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Abstract. We present several results on the finite-size corrections in the SK model within the 
spin-gl3ss phase slightly below the transition temperatwe and along the de Almeida-Thouless 
(AT) line. In the first case, we study the finite-size corrections for the distribution of overlaps 
P ( q )  and for ultramehicity. Along the AT line, finitesize corrections to the free and intemal 
energy are also obtained. Numerical results are in good agreement with our predictions. 

1. Introduction 

Although the mean-field solution to the Shemngton-Kirkpatrick (SK) model [1,21 was 
completed a decade ago [3] and the interpretation of the result followed soon after that [4,51, 
some open problems still remain. In the infinite-dimension limit, the solution is known to 
be marginally stable [6], but it is unknown whether the peculiar ultrametric structure with 
an infinite number of ground states survives even in the finite-dimensional case [7,8]. Even 
though the question is far from being settled some numerical results are available [13]. 
Similar questions can be asked in the case of fully connected but finitevolume systems. 
The method which offers itself in both cases is straightforward in principle and is based 
on the replica field theory (RFT), which is nothing other than the expansion around the 
mean-field solution. Free propagators of RFT are known [9], but the formulae are still too 
complicated to permit explicit calculation of d iapms.  The complication arises from the 
presence of infinitely many zero modes in the fluctuation spectrum around the mean-field 
solution [lo]: In cases where only the limiting behaviour of the propagators in some region 
is required,  approximative formulae [ 11,121 can be successfully used. We will follow this 
way here. 

Results from the numerical simulations are available [14,15] which clearly indicate an 
approach to the quantities of interest to the infinitevolume theoretical predictions, but the 
theoretical findings about the value of the finite-size corrections itself would substantially 
strengthen the consequences about the validity of the 'canonical' ultrametric solution of the 
SK model. . 

Recently we have studied the problem at the critical temperature [17], where the situation 
is quite simple because we can explicitly control the divergence of the Gaussian fluctuations 
when we lower the temperature to the critical point. In this paper we want to look at the 
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situation below the critical point and to establish which conclusions can be drawn from the 
known form of the Gaussian propagators for the SK model. Moreover, at the de Almeida- 
Thouless (AT) line we can proceed similarly as at the critical point, only the computational 
difficulty increases. 

In section 2 we derive the formulae for the finite-size corrections for the distribution of 
overlaps and for the violation of ultrametticity, starting with the effective Lagrangian of the 
SK model near the critical temperature. We then proceed in section 3 with the diagrammatic 
computation of these quantities. The much simpler particular case of the AT line is studied 
in section 4. Sections 5 and 6 are devoted to some new results from numerical simulations 
of the finite-size corrections' and their comparison with the theoretical predictions of the 
preceding sections. The final discussion is presented in the closing section. 

2. Corrections to the distribution of overlaps and violation of ultrametricity 

Near the critical temperature the SK model is described by the effective Lagrangian [l8], 
which is, in the approximation taking only the fourth-order term inducing the replica 
symmetry breaking [3], 

where 5 = 1 - 1/T. The mean-field solution is described by the function q ( x )  which 
corresponds to the average of the field variable qO(=g) = (q(mfi)). The Gaussian fluctuations 
around the saddle point are formally infinite. In order to regularize the theory it is convenient 
to consider the free propagator G ( p )  to be defined as 

where ( ~ ( ~ g )  is the fluctuating part of the q(+q order parameter, i.e. q(#g) = qqUa) + q m g ) .  
The presence of the zero modes [lo] causes the divergence of G when we remove the 
regularization. i.e. for p + 0. The regularization can be introduced by adding a term 
p 2  q n g )  to the Lagrangian. 

