
Dynamical ac study of the critical behavior in Heisenberg spin glasses

Marco Picco1 and Felix Ritort2
1Laboratoire de Physique Théorique et Hautes Energies, Boîte 126, Tour 16, 1er étage, 4 place Jussieu,

F-75252 Paris Cedex 05, France
2Departamento de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

sReceived 23 November 2004; published 18 March 2005d

We present some numerical results for the Heisenberg spin-glass model with Gaussian interactions, in a
three-dimensional cubic lattice. We measure the ac susceptibility as a function of temperature and determine an
apparent finite temperature transition which is compatible with the chiral-glass temperature transition for this
model. The relaxation time diverges like a power lawt,sT−Tcd−zn with Tc=0.19s4d andzn=5.0s5d. Although
our data indicate that the spin-glass transition occurs at the same temperature as the chiral glass transition, we
cannot exclude the possibility of a chiral-spin coupling scenario for the lowest frequencies investigated.
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Dynamical ac measurements in metallic spin glassesse.g.,
CuMnd show the existence of a cusp in the in-phase compo-
nent of the AC susceptibility located at a temperature value
Tm that shifts to lower temperatures as the frequencyv of the
AC field decreases.1,2 The relaxation time is then given by
the inverse of the AC frequency and increases very fast as
the temperature decreases. Several laws have been proposed
to describe this dependence such as the Vogel-Fulcher law3

or super-Arrhenius behavior.4 However, most experimental
data5 show thatTmsvd can be well fitted to a power law over
several orders of magnitude,Tmsvd−Tc,v1/zn. Tc is the
value at which the characteristic relaxation time diverges and
the power law behavior has been interpreted as a signature of
a phase transition atTc.

Most metallic spin-glasses are characterized by low spin
anisotropy where a description of the magnetic moments in
terms of continuous Heisenberg spins seems appropriate. The
vast majority of theoretical studies in this modelsanalytical
and numericaldhave considered the critical behavior by
studying the equilibrium properties. From these studies it
emerges that this model undergoes a chiral-glass phase tran-
sition at a finite temperature6,7 while it was for long time
believed that the spin-glass transition occurs only at zero
temperature.8 A chiral-glass transition occurs if the spin-
reflection symmetry is broken but not the spin-rotation sym-
metry. In more recent works, it was claimed that at the
chiral-glass transition there is also a spin-glass transition.9–13

ac studies provide a direct method to investigate the critical
behavior and are relevant as most of the experimental evi-
dence in favor of the spin-glass transition is based on such
type of measurements. In this paper we report on some dy-
namical ac simulations concerning the critical behavior in
the Heisenberg spin-glass model in three dimensions. The
goal of this work is then to find an estimate of the spin-glass
transition temperature and the value of the critical exponent
zn. The model is defined as

H = − o
ki,jl

JijSW i ·SW j − ho
i=1

N

Si
z, s1d

where the indexi runs from 1 toN=L3, SW i is a vector of unit
modulus and theki , jl corresponds to a pair of nearest-

neighbors spins in a finite-dimensional lattice with periodic
boundary conditions. The exchange couplingsJij are taken
from a Gaussian distribution with zero average and unit vari-
ance. Monte Carlo simulations ofs1d use random updating of
the spins with the Metropolis algorithm. A spin is randomly
chosen and its value is changed as

sW i → sW i + dW i = sW i + d · rWi , s2d

with d a finite numbersd=1d and rWi a vector with random
components extracted for a Gaussian distribution of unit
variance. The new spin after the change in Eq.s2d is rescaled
in such a way that it remains of unit length.

