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We present some numerical results for the Heisenberg spin-glass model with Gaussian interactions, in a
three-dimensional cubic lattice. We measure the ac susceptibility as a function of temperature and determine an
apparent finite temperature transition which is compatible with the chiral-glass temperature transition for this
model. The relaxation time diverges like a power law (T—T.) ™ with T.=0.194) andzr=5.0(). Although
our data indicate that the spin-glass transition occurs at the same temperature as the chiral glass transition, we
cannot exclude the possibility of a chiral-spin coupling scenario for the lowest frequencies investigated.
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Dynamical ac measurements in metallic spin glage&s, neighbors spins in a finite-dimensional lattice with periodic
CuMn) show the existence of a cusp in the in-phase compoboundary conditions. The exchange coupligsare taken
nent of the AC susceptibility located at a temperature valugrom a Gaussian distribution with zero average and unit vari-
Tn, that shifts to lower temperatures as the frequenf the  ance. Monte Carlo simulations ¢f) use random updating of
AC field decrease’? The relaxation time is then given by the spins with the Metropolis algorithm. A spin is randomly
the inverse of the AC frequency and increases very fast aghosen and its value is changed as
the temperature decreases. Several laws have been proposed
to describe this dependence such as the Vogel-Fulchéer law
or super-Arrhenius behavibrHowever, most experimental
dat& show thafT,(w) can be well fitted to a power law over o R _
several orders of magnitudd,(w)-T.~ . T, is the With & a finite number(6=1) andr; a vector with random
value at which the characteristic relaxation time diverges an§omponents extracted for a Gaussian distribution of unit
the power law behavior has been interpreted as a signature giriance. The new spin after the change in @ is rescaled
a phase transition &t,. in such a way that it remains of unit length.

Most metallic spin-glasses are characterized by low spin Our simulations of the Heisenberg model are done in the
anisotropy where a description of the magnetic moments ifiollowing way: An oscillating magnetic field h(t)
terms of continuous Heisenberg spins seems appropriate. Theh, cos@mwt) of frequencyw=1/P, whereP is the period,
vast majority of theoretical studies in this modahalytical s applied to the system and the magnetization measured as a
and numerical)have considered the critical behavior by fynction of time
studying the equilibrium properties. From these studies it
emerges that this model undergoes a chiral-glass phase tran- -
sitiongat a finite temperatuté vghile it was fogr Iongptime M(t) = Mo cos@mat + ¢), ©)

believed that the spin-glass transition occurs only at zerg . . . o
temperaturé. A chiral-glass transition occurs if the spin- with M, the intensity of the magnetization ardthe dephas

) . ; ; ing between the magnetization and the field. The origin of
reflection symmetry is broken but not the spin-rotation sym- - SR ;
: . the dephasing is dissipation in the system which prevents the
metry. In more recent works, it was claimed that at the o —_— g
magnetization to follow the oscillations of the magnetic field.

chiral-glass transition there is also a spin-glass transitibh. rom the maanetization we obtain the in-phase and out-of-
ac studies provide a direct method to investigate the critica'I: gnetlz . P
Ehase susceptibilities defined as

behavior and are relevant as most of the experimental ev
dence in favor of the spin-glass transition is based on such

G\ G+ 6=+ 6T, )

P
type of measurements. In this paper we report on some dy- ZJ M (t)cos@mot)dt
namical ac simulations concerning the critical behavior in . Mg cos(p) 0
the Heisenberg spin-glass model in three dimensions. The X = F he (4)

goal of this work is then to find an estimate of the spin-glass
transition temperature and the value of the critical exponent

zv. The model is defined as P ,
_ ZJ M(t)sin@mwt)dt
,_Mgsin(¢)  Jo

N
=->35.5- : S
H=-2 98 §-h2 S, (1) V=T . (5)

where the index runs from 1 toN=L3, 5 is a vector of unit  The dephasingd measures the rate of dissipation in the sys-
modulus and the(i,j) corresponds to a pair of nearest- tem and is given by
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tan(¢) (6)

_X
X/
The in-phase and out-of-phase susceptibilities are computed

by averaging the right-hand side of Ed4) and (5) over
several period=1/w. We always averaged at least over
ten periods of time, after discarding the first four periods of
time. We also took averages over several realizations of dis-
order, at least six for the largest sizes that we simulated,
=40.