Without any zero modes, as in the case of ferromagnetic ordering, the propagators 
would give us directly the leading term of the finite-size corrections. Here, because of the 
divergence, we have to sum all the perturbation series (which is the 1 / N  expansion) and 
send p + 0 at the end. Supposing that the sum of the perturbation series is finite in the 
p + 0 limit, we can deduce the N-dependence of the leading term of the sum. Because 
of the complexity of the free propagators, it would be very difficult to compute.diagrams 
arising in the 1 / N  expansion. Nevertheless, the p + 0 behaviour of the propagators can 
be found and that is sufficient to make some statements about the p + 0 behaviour of the 
diagrams. 

As it was shown in [17], only the term cubic in the fluctuation q(.g) is relevant for the 
leading term in the finite-size corrections. Hence, equation (1) implies that the effective 
Lagrangian describing the fluctuations around the mean-field solution is 

. 
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By this definition we have incorporated the regularization parameter p directly in the 
Lapmgian. We will denote the averages with respect to this Lagrangian by angle brackets, 
keeping in mind that they are functions of p .  The diagrams in question contain only two 
types of cubic vertices. 

The quantities of interest will be~the distribution of overlaps P ( q )  and the distributions 
describing the ultrametricity P(q1, qz. 93) and &6q), defined via their moments 

!4 = /daqp(Gq)(aq)k = /dqidW@P(qi ,  qz,qz+Sq)B(qi  -qz)?(qi - qz --Sq)(Gq)k. 

(6) 
The latter functions can be obtained following the procedure applied in [4]. We have found 
for the distribution of overlaps 

This formula is somewhat formal but we can find a simple interpretation of it. 
We define Po(q) = l/(dq(x)/dx), the infinite-volume limif and write 

P(q)=JdqPo(y)K~(q-q) .  (8) 

We now use the notation introduced in 191. Because of the ultrametricity property of the 
Parisi solution we parametrize the Green functions G,p:,s by G:yz2. In this notation the 
superscripts x and y are given by q(x) = qrp and q(y)  = qy6. The subscripts ZI and zz are 
given by q(z1) = max(q,,, qas) and q(zd = mau(qg,q,b6) respectively. 

= (q&) 
the diagonal element of the full propagator, we can see that the cumulants of the function 
Kq(q) are simply 

Denoting the shift of the order parameter function by q(x) = ( q n g ) )  and 

CO = 1 

In particular, the finite-size corrections to the &function part of the function Po. which 
is the feature most simply accessible by simulations, 'can be expressed by saying that the 
centre-of-gravity is shifted by q ( x l )  and the &function acquires a finite width. The square 
of the width is the matrix element of the propagator G,, 

The information about the shape of the distribution P(Sq) can be obtained similarly. 
The calculation is simple and gives to the lowest order in q 

7 1 x 1  

PO =+'+ q((&) 
p2 = 2 1 1  dx [ dy (??E - zy:) + O((q4)) .  . . . 

(All the odd moments vanish due to the symmetry of the function p(6q).) 
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3. In  the spin-glass phase at zero magnetic field 

In the preceding section we obtained the expression for the quantities of interest in terms of 
the full (dressed) propagators. In order to compute them we have to write the perturbation 
series for them, using the free propagators. Now we recall what is known about the p + 0 
behaviour of the free (Gaussian) propagators [ l l ,  121: 

for both p --f 0 and x ,  y, ZI , z2 + 0. Moreover, the functions g l ,  gz, g3 are not independent. 
The following relations were found in [ I l ,  121 

GFx, - G E  - p-? 

(12) GXX - Gxx - 
X , I  Ir P - 3  

GFx, - 2Gz,  + G;; - P - ~ .  