Our simulations of the Heisenberg model are done in the
following way: An oscillating magnetic field hstd
=h0 coss2pvtd of frequencyv=1/P, whereP is the period,
is applied to the system and the magnetization measured as a
function of time

Mstd = M0 coss2pvt + fd, s3d

with M0 the intensity of the magnetization andf the dephas-
ing between the magnetization and the field. The origin of
the dephasing is dissipation in the system which prevents the
magnetization to follow the oscillations of the magnetic field.
From the magnetization we obtain the in-phase and out-of-
phase susceptibilities defined as

x8 =
M0 cossfd

h0
=

2E
0

P

Mstdcoss2pvtddt

h0
s4d

x9 =
M0 sinsfd

h0
=

2E
0

P

Mstdsins2pvtddt

h0
. s5d

The dephasingf measures the rate of dissipation in the sys-
tem and is given by
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tansfd =
x9

x8
. s6d

The in-phase and out-of-phase susceptibilities are computed
by averaging the right-hand side of Eqs.s4d and s5d over
several periodsP=1/v. We always averaged at least over
ten periods of time, after discarding the first four periods of
time. We also took averages over several realizations of dis-
order, at least six for the largest sizes that we simulated,L
=40.

For each frequencyv, we determine the temperatureTm
corresponding to the maximum of the in-phase susceptibility
x8.14,15 This temperature determines the relaxation time
tsTmd=P. Alternatively, one could also defineTm as the
value of the temperature at which an inflection point is ob-
served in the out-of-phase susceptibilityx9. Next, one can
determine the static transition temperature as well as the
critical exponentzn using the scaling relation

tsTd . csT − Tcd−zn, s7d

where c is a constant. In a previous work,20 we had em-
ployed this method to study the Ising spin-glass model and
the Heisenberg spin-glass model. Our findings, for the Ising
case, was in very good agreement with a previous numerical
study15,16 as well as with experimental results.14,17–19For the
Heisenberg case, our conclusion was that we had data com-
patible with a zero temperature divergencetsTd.T−zn with a
value of zn.5.8. In the present work, we reconsider more
carefully the Heisenberg case. In ac susceptibility measure-
ments there are two effects that must be carefully evaluated:
finite-size effects and the amplitude of the ac field. Finite-
size effects become particularly important as we move close
to the critical temperature where the correlation length di-
verges. Since one has no direct access to the correlation
length, one must be sure that the size considered is large
enough. The amplitude of the magnetic fieldh0 is also im-
portant as we want to keep our measurements in the linear
response regime. Already for the Ising model,15 it was ob-
served that a too large value ofh0 can affect the measure-
ments. But in the case of the Ising spin-glass model, it is
only for rather large values of the magnetic fieldh0 that
deviations were observed in simulations, typically forh0
.0.4. Here on the contrary, we will see that one needs to
adjust the value ofh0 as a function of the frequency. The
lower the frequency, then the lower the temperature that we
want to probe, and the lowest the magnetic field must be. For
the lowest frequency that we simulated,v=1/150 000, we
need to reduce the amplitude of the magnetic field toh0
=0.01. In Fig. 1 we show susceptibility values obtained for
L=10 and P=1/v=50 000, which is a rather small fre-
quency. We can see how the position of the maximum is
strongly affected by the value ofh0. It is only for values of
h0ø0.02 that the maximum converges toT.0.26. However
the largest value ofh0 up to which we can locate the maxi-
mum of x8 for a givenP does not seem to depend much on
the size considered. Most of the simulation time has been
spent at determiningh0 for each frequency. This was done by
repeating, for each frequency, the measurements as shown in
Fig. 1 for decreasing values ofh0. The values ofh0 that we

obtained are 0.05 forPø5000, 0.02 forP=15 000,50 000,
and 0.01 forP=150 000.

