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Abstract. We study the order parameter distribution P(q)
in

the 4d lsing spin glass with

+J couplings in
a

magnetic field. We aise compare these results with simulations for the infinite

ranged model (1.e. SK model.) Then we analyse
our

numerical results in the framework of the

droplet picture
as

well
as in

the
mean

field approach.

This work is devoted to the study of spin glasses in presence of a magnetic field. Dunng the

last ten years, a large number of works has been devoted to the study of spin glasses iii. One of

the problems which still remains unsolved is to understand the effect of a magnetic field on the

spin glass phase. The mean-field theory predicts that the spin glass phase will survive to the

application of a magnetic field below the de Almeida-Thouless critical fine (AT fine) [2]. In the

most general case, the main effect should be the destruction of a large number of equilibrium

states with a reshuflling of the free energies for the remaining ones. To our knowledge, even

at the mean field level, a numerical test of the theoretical predictions of the replica symmetry
breaking solution with magnetic field has never been done. Such a test would be interesting
because it would give support to the Parisi ansatz as a correct solution to mean-field theory

Î31.
For the short-range models case, there is still much controversy. In fact, there is no precise

theoretical prediction. A usual e expansion near dimension 6 will run in trouble because it

is net known how to find a non trivial fixed point [4]. Phenomenological mortels like those

initially developed by Mcmillan [Si, Bray and Moore [6] and by Fisher and Huse [7] predict

that the spin glass phase disappears for a finite magnetic field. But this result is a consequence

depending on some assumption on the real nature of the low temperature spin glass phase.

The most recent studies of the AT fine were doue in Monte Carlo simulations. In these works,
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the main points of interest were the curves of constant non-linear susceptibility in the h-T

plane [loi or its divergence when approaching the AT hne using finite-size scaling methods

[iii. Nevertheless the first approach is very indirect and the second one could be plagued by

strong corrections to the simple scaling.
In this work we have tried to understand the spin glass with magnetic field by studying the

P(q) order parameter function obtained by means of the Monte Carlo method using the heat

bath algorithm. We will first present a brief discussion on the general theoretical predictions
of this problem and numerical results for the mean-field theory. Then we will present the

numerical results obtained for the 4d +J Ising spin glass. It is well established that this model

has a finite T~ and it has been intensively studied [12].
The d-dimensional Ising spin glass model of interest, with +J couplings, is defined by the

following Hamiltoman

H
=

~j J~j«iaj h ~j
ai (1)

(1,J) ~

The coupJings Àj are quenched variables with equal distribution values +1. The interaction

is restricted to nearest neighbors and h is the magnetic field. The Ising spins ai take two possible
values +1 and live in a d-dimensional hypercubic lattice with periodic boundary conditions.

In the limit d
- cc, one expects to converge to mean-field theory, 1-e- the SK model [14]. In

the SK model, ail spins interact among them and the couphngs J~ are normalized by a factor

lllR where N is the number of spins.
It is very useful to consider discrete couplings J~j in the Hamiltoman because this speeds up

the updating of the spins in the Monte Carlo numerical simulation. We also hope that their

discreteness should not be relevant for the physics at least for not too low temperatures. Now

it is convenient to make some comments on this assertion. It is very hard to obtain rehable

analytical results in short-ranged spin-glasses. Anyway, some results have been obtained at

zero temperature. Bovier and Frohlich [8] have explicitely shown that the exponents associated

to the zero temperature fixed point are sensitive to the type of distribution of the couphng
variables. In particular, a binary discrete distribution (like the one used in this work) or a

Gaussian continuous distribution are expected to give different zero-temperature exponents. In

this case both fixed points belong to different universahty classes. In case of a finite temperature

fixed point the situation is still not fully understood. Within droplet models there are general

arguments which suggest that the universality is restored in case of a finite temperature fixed

point [9]. Numerical simulations in
the four dimensional case at the critical temperature for

a Gaussian [15] or binary distribution [11] give the same exponents within error bars (for an

opposite assertion on this question see [16] High precision simulations
in

this case should

clarify the situation. It is not necessary to point out that the problem of the universality
becomes much more subtle if we include the effect of a magnetic field. We expect that the

existence of a finite temperature transition in a magnetic field should trot depend on the

distribution of the J's. Studies with a magnetic field in the case of the four-dimensional Ising

spin glass with a Gaussian distribution would be welcome.

We consider two identical copies of the system equation (1), 1-e with the same realization

of the bond disorder J~ [17]. Let us colt them (a~) and (ri). The overlap Q among the two

copies is defined by

Q
=

~j
air~ (2)

N

from which we cari construct the order parameter function P(q)

P(q)
=

(à(q Q)) (3)
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where and (... mean the usual statistical Gibbs average over configurations and the average

over the quenched disorder respectively.
In mean-field theory, below the critical temperature and at zero magnetic field, there exist

an infinity of equilibrium states, ail of them having a different statistical weight. Furthermore,
ail these states have zero magnetization and no state is particularly selected if we apply a

Inagnetic field. In fact, an infinity of equilibrium states still remain and the spin glass phase
survives in a magnetic field. At zero niagnetic field the order parameter distribution P(q) is

symmetric under the exchange q - -q. The magnetic field breaks this symmetry and the

P(q) is expected to be non-zero only if q > 0. This means that half of the states have been

suppressed by the magnetic field.

