initial configurstion. Then w: memovize the configuration of the spin {m{1)}. After
that, we jet the system evolve during a number, For instance 1, of Monie Carlo steps
to lose memory of the earlier configuration.
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Next, during 2 period of time, which for the sake of co.veniesce we have again
chosen to be ¢, we evaluate the anto-overiap from expression (2),

1N
aht 1) =1 L (o lo+)
=1

and the probability distribution

1 lra
Pig)=— ¥ &{q—qult i}

Iy 1=1,

L t=2g,

(45

from which we obtain P*(q) = P5{q). Altogether, for each #, we have consideted, each
evolution has taken 2 number of Monte Carlo steps approximately equal to 3¢,.
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In the same orocess of equilibration we find the overlap probability disiribution
during the last 1, Monte Cario steps between two replicas wholly independent but
identical in ite coupling realization (identical samples):

Falt) =3y I o))

with
31,

Pig)== T 8(a=ai). (5)

G =21

When the two probability distributions coincide, we have reached the equiiibriuvm. In
conseguence, their moments coincide:

;r (®)
<qk>r=J g"P(q) deg. (7)
[\

We have studied the equilibration at T =10.5 for dumensions v, 8 and 19, corresponding
to 64, 256 and 1024 spins. For D=6 we have studied 100 samples, 80 for D=3 and
40 for D = 10. The number of sampies being small, if was useful o estimate the minimal
equilibration time.

In figures 1 and 2 we show the equilibration of moments ¢° and ¢ as functions
of the number f, of Monte Cario steps for the case D=8,

In figure 3 we show how P{q] calculated from (5) evoivis towards equitibrium for
ihe case D =10. The tendency is very similar {as w¢ have seen in N =256 or D=8}
to results obtained in the sk model shown by Bhatt and Young [10].

For the case {2 =12 the strong metastability makes the former method unfeasible.
Therefore, we have used a simulated annealing procedure {117 to reach the equilibrinm,
In this way we have reduced the computation time by z facior of greater than 10,
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Figure 3. Equiibragien of P{g) for N =102¢ (& = 10}, The average is performed over 40
samples The symbols are guides fo the eye.
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3. Equilibrivm properties

Once we have reached equilibrium we caleulate P(q) originating from expression (3).
To abtain good statistics we evoived eight identical replicas in parallel and in each
Monte Carlo step we calculated the 28 possible overlaps.

3.1. On the transiiion temperature

We expect that the hypercube cell (in the thermodynamic limit) has the transition at
T=1 (as in the sk model). In figure 4 we plot P(g) for D=6, 8, 10 and 12, and in
the inset we show the scaling of the standard deviation with N ™2, which goes to zero
as N oo, These results show cleatly that g=0 at T=1. The value of the internal
energy 1s compatible with the theoretical prediction U =—0.5. This proves that the
{ransition temperature 1s not greater than 1.
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Figure 4. P(g) obtamed vsing expression (3) for =6, 8, 10 and 12 at T=1. The inset
shows the standard deviation of P(g) plotied agamst N2 It goes to zero as N

3.2, Order parameter fupction

We have studied the hypercube at T=0.5 for the cases D=5 6, 7, 8, 10 and 12
coriespending to 32, 64, 128, 256, 1024 and 4096 spins with 200, 200, 160, 140, 60 and
20 samples, respectively, For large sizes we considered a small number of sampies,
since for each such case the computational effest is considerable. For large s1zes and
few samples non-scli-averaging quentities experience sample-to-sample fluctuations
which give large error bars, but for self-averaging ones these are considerably reduced
(even if statistical errors exist for each sample, the main source of errors always comes
from averaging over the samples), In figure 5 we show P{g) for five different cases
together with the usual theoretical result for the sk model solving the replica equations
at infinite order of replica symmetry breaking {12]. The most remarkable fact seen in
figure 5 is that, for D2 10, gy, (defined as the position of g where P{g) is 2 maximum)
geems 1o fzll below the theoretical result for the sx medel.

As we will explain later we aniribute this fact to fnite-dimensionality efects. For
the case =12 large error bars ate attributed to the small number of sampies. We
have had to compromise in cPuU time between a good sampling and 2 good equilibration.
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Figure 5. P{q) obtained using expression (3) [or the cases B =6,7, 4. 10and 122t T'=05
We also show the theoretical prediction m the sk model with ¢, =0 637 5 exiracted {rom
{121}. Error bars are shown for D =12 and for lower dumenstens 1he typical size for them
18 2lso plotted, !