In practice, the fact that one needs to reduce the amplitude
of the applied ac field has an important consequence. Indeed,
fluctuations in the measured susceptibility increase very fast
as we decreaseh0, as could be expected from Eqs.s4d and
s5d. Thus, to reduce the errors on the value ofx8 ,x9, one
needs to increase the number of simulated samples. Conse-
quently, sinceh0 has to be reduced as one increases the value
of the period, one must simulate a steadily larger number of
samples as the size of the system increases. In Fig. 2 we
show x8 as a function of the temperature forP=150 000,
h0=0.01, and for different sizes at the lowest frequencyv
=1/P=1/150 000. It emerges from Fig. 2 that finite-size ef-
fects are very important and strongly influence the position
of the maximum of the susceptibility. ForL=10, the maxi-
mum is located at.0.20, while forL=13 it has moved to
.0.24 and then it stabilizes close to.0.26 forL=20, appar-
ently not changing anymore for larger sizes. Thus it seems
that finite-size corrections can be very important, meaning
that the correlation length must be rather large. Although the
same type of behavior is also observed at other frequencies,
it becomes more evident as we move to lower frequencies.
This might have been expected, as the correlation length in-
creases when the temperature decreases. In practice, for all
the simulations that we have performed, we always got the

FIG. 1. sColor onlined x8 vs T for L=10, P=50 000 and for
varying the value of the amplitude of magnetic fieldh0

=0.02, 0.05, 0.10, 0.15, and 0.20sfrom bottom to topd.

FIG. 2. sColor onlined In-phase susceptibility as function of
temperature, forh=0.01, P=150 000, and forL=10, 13, 20, and
40 sfrom top to bottomd.
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same susceptibility forL=20 andL=40, thus we expect that
our measurements for these sizes are free of finite-size ef-
fects.

We will now present our main results for the critical be-
havior. We have computed the ac susceptibility for three
sizes,L=10,20,40 and forP=1500, 5000, 15 000, 50 000,
and 150 000. For each of these sizes and periods, we have
adjusted the value of the amplitude of the magnetic fieldh0
in order to not see any shift of the maximum ofx8, as ex-
plained above. Also, we have checked that for each value of
P, the susceptibility does not change between the sizesL
=20 andL=40. The data that we obtained forL=40 are
shown in Fig. 3. We also see how the value ofTm decreases
as v decreases.Tm has been determined as the temperature
for which there is a maximum in the susceptibility after fit-
ting data to a parabolic form. In Fig. 4, we show the tem-
peratureTm versus the periodP. Data can be fitted to a power
law s7d with Tc=0.19±0.04 showing the existence of a
finite-temperature transition in the zero-frequency limit.
Since this value is very close to the one obtained for the
chiral glass transition7 and the spin-glass transition,12 we
have repeated a fit but imposing the value forTc obtained in
these works, i.e.,Tc=0.16, in order to reduce the number of
parameters of the fit. With this condition, we obtain a value
of zn=5±0.5 in good agreement with other estimates.7

In this paper we have performed ac susceptibility simula-
tions for the Heisenberg spin-glass model. By carefully ad-
justing the value of the amplitude of the applied magnetic
field h0 as a function of the frequency considered, we have
determined the relaxation time associated with each tempera-
ture. Extrapolating the relaxation time to the limit of zero
frequency, we extract a value of critical temperatureTg
=0.19±0.04 compatible with either the values obtained for
the chiral-glass transition7 or the spin-glass transition.9–12We
also computed the exponentzn=5.0±0.5 in good agreement

with previous estimates7 and experimental data for
Heisenberg-like models.5,14,21 Thus the simplest conclusion
is that we are just observing a spin-glass transition at the
same temperature as the chiral glass transition, in agreement
with other recent studies.9–13 But this is not the only possi-
bility. Indeed, in the spin-chirality decoupling-recoupling
scenario of Kawamura,6 one expects that the chirality will
couple at small distances with the spins. Thus, as far as one
considers only small distances, one can observe physical
phenomena expressed in term of spins while the transition is
really on the chiral parameter. It is only for distances larger
than some scaleL* that spins and chirality decouple. This
crossover length is related to the value of the period or fre-
quency required to probe lengths of orderL* in simulations.
The value ofP is expected to be around 105–106 sRef. 22d,
which is of the same order as the largest time that we probe
in our simulation,P=150 000. Thus we cannot, with the
present simulations, exclude the possibility of a chiral-spin
coupling scenario. Simulations for much lower frequencies
are needed in order to probe this decoupling-recoupling sce-
nario and to tell if the spin transition that we observe is
indeed due to the chiral glass transition or not.
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