Close to T~, the free energy of the SK model with magnetic field can be approximate by

f
= T

[ QÎb Tr Q~
( [

Qla~) h~ [ Qab (4)

a< a< a<

where (Qabi < a, b > n) is the order parameter and n the number of rephcas. The equilibrium
solution of the free energy in the limit of infinite order of replica symmetry breaking gives a

function q(x) defined in the interval (0,1) [3]. This function q(x)
is the analytical continuation

of the matrix Qab in the limit n -
0. Close to T~ one gets a q(x) with two plateaus in the

regions 0 < x < x~n,n and xm~x < x < 1 (x~n,n < x~nax) with respective values q~n,n and q~n~x

(q~n,n < q~nax ). Between x~n,n and x~nax, q(x) increases with x. q~nax is nearly independent on the

field but q~n,n increases with a power of h smaller than 1 (q~n,n
+~

h~/3). Using the static chaos

approach to spin glasses [21] it has been suggested that the effect of the magnetic field is the

progressive suppression of ail equilibrium states a such that their overlap qap < q~n;n Vfl. This

corresponds to cutting some branches of the ultrametric tree. Using the relation P(q)
=

§fl
q

[18] one finds that P(q) is given by a continuous part Po(q) which is non zero inside the interval

(q~n;n,q~nax) and two singularities at the extremes of this interval

~(~)
"

~0(~) + ~~(~ ~m>n) + bô(~ ~max) (~)

We have simulated the SK model at T
=

o-à and h
=

0.3 (the corresponding field at the AT

fine at that temperature is h ct
0.57). We simulated three different sizes N

=
320,1048 and

3200. For these sizes we were
able to reach equilibrium for near ail samples after 100000 Monte

Carlo steps for the largest size. Then statistics was collected over several hundred thousands of

lvionte Carlo steps. The main source of fluctuations comes from the finite number of samples
because the P(q) is strongly non self-averaging. Self-averageness is restored when the AT fine

is reached by increasing the field. The number of samples is 500, 30 and 20 respectively. Even

though the numbers of samples are small, they are large enough to show the qualitative behavior

of the P(q). The results are shown in figure 1. The P(q) begins to display two singularities for

sizes of several thousands spins. For smaller sizes, we only found one peak plus a long tait which

extends down to the region of negative overlaps. According to the Parisi solution to mean-field

theory, q~n;n should match the correct value at infinite order of replica symmetry breaking in
the

infinite-size hmit. We can then compute the position of both singularities, at least at first order

of rephca symmetry breaking and this gives q~n,n =
0.45, q~nax =

0.63. This is in agreement with

our numerical results. Other good estimates for q~n;n and q~nax are also obtained using the PaT

(Parisi-Toulouse) hypothesis [19] (which is a very good approximation at least close to T~).
This approximation predicts that q~n;n(h,T)

=
q(h,TAT(h)) and q~nax(h,T)

=
q(hAT(T),T)

where TAT(h) and hAT(T) are the equations for the AT fine. Computing these values, one gets

q~nax m 0.64 and q~n;n ct 0.437. This is also
in agreement with our simulations.



1622 JOURNAL DE PHYSIQUE I N°11

6

5

N

_

-
320

DEI
~

--
1408

°~
-

3200

2

0

-0.5 -0.25 0 0.25 0.5 0.75

~

Fig. I. P(q) for the SK model at T
=

ù-à, h
=

0.3. The
error

bars
are

of order 20% for N
=

3200

and 15% for N =1408 and less than 5% for N
=

320. The symbols are a
guide to the eye.

New we retum to trie 4d case. There exists two possible scenarios that we want to compare.

First, from trie droplet models [7] it is expected that ail excitations of droplet of sizes langer
than a certain length ( will be suppressed by trie field. Trie dependence of this correlation

length in function of the magnetic field is given by

Î
'~ (QEA h~) ~~~ ~ (6)

with qEA the Edwards-Anderson order pararneter and 9 trie thermal exponent which gives trie

characteristic energy scale L~ of droplet excitations of typical size L. This exponent à should

be approximately (d- 3) /2 (as emerges from numencal studies of chaos in spm glasses [20, 21]).
For sizes much larger than ( it is expected that the P(q) will be strongly peaked around a unique
value of q. Trie expression here reported for trie zero temperature exponent à is expected to

be valid only
m case of continuous symmetric distribution of couplings. In two dimensions

one obtains à
=

-0.48 [22] in well agreement with the previous expression and à
=

-1 in one

dimension which is trie correct solution (see [9] ). In three dimensions several results [9] suggest
that à is very low but compatible with zero even though a precise determmation is lacking in

the Gaussian case. In case of binary couplings the exponent 9 has been shown to be dilferent

m agreement with trie observation that they belong to a dilferent universality dass. In the

three,dimensional +J Ising spm glass with nearest neighbors Berg, Hansmann and Celik [23]
obtain 9

r-
0.74. For a three-dimensional +J Ising spm glass model which incorporates second

nearest-neighbor interactions Marinan, Pansi and Ritort [24] obtain, under the assumption
that there is not finite T transition, 9

r-
o-à which is in agreement with the previous reported

value. There are no simulations (with the same precision as those performed in [23] in case

of a
three-dimensional Gaussian Ising spm glass. In this case we expect that more precise

computations should give a value well compatible with 9
=

0.