From the latter formulae we want to establish the order of the p + 0 divergence 
of various diagrams. Introducing the reduced variables = x / p ,  q = y f p ,  ... we obtain 
integrals which do not contain p explicitly, but the upper bounds go to 00 when p + 0. 
Making the crucial supposition that these integrals are finite, we obtain the following rules 
for power-counting in the diagrammatic expansion: 

1. The factor p-4  corresponds to each line representing the free propagator. 
2. The factor p corresponds to each summation over free replica index and to each 

These rules enable us to hypothesize about the behaviour of perturbation series when 
p + 0. First, by looking at the integrals represented by diagrams we can see that adding 
one loop means multiplying by a factor which behaves l i e  1 / (Np6) ,  regardless of which 
of the two vertices is present. Hence, if the first term of the perturbation expansion of 
the quantity Q behaves like l / ( N ’ p m )  we have Q - N-‘ p -m f ~ ( N - ’ p - ~ ) .  If we send 
p + 0 for fixed N, it suggests behaviour similar to - N-‘+”’/‘ for the leading term in the 
-finite-size corrections for Q. 

Applying this simple consideration to the cumulants of the function Kg for c j  = qma 
we get 

factor qo(ug). 

Ck N N - k f i  k = 2,3, . . . . (13) 

The cumulant behaviour implies the following form for the function Kqmu defined in 
equation (8) 

Kq,,(q - q m )  - N1’3f(N(q - q m d 3 ) .  (14) 

The most important consequence, in our opinion, is that the square of the width of the 
‘&function part’ of the distribution of overlaps should scale like N-2/3 .  This result has also 
been recently obtained by a different method in which the problem of two coupled replicas 
was studied [20]. Note that the same N-dependence was found for the internal energy at 
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the critical point [17]. In fact, at T, both quantities coqespond to the same element (?:: of 
the propagator (independent of n in this case). 

The moments of the distribution &q) require furtber care. Let us look at the second 
moment pz .  From (12) we see that the integral expression in the first term of the perturbation 
series is, in fact, using the reduced variables 

- ~ ( G Z F  - G2-1 + P - ' ~ ( v )  (15) 

and, using the explicit formulae for the free propagators [9], we obtain 

(16) 

Hence, power-counting gives N-'p-' behaviour for the first term in the perturbation series, 
i.e. 

WL?, - N-2p. (17) 

Unfortunately, we have not found the behaviour for any more quantities. The internal 
energy behaviour would be particularly desirable. The difficulty stems from the fact that 
the expression for it contains the sum of several terms. This more complex problem will 
be discussed in a future work [22]. 

4. At the de Almeida-Thouless line 

The problem of the complicated structure of the propagator is not present on the 
paramagnetic side of the AT line. The theoretical analysis of the finite-size corrections 
follows the same arguments asthose used at the critical point [17]. 

The free propagator Gap;ys has only three independent matrix elements, which can be 
found explicitly by inverting the Hessian [191 on the paramagnetic side. It is convenient to 
write the result in the form 

G u ~ ; ~ s  = G1(&y6ps + &sS,y) + G2(SaY + 86s + 8,s + 6oy)  + G3. (18) 

The full (dressed) propagators will have the same form with three conesponding independent 
matrix elements GI ,  G2, G.3. For completeness we list here the explicit formulae for the 
free propagator 

7-40 

(2p2 + 2@)2' 
- 1 1 

G 
= 2,. - ~ 2 p 2  + 7-40 

The regularization parameter p is introduced as before because, when approaching the AT 
line, the propagator will diverge due to the fact that the replicon eigenvalue becomes zero. 
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Denoting @ = ~ ( x )  and C?D = GTf = C?1+2G2+G3, now independent of x ,  and performing 
explicitly the one-loop calculation, we have obtained, for the p -+ 0 limit 

ED = 3(2p2N)-’(1 + (2~*)-~N-’(7 - 2640 + 444;) + O(N-*p-’’)) (20) 

We can see immediately that both I?D Y G(-z/~)N-’/’ and @ - N-’I3. The reason for 
the coincidence in the exponent is that in the tadpole diagram which is always present in @ 
the single connecting line corresponds to the longitudinal eigenvector of the Hessian, which 
always has a corresponding non-zero eigenvalue. 