For lower dimensions, the error bars are smalizr {especially for D =6-8) and typical
ones for each dimension are shown in figure 5. As can be seen, the pomnt g=0 is not
independent of the size of the sample. It seems that P{g) has at g = 0.29 a point which
is independen: of the size of the sample, at least for = 10. For D =12 1his fact cannot
be confirmed due 1o large error bars. We do not know any reason for this fact but we
think that this effect will disappear as we go to higher dimensiows.

We have te note that in our model we have an interplay between finite-s1ze and
finite-connectivity efiscts, Our interpretation of the results i3 based mainly on the
assumpiion that the behaviour of the system can be solit into two regimes, betiveen
which there 15 a crossover We have not arrived at the size for which this crossover is
seen but we can predict it to occur over several thousands of spins. In the first regime
finite-size effects completely mask finite-Gimensionality ones. In contrast, in the second
regime, finite-dimensionality effects mainly determine the evoluhon of the system
towards the thermodynamic hmit, In other words, the system begins to be more sensitive
to dimensionality effects than to finite-size ones.

In order te study this assumption, let us begin our analysis, checking if the following
relations, satisfied in the sk model [13], are satisfed by our numerical results

x=ﬁ(1~E q{x) dx)=1 (8}
--E(i-] rwex). ©

I table 1 we show the resulis of different dimensions studied 1n order to test (8}, We
do not see 2 convergence towards the expected resuit. To the contrary, an 1ncieasing
discrepancy appears. Since relation {9} does not suffer from finite-size effects at infinite
dimensions {when we recover the sk modei [23]) we can consider deviations {rom this
formula to be atiributed more to finite-dimensionality effects than to finitz-size ones,
In figure 6 we show ihe numerical values of the energy for the hypercube plotied
against N2, By doing a least squares linear fit to the data (the straight line in the
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Table L. Results of different dimensions studied 10 order to test (8)

Dimension Susceptibihity
5 0 8813+:0,02
6 1900260018
7 1037 +0.02
8 1055002
10 10724003
1z 116320026
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Figare 6. Energy U=-2X, , f,a,0, for difierent sizes For all cases the error bars are
smaller than tite size of the square symbols We can extrapolate £7=-0705+0005 1n
approzimate agreement with the vaijue for the sK model U= -0.710 The broken line 15
the theoretical prediction for the ranidom graph with fixed counectivity = putting z=D.

figure), we can exirapolate U/'=—0.705+0.005, 1n approximate agreement with the
theoretical prediction for the sk model at first order of replica symmetry breaking
U =—0.710 [24] (for T=1.5, which is a temperature not toc low, the results obtained
for seli-averaging quantities at firsi order of replica symmetry breaking and infinite
order are nearly the same; for the energy we expect a difference less than 107>, which
is clearly indistinguishable in our numerical simulations). The data for the numerical
energy show a linear behaviour when plosted against N™V/°, but it is not clear if the
convergence is good. It is probabie that in the regime of sizes we have studied, and
particulacty for the energy, finite-size effecis are compleiely dominating the conver-
gence.

As we have said in the introduction we hope that the thermodynamics of our sysiem
will finaily recover that of the random graph {first introduced by Viana and Bray [22]
for the case of average connectivity). Also in figure 6 we show the theoretical prediction
obtained from recent results 1n the random graph { 20] with fixed connectivity z, analysed
by means of the 1/z expansion, using z = I In this paper it is verified that i the limit
& =00 the random graph coinoides with the sk model and the 1/z corrections at finite
temperature can be computed (the discrepancy beiween the result for g, at T=0in
the limit z-> o between [20] and the result in [24] are due to an extrapolation error
in [247). As we can see, when the size and dimension of the systern increase, the energy
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decreases. We cxpected that the numerical data for the energy would pregressively
reach the theoretical prediction shown in figure 6 by the broken line. This is not the
case and it could be that the effective convergence radius for the expansion is rather
smali or the N2 corrections are so strong as to mask the effect.