we have simulated L
=

3, 5, 6, 8 in a 4d lattice with periodic boundary conditions with +J

couplings. Simulations were performed at T
=

1.2(r- o-à T~) and h
=

0.4. The number of
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Fig. 2. P(q) for the 4d Ising spin glass. Error bars are
smaller than 15% in ail

cases.
The symbols

are a
guide to the eye.

sample are 320,128,100, 50 respectively. From finite-size scaling studies [11], we expect to be

within the spin glass phase if there is an AT fine. It is not very diliicult to reach the equilibrium

in case of L
=

3, 5. 100000 Monte Carlo steps were enough after a slow cooling procedure. Now

we will try to convince the reader that we elfectively thermalized for L
=

6, 8. To this end we

performed a simulated annealing of half a million of Monte Carlo steps from the high to the

low temperature phase at constant magnetic field. After that, statistics was collected over the

next half a million Msteps. During this collecting, we computed the four moments of the P(q)
distribution which show no apparent drift in time. To increase the statistics we simulated in

parallel eight identical copies of the system computing the four overlaps among four diiferent

pairs at each Monte Carlo step. Figure 2 shows the numencal results for the P(q). We can

immediately notice that there is no singularity at q = qm;n if we compare to the previous figure
for the SK model.

Looking at this results it is diliicult to draw a
definite conclusion on what is the correct

scenano m 4d Ising spin glasses. Two facts are interesting to point out. The first one is the

existence of a long tait for sizes up to L
=

6 which extends down to negative overlaps. So,
P(q

=
0) is finite which means that reversai of compact domains of characteristic size L are

still present with a finite probability. Within the droplet model, we can estimate how domain

excitations of typical size L are suppressed by the magnetic field. The eifect of the magnetic
field depends on the regime m

which the system is, either L » ( or L « (, ( being given
by equation (6). We con estimate the value of ( by using numencal simulations of static chaos

[21]. A typical value of order 5 is obtained. If L > > ( we expect that the droplets excitations of

size L are
suppressed with a factor m

exp(-flx(L)~h~) respectively to the case h
=

0 ix being
the linear susceptibility.) So, m this regime, the tails would be suppressed. Unfortunately, we

are m the regime where (
r-

L. As a lower bound, when L « (, taris are suppressed with a

factor ct
exp(-(L)~/~h~). In our range of sizes, this factor is of order 10~l which is smaller

than what we can see on our plots (P(q
=

0) being 0.3 at zero magnetic field, we would expect
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Fig. 3. Non thermalized P(q) for the 4d Ising spm glass.

P(q
=

0)
r-

0.03 [12] The second fact regards the absence of a second peak of P(q) at qmin.
Presumably, such a peak coula appear for larger sizes. In the case of SK mortel, trie qmin peaks
already arise for size of order 1000 spins, as oppose to trie 4d case. One possible reason for

such a diiference reside m trie fact that, for trie 4d case, we can be very close to trie AT fine.

A second reason is that we can surely expect stronger finite size eifects than in trie mean-field

case. For instance, trie singularity in P(q) for q = qmax is less pronounced as con be seen in

numerical simulation [12].
In order to reach more definite conclusion, we need to study larger sizes lattices. In practice,

such a task is very diliicult because for larger sizes lattices we are not able to thermalize. In

fact, we bave performed numerical simulations for L
=

10 and L
=

12. Despite that these

are non equilibrium results, interesting hints can be obtained. In figure 3 we show trie P(q)
distribution. Starting from uncorrelated configurations, trie overlap among two copies grows

with time. In several cases it remains stacked in a value of q close to 0A giving two singularities
for the P(q) distribution. This mdicates that we are m trie good region m the h-T plane in

order to test if there exists a spm glass phase.

Still, in order to have a more definite conclusion, we need to take advantage of new numerical

simulation techniques hke the simulated tempering [25]. This method has revealed much

effective for the 2d [26] and 3d [27] Ising spm glasses. A work using such techniques is under

progress.

Summanzing, we have studied the 4d Ising spin glass with magnetic field. For comparison,

we have also simulated the SK model. This is also a test of the Pansi solution to mean-field

theory and our numerical results are in agreement with it. In the 4d case we present results

for lattice size up to L
=

8. Then we tried to mterpret them in the mean-field picture and the

droplet one. It seems that the eifect of the magnetic field is weaker than what droplet picture

predicts. Non thermalized results for larger sizes suggest that fully equilibrated simulations

should be able to select in a definite way between these two pictures. We hope that usmg

numerical techniques like simulated tempenng should be able to decide the question in the

near future.
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