One important consequence is that the exchange part of the internal energy [ 171 

has the following finite-size correctioii 

6Ex = C D  + 2qo@ - N-*l3. (23) 

We see that the leading term of the finite-size corrections is the same as at the critical 
temperature, but there is a difference in the present case in the source of the next leading 
term. At the critical temperature it occurred due to the presence of the fourth-order term 
in the effective Lagrangian. In contrast, here we have a non-zero contribution even from 
the third-order terms, which suggests that the next-leading contribution to the finite-size 
corrections will be more significant at the AT line than at the critical temperature. 

The leading term of the finite-size corrections for the free energy follows from the above 
calculations. In fact 

and we find for the derivation of the free energy with respect to pz 

so that the finite-size corrections 6F for the free energy are given by 

(N/T)6F = Inp-’I3 + f(Np6). 

In order to have a finite result in the limit p + 0 the function f should behave like 
f(w) Y l n ( ~ ’ 1 ~ )  for w + 0. Hence, 

6F = T(lnN/4N)+O(l/N). (27) 

Note the abrupt change in the leading term of the finite-size corrections from In N/12N at 
the critical point [I71 to In N/4N at the AT line. This is a manifestation of the change in the 
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number of zero modes per replica from -1/2 at the critical point (where all the eigenvalues 
of the Hessian are zero) to -3/2 at the AT line, where only the replicon eigenvalues vanish. 

 when^ trying to estimate the finite-size corrections quantitatively, we limit ourselves 
to GD. We see that it has the form GD = N-213w1/3 f (w)  so that it should be 
f (w)  Y Aw-'/3, w + 00. As in [171 we compute an estimate for the coefficient A 
from the information of the w + 0 behaviour of the function f. It is nothing other than 
the analytic continuation from the neighbourhood of the point w = 0 to the neighbourhood 
of w = 00. In [17] we investigated at length the possibilities offered by two methods of 
doing such a continuation and we will apply the same methods in the present work as well. 
We, say in advance that both of them give the result in the following form 

~~ 

(28) 

and y depends on the particular procedure used. It means that the temperature dependence 
of the normalized width of the distribution of overlaps 

44 2 -113 
G(-2/3)(qO) = y(1 - ?40 + 7%) 

~(-2rJ)(4O)/c(-2/3)(0) ~~ (29) 

is not influenced by the procedure taken and, consequently, numerical measurement of it 
can  test the present theory. 

The first method for computing y is based on the formula 

where the last equation holds for w + ~ 0 0  and s is the pole of g(z)  with the largest real 
part. If we know the power-law behaviour of the function f(w) N Aw' at w + 00, we 
can deduce the coefficient A by reasonable choice of the function g(z) ,  fitting the known 
values of it for several small integers z .  In our case we are limited even by the conslraint 
that GD is positive. Trying the function 

g(z)  = dwz + 1) COS(ZZ)/(Z + f) (31) 

with free parameters a ,  b, we obtain at the end y = 0.80637.. ._ 
The second procedure consists in simply taking any formula for f ( w ) ~  which can 

interpolate between the known w + 0 and w + 00 behaviour. Taking the simplest 
choice consistent with the requirement y > 0, we have f (w) = ((1 + u W ) ~ ) - ' / ~  and we 
obtain y = 1.087 38 . . .. 

As we can see, the results obtained by two independent methods are very close to one to 
another. This encourages us to claim that these quantitative estimates are near to the correct 
result. Having only two different estimates it is difficult to reach any firm conclusion, but 
it at least gives some indication of the exact value. Thus, we finish the section with the 
following estimate for the coefficient y '  

(32) 
. ~~ . ~, . 

y = 0.9 * 0.2. 
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5. Numerical results at the AT line 

In this section we present the results we have obtained on the study of some quantities at 
the AT line. We have simulated the SK model with discrete couplings J = fl/N’/*. 