In figure 7 we plot the order parameter (g°) against N~/ together with the predicted
result in the sk model {g°)=0.2895. The main comment to be made now is that we
see a good linear bekaviour in this plot, newly characteristic of finite-size effects, but
the results do not show any tendency to converge to the correct one. A crossover
behaviour is expected fo correct this bad convergence when ihe interplay beiween
finite-size and finite-dimensionality effects begin to be dominated by the latter.
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Figure 7. Qrder parameter {g% against N™Y? From the correct erergy = - 3.710 and

reiation {9) we wonld expect it should converse tawards =0 2845,

Now, we return fo the guestion of how to separate finite-dimensionality effects
from finite-size ones. As we do not have gl our disposal a complete theory generally
agreed on spin glasses, we have to proceed on the basis of suppositions and heurisiic
arguments. Since relation (9) is independent of the size of the system at infinige
dimensipns, one can regani deviations from this formula 1o be attributed more to
finite-dimensionality effects than to finite-size ones. Introducing finite-dirensionality
corrections to this expression one can write (for T'=0.5)

- 1 2 ity i_;. (.:f__)
U+Lq(x}dx i DTBQ.O o) (14
In figure § we plot our numerical resulis for several dimensions of the system, We do
not see any tendency of our resulis 1o converge towards the resuit at infinite dimensional-
ity {the point at the origin of the axes). This means that the expansion (10} has &
contsibution from high-order terms, being indicative of something stated before, fe.
the effective radius of convergence for expansicns in powers of 1/ D, at least for this
model of spin glass, could be very smail,

Considering the behaviour of the snergy, susceptibility and (g%, together with the
evolution of P{g), as we increase the size of the gystem, our mnterpreiation of the
numerical results is as follows. Itis probable that hypercubic laftices ot fnite dimonsions
over a critical one will shere some of the novel features of the infinite-range madel.
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Figuie 8. Bray and Moore’s relation {10) satisfied exacily for the sx model (the point at
the ongin of the axes) It suggests that high-order finite-dimensionality correciions to this
formula couid be very important for the hypercubic cell.

It seems as if the interplay between finite-size and finite-dimensionality effects can be
separated in two regimes between which there is a crossover regime.

In the first regime when the size of the system grows, finite-size effects are dominant.
The energy and {¢%) show a2 behaviour characteristic of finite-size effects, ie. they
decrease as N~2 The behaviour of the P(g) function is very interesting in this regime.
When the size of the sysiem increases, the value of g4, decreases, as seen in the sk
meodel. Comparing our resuit, for example P(q) at dimension D =8, with those shown
in the lattice at =4 [19] (to have the same conneciivity as the cell) we discover 2
surprising similanty, We also find coincidence with resulis shown for the sk model
[10] but to a lesser degree. It looks as if finite-size effects are very strong in this range,
ieaving aside secondary questions regarding the topology of the lattice. Numerical
results wouid b very welcome for the behaviour of the magaitudes shown in this work
for the case of the random graph alrez 2y mentioned with the same connectivity as the
hypercubic cel} to test to what extent tiis affirmation is true.

The second regime wheye finite-dimensionality effects become 1mportant appears
when N reaches several thousands of spins. It can be predicied clearly by locking at
the P{g) function at the precise moment at which the position of g, falls below the
posiion calculated for the sk model. This causes a decrease in all integrals of the type
{5 4%(x) dx, explaining why the susceptibility and {(g°) seem to converge too far from
the correct result. The form of the P{g) is now no longer similar to that of the sk
model but the similarity to that of the hypercubic Iattice with half dimension remains.
The crossover will appear when, at a certain size, the first appearance of the iendency
for g,., to decreare when the size increases is inverted 2nd gy, begins to increase
with the dimensionzlity of the ¢ell. This means that the maximum overlap g, for
hypercubic lattices at finite dimensions is always smaller than the corresponding value
for the sk model and converges to it as the dimension of the lattice increases. This
expected crogsover can surely oaly be predicied but not seen in the simulations because
we nead to go to higher dimensions, In fact, 2n increase in the dimension of the system
of one unit doubles the size of the system and the amovnt of computstional time grows
enormeusly. This crossover is pradictable teo (but less clearly due to numerical errors)
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from the behaviour of the energy, susceptibility and {g*). As the linear plots of N™/2
against, for example, the energy and {g°) do not converge to the correct result when
N -» 0, there will be a moment at which the tendency has to vary substantially to
finally recover the results expected for infinite dimension.

These numerical results seem to us very difficult to explain in terms only of finite-size
effecis. Since the main features of our results so far explained have not been found in
the sk model, we think that finite-dimensionality effects and the close conneciion of
our system with hypercubic lattices are truly important for their explanation.
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Figure 2. Ultrametriésty test an the hypercubic cell We plot the probability distnbution of
the difference beiween the two smallest overiaps when the maximum lies between 0.4 and
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hypercubic cell when the maximum overlap hes between 8 4 and 0.5, The 51 model predicts
a delia function at Ag =0 of weight 0.5 plus 2 continuous part (broken line). The pezk

shows that the probability of equilateral triangles is finite.