Along the AT line, the main results concem the nature of the finite-size corrections for 
the free energy and internal energy. Figure 1 shows the free energy for five different sizes 
which vary from N = 32 up to N = 256. These have been obtained by integrating the 
intemal energy from T = 00 down to T = 0.5 at constant field h N 0.57 (this value of 
h has been calculated exactly solving the saddlepoint equations for the SK model with an 
applied magnetic field). The number of samples ranges from 1000 to 500 for the largest 
size. Our results are in reasonable agreement with the theoretical prediction equation (27). 

t 

4Jq i t 

Figure 1. Free energy of the SK model at the AT line (T = 0.5, h 
the theoretical prediction equation (27). 

0.57). The straight line is 

0.01 0.02 o m  0.0” 0.05 0.06 0.01 

N-w 

Figure 2. Intemal energy E. from equation (22) at the same point in the AT line as in figure 1. 
The line is a linear fit to the points using the least squares method and the parameters of the fit 
are shown in the the text. 
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Figure 2 shows the internal energy at T = 0.5, h N 0.57. The internal energy is given 
by two terms: 

- 
where (. . .) is the thermal average and (. . .) means average over disorder. 

Far from T, there is an additional finite-size correction which has not been considered in 
the theoretical derivations. There is a tail for P ( q )  corresponding to the region of negative 
overlaps which gives a strong finite-size correction for magnitudes not invariant under the 
symmetry CT + -U. To avoid this problem we plot in figure 2 the term Jij(uiuj). Twelve 
sizes ranging from N = 32 up to N = 768 have been studied and the number of samples 
varies from 2000 up to 6000 for the lowest sizes. Data s e  in good agreement with the 
scaling behaviour equation (23): 

E,  = EX(w) + a N-’I3 (34) 

and the least-squares fit yields a N 0.43 (10.02), U(&) = -0.5890(&5 x which is 
very near to the correct result -0.5887. 

One more prediction on the finite-size corrections along the AT line has been tested. 
This is the variation of the slope in equation (28) near the critical temperature. We have 
simulated the SK model along the AT line at four temperatures in the (T ,  h) plane near 
T = 1. Even though finite-size corrections are very sensitive to the critical point we 
expect the variation of the slope a in equation (34) will reproduce the theoretical behaviour 
equation (28). The points studied in the AT line are: (0.8, Y 0.117). (0.85, Y 7.3 x IO-’), 
(0.9, Y 3.8 x IO-’), (0.95, Y 1.3 x IO-’). At each point in the AT line, six different sizes 
N = 32,64,96, 128, 192,256 have been simulated with 2000 samples in each case. In order 
to test the theoretical prediction equation (28) we should calculate the second cumulant of 
the P ( q )  in the regime where there is not a tail in the P ( q )  corresponding to the negative 
side of the overlaps as was previously commented. Fortunately, near the critical point the 
order parameter is nearly zero and this effect is negligible (this would not be the case if we 
were on the AT line far from Tc). 

For each point in the h-T plane we make a least-squares fit and we determine the value 
of b: 

. .  

(4’) = qi + b N-’I3 (35) 

where qo is the order parameter in the infinite-size limit obtained by solving the saddle-point 
equations for the SK model with an applied magnetic field. In figure 3 we show the four 
values obtained for b plotted against q1 The different values of b have been fitted with an 
equation of the type b = A (1 + Bqo + Cq$)-’/’ and we obtain A N 1.1, B -3.8 and 
C 11. The parameters A~and B are in good agreement with the formula in equations 
(28) and (32). For the value of C th’ere is disagreement. We believe that the reason is the 
following: in order to obtain b up to second order in 40, we should include more terms in 
the Lagrangian equation (3) but the computation would become much more complex. 
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Figure 3. Different values of b in equation (35) at four different points an the AT line near 
T, = I plotted against 40. The parameters of the fit are given in lhe text. 

6. Numerical results in the spin-glass phase 

Now we comment on the results obtained within the spin-glass phase. We focus on those 
finite-size corrections which can be easily predicted from the Gaussian propagators. Finite- 
size corrections for magnitudes like the internal energy will be presented elsewhere. Figure 
4 shows the square of the width of the delta-function part of the P ( q )  in the SK model at 
T = 0.8 and h = 0. Eight sizes varying from N = 64 up to N = 640 have been simulated 
with a number of samples ranging from 2000 to 500 for the largest sizes. In this case qmax 
is approximately 0.23 in the infinite size limit. Due to the natural discretization of P ( q )  for 
finite sizes we are not able to determine q- exactly. Then we have calculated the width 
of the delta-function part taking qmax = 0.25 for all sizes which corresponds to the value 
where P ( q ) ,  obtained from the simulations, has a maximum. 

Figure 4. Second cumulant Cz as defined in equation (9) for the SK model at T = 0.8, h = 0.. 
The line is a line= fit to the points. It gives Cz 2 0.8 N - 2 f l .  
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Figure 5. P(q) /N'13  for q > 0.25 for the SK model at T = 0.8, h ~= 0 plotted against 
N ( q  - 0.25)3. The.agreement with the swling law equation (14) is impressive. The symbols 
me: 0. N = 128: A; N = 192: 0, N = 256; x,  N = 512; +, N = 640. 

Figure 5 tests the scaling law equation (14). We plot P ( q )  when q > 0.25 at T = 0.8, 
h = 0. for several sizes N = 128, 192,256,512,640. All of them fall on the same straight 
line (of slope N 0.26) if the vertical axis has a logarithmic scale. This results implies that 

P(q  > qw)  - N1I3 exp(-O.26 N (q - qmax)') (36) 

which means that all pure states with an overlap qap outside the support of the function 
P ( q )  are thermodynamically unstable. This result and the order of magnitude of the slope 
(in equation (36)) 0.26 are in agreement with the results in [20]. 

In addition the prediction, equation (17), has been tested numerically. In this case the 
hypercube model [16] has been simulated because it is computationally faster than the SK 
model. The price we pay for fast convergence is that we have finite-size corrections in the 
SK model which go like 1/D or l/ln(N) since N = ZD. We have simulated the hypercube 
at T = 0.7 and h = 0 for eight dimensionalities varying from D = 6 up to D = 13 (i.e. 
the sizes range from N ~= 64 up to N = 8192) and a number of samples which varies from 
1000 up to 24 for case D ~= 13. Figure 6 shows the second moment of P(Sq)  (defined in 
equation (6)) when qma lies between 0.1 and 0.3. Given three overlaps q(ap) ,  q(vu). q(py j ,  
Sq is given by the difference between the middle overlap and the smallest one. Our data 
seem to be in agreement with the predicted behaviour for high dimensionalities (the full 
line indicates this N-*I3 behaviour). It is interesting how strong the finite-dimensionality 
corrections are in this case (similar effects were found in a previous work [16]). 

We have also tried to find some scaling behaviour.(like that found for the P(q) ,  see 
equation.(14)) in the case of ultrametricity. According to equation (17) it would not be 
surprising if the same scaling~behaviour were also to be valid in this case., We have 
simulated the hypercube model at the same dimensions and temperature as before and we 
have calculated the probability distribution P(Sq) when the maximum overlap lies between 
0.175 and 0.225 since 4mM rr 0.36 and we would like to be far from the region where 
the pure states are very close (ultrametricity would then be trivial). We have calculated 
the behaviour &Sq)  with respect to size for four different values of the overlap difference 
Sq = 0.125,0.1375,0.15,0.1625. In all four ckes, the following scaling law seems to be 
satisfied (for Sq fixed): 

- exp(-N g(Sq)) (37) 
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Figure 6. Ultnmetricily in the hypercube model at T = 0.7 for eight different dimensions from 
D = 6 up to D = i3. Even though there are mong finitedimensional corrections, the data 
seem to be in agreement with the N->J3 behaviour of equation (17) in the infinite dimension 
limit (the suaight line is p~1 2 1.3 N-'J3 and the value 1.3 is only an estimate). 