5318 G Parisi et al

It could be that there is an iniricate interplay between finite comnectivity and
finite-size effects, which is outside the scope of our discussion. Anyway, the interpreta-
tion given above seems to us to be the simplest we can give. Let us remember that not
only do we lack a theory gensrally agreed on finite-dimensional spin glasses but in
the ‘simplest® case, i.e. the s model, a complete understanding of finite-size effects is
still lacking.

Finally, a simple remark regarding the similarity between our systert and hypercubic
lattices would be in order. One couid think on the possibility of a difference beitween
the two sysfems as we consider the cell for odd dimensions because in this case the
spins are less likely to flip freely than in the lattice. This fact is not importan: since
we are working at T=0.5 and it is a higk enough temperature for this effect to be
smeared by thermal fluctuations. At low temperatures (let us say less than =0.1) we
should see large oscillations in the energy plotted against N™/* as we pass from an
odd value of dimensionality t¢ an even value (as is seen iv the sk model with binary
couplings ay low temperatures when N changes from even to odd values and exact
statistical mechanics for small samples is investigated [211).

If this interpretaiion of the resulis is correct and broken replica symmetry is a
useful concept for hypercubic lattices at fnute dimenwons, the phase space organization
of pure states should not show any crossover as is the case for P{qg). In fact, this is
what we expect if the replica symmetry-breaking scheme did not depend on the
dimensionality of the lattice and this is what seems 1o be the case.

3.3. Ultrameiricity

We have investigated ultrametricity in the hypercube of sizes D=6, 8, 10 and 12 for
20 samples in each case. The results are shown in figures 9 and 10. Like former studies
f15], we confirm the physical deseription of the spin glass phase with broken replica
symmetry in this case.

In figure 9 for each trizd of the eight systems we evaluated the difference between
the minimum and the middle overlap when the maximum lies between 0.4 and 0.5,
Qur results show strong evidence of ultrametricuy,

In figure 10 we plot the probability distribution of the value 49 = 2 ~ Gimn — G
when the maximum overlep lies between 0.4 and 0.5, Also, we show the theoretical
prediction [16] for the sk model (a delta function ar Ag =0 plus a continuous term).
QOvur resulis are in good agreement with the theoretical prediciion.

4. Conclesien

We have stadied a hypercube cell at T = 0.5 in the low-temperature phase for dimensions
D=6,7,8, 10 and 12. The motivation has been two-fold:

(i} Since mean feld is found when the dimensionality of the hypercubic lattice
goes to infinity, we expect that the same will happen for the hypercubic cell, A simulation
of this model will allow us {0 tesi the main features of the spin glass phase in the sx
modsl

{ii} Following the known fact that in ordered systems the hypercubic cell (in two
Jdimensions) is more similar to the hypercubic lattice (in dimension D) than to the
infinite-range model, we want 19 explore if the novel features found in the sk model
are aiso shared by hvpercubic lattices over a certain critical dimension {37},
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As always happens in frustrated systems, strong metastability has made equilibration
painful (especially in the case 2=12).

In our system there is an interplay between dimensionality and finite-size effects.
Even if we do not have a clear way to separate both effects, we have found that the
simplest interpretation of the resulis allows os {o differentiate two regimes where a
different behaviour is expected.

The first regime is dominated by fnite-size effects The P(g) shows the typical
behaviour of the hierarchical solution in the sk model. The thermodynarnical quantities
also show 2 linear behaviour when plotted against N~V as in the sk medel.

The second regime, predicted from the fact that all the magnitudes converge towards
incorrect results, should appear when the size exceeds several thousands of spins (we
cannot predict exactly when it can be seen). In this regime the system would be more
sensitive to finite-dimensionality effects than to fimite-size ones.

Results 1 figure 8 cast doubt on the wiility of 1/ D expansions in this model of
spin glass. Comparing our resuits with those obtained 1n the random graph model with
fixed connectivity z using an expansion in 1/z we do not find any 2greemen? because
of O(W™'?) effects or passibly large 1/D7 corrections.

By steaying the organization of pure states in phase space we have found ulira-
metricity and we have given support to the usual physical interpretation of broken
replica symmetry [ 18], This is a very important result because the ultrametricity structure
is the key assumption in the theory of spin giasses.

All these results lead us to confirm that the usual physical interpretation of the sk
model is correct, and to the suspicien that the novel features of the spin glass phase
for the sx model could also be a reality for hypercubic lattices at finite dimensions
over a critical value.

We hope that cur numerical resubis will serve as 2 guide for future theories in this
very controversial subject.
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