L 

Figure I. Logarithm of &q) against size in the hypercube model at T = 0.7 for eight different 
dimcnsions from D = 6 up to D = 13. In this case, Sq = 0.1625 and the maximum overlap 
lies between 0.175 and 0.225. 

where g(8q) is an unknown function of 8ql 
Figures 7 and 8 show the logarithm of P against size N at Sq = 0.1625 and S q  = 0.125 

respectively. The previous exponential behaviour is in good agreement with the data. It 
means that ultrametricity is thermodynamicaUy stable and the cost in free energy, when 
violating it, grows linearly with size [23]. We have also hied to find a scaling law similar 
to equation (14). There are theoretical arguments which support this result [21]. In this 
case, we would expect that 

(38) 

where a is a constant. 
This means that in equation (37) we take g(q) - q3. Figure 9 shows values of 

p' (Sq) /N' /3  for different dimensionalities from D = 6 up to D = 13 and for four different 

&6q) = NL13 exp(a N Sq3) 
. .  
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, 4  I 

N 

Figure 8. The same plot as in figure 7 for S q  = 0.125, 

values of Sq, against N S q 3 .  This plot is very interesting because it shows that for each 
finite dimensionality a straight line gives a good fit to the data. Only for very large sizes 
would different straight lines superimpose on to the same line according to the scaling 
behaviour equation (38). These strong finite-dimensional corrections which violate the 
scaling behaviour equation (38) were already visible in figure 6. The interesting fact is 
that, even though we should expect a very large dimension in order to see the full scaling 
behaviour equation (38), the 6q3 behaviour in the scaling law (for a fixed size) survives 
down to small dimensionalities. 

Figure 9. A test for the scaling behaviour equation (38) with the same p m e t m  as in figures 
7 and 8. For fixed size the exp(n6q3) behaviour survives down to low dimensionalities. For 
very la;@ sizes we hope all the lines will superimpose onto a unique one. 

In summary, we observe that all our numerical results are in reasonable agrement with 
the theoretical predictions. 
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7. Conclusion 

The nature of the finite-size corrections in the mean-field model of spin-glasses is a very 
interesting problem because it is the first step in understanding fluctuations within replica 
theory. Up to now, the critical point and the AT line have been well understood. Within the 
spin-glass phase the difficulty increases considerably. Only some partial results have been 
obtained in this case. 

We have obtained the analytic formulae for the finite-size corrections to the moments 
of the distribution of overlaps P(q)  and of the distribution p(8q)  which describes the 
violation of the ultrametricity. In case of P ( q ) ,  the &function acquires a finite width, 
which is accessible to numerical simulation, and its square scales like N-*I3. Furthermore 
we have calculated several quantities at the AT line, using a particularly simple form for the 
propagators. Among them we have discussed free energy and the internal energy both near 
and Far from T,. 

All our predictions seem to be in good agreement with Monte Carlo simulations on the SK 
model. Finite-size corrections to the ultrametricity were simulated in the hypercube model. 
We investigated the possibility of a scaling law similar to that found for the distribution 
of overlaps P(q) .  We have found that this scaling behaviour has strong finite-dimensional 
corrections. This was also observed, for the second moment of the distribution P(6q). 
Except for strong finite-dimensional corrections, the results seem to converge to the expected 
behaviour for high dimensionalities. 

These results increase our knowledge of the mean-field theory of spin glasses. Some 
results have been obtained within the spin-glass phase. The question about the finite-size 
corrections for the free and internal energy within the spin-glass phase are open problems. 
In this case. the enormous difficulty .which the full propagators presents makes progress 
slow. Nevertheless some results have already been obtained and will be presented in a 
forthcoming work. 
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