For each frequencw, we determine the temperatufe,
corresponding to the maximum of the in-phase susceptibility
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7(T,)=P. Alternatively, one could also defin&,, as the

varying the value of the amplitude of magnetic fieldy

value of the temperature at which an inflection point is ob-=0 02, 0.05, 0.10, 0.15, and 0.2Bom bottom to top).

served in the out-of-phase susceptibiljfy. Next, one can

determine the static transition temperature as well as thgyiained are 0.05 foP<5000. 0.02 forP=15 000 .50 000
critical exponentzy using the scaling relation and 0.01 forP=150 000. T ' '

AT) =c(T-T)™, )

In practice, the fact that one needs to reduce the amplitude

of the applied ac field has an important consequence. Indeed,
wherec is a constant. In a previous wofR,we had em- flyctuations in the measured susceptibility increase very fast
ployed this method to study the Ising spin-glass model angs we decreask,, as could be expected from Eqd) and
the Heisenberg spin-glass model. Our findings, for the Isings). Thus, to reduce the errors on the valueyofy”, one
case, was in very good agreement with a previous numericaleeds to increase the number of simulated samples. Conse-
study*>*°as well as with experimental results:’~*°For the  quently, sincen, has to be reduced as one increases the value
Heisenberg case, our conclusion was that we had data corf the period, one must simulate a steadily larger number of
patible with a zero temperature divergent®) =T *’ witha  samples as the size of the system increases. In Fig. 2 we
value of zv=5.8. In the present work, we reconsider moreshow y’ as a function of the temperature f&=150 000,
carefully the Heisenberg case. In ac susceptibility measurehy=0.01, and for different sizes at the lowest frequemcy
ments there are two effects that must be carefully evaluated: 1/P=1/150 000. It emerges from Fig. 2 that finite-size ef-
finite-size effects and the amplitude of the ac field. Finite-fects are very important and strongly influence the position
size effects become particularly important as we move closef the maximum of the susceptibility. Far=10, the maxi-
to the critical temperature where the correlation length di-mum is located at=0.20, while forL=13 it has moved to
verges. Since one has no direct access to the correlation(.24 and then it stabilizes close 460.26 forL=20, appar-
length, one must be sure that the size considered is largently not changing anymore for larger sizes. Thus it seems
enough. The amplitude of the magnetic filglis also im-  that finite-size corrections can be very important, meaning
portant as we want to keep our measurements in the lineanat the correlation length must be rather large. Although the
response regime. Already for the Ising motfelf was ob-  same type of behavior is also observed at other frequencies,
served that a too large value bf can affect the measure- it becomes more evident as we move to lower frequencies.
ments. But in the case of the Ising spin-glass model, it isThis might have been expected, as the correlation length in-
only for rather large values of the magnetic fighg that  creases when the temperature decreases. In practice, for all
deviations were observed in simulations, typically fay  the simulations that we have performed, we always got the

=0.4. Here on the contrary, we will see that one needs to
adjust the value ohy as a function of the frequency. The
lower the frequency, then the lower the temperature that we
want to probe, and the lowest the magnetic field must be. For
the lowest frequency that we simulateds1/150 000, we
need to reduce the amplitude of the magnetic fieldhgo
=0.01. In Fig. 1 we show susceptibility values obtained for
L=10 and P=1/w=50 000, which is a rather small fre-
quency. We can see how the position of the maximum is
strongly affected by the value &f,. It is only for values of
hy=0.02 that the maximum convergesTe=0.26. However
the largest value ofiy up to which we can locate the maxi-
mum of ¥’ for a givenP does not seem to depend much on
the size considered. Most of the simulation time has been
spent at determininly, for each frequency. This was done by
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FIG. 2. (Color online) In-phase susceptibility as function of

repeating, for each frequency, the measurements as shownt#mperature, foh=0.01, P=150 000, and fol.=10, 13, 20, and
Fig. 1 for decreasing values bf. The values oh, that we 40 (from top to bottom).
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FIG. 3. (Color online) y’ vs T for P=1500, 5000, 15 000,

50 000, and 150 000 fdr=40. FIG. 4. (Color online) Temperature of the maximum of the in-

phase susceptibility vs the perid®l for L=40. The discontinuous

same susceptibility for =20 andL=40, thus we expect that 'ine is a best fit with Eq(7).
our measurements for these sizes are free of finite-size ef-

fects. _ o with previous estimatés and experimental data for

We will now present our main results for the critical be- Hejsenberg-like modefs!42! Thus the simplest conclusion
havior. We have computed the ac susceptibility for threqs that we are just observing a spin-glass transition at the
sizes,L =10, 20,40 and foP=1500, 5000, 15000, 50 000, same temperature as the chiral glass transition, in agreement
and 150 000. For each of these sizes and periods, we haygth other recent studi€s?3 But this is not the only possi-
adjusted the value of the amplitude of the magnetic figld pjjity. Indeed, in the spin-chirality decoupling-recoupling
in order to not see any shift of the maximum f, as ex-  scenario of Kawamuréone expects that the chirality will
plained above. Also, we have checked that for each value Qipyple at small distances with the spins. Thus, as far as one
P, the susceptibility does not change between the sizes considers only small distances, one can observe physical
=20 andL=40. The data that we obtained fo=40 are  phenomena expressed in term of spins while the transition is
shown in Fig. 3. We also see how the valueTgfdecreases really on the chiral parameter. It is only for distances larger
as » decreasesl,, has been determined as the temperaturghan some scale” that spins and chirality decouple. This
for which there is a maximum in the susceptibility after fit- crossover length is related to the value of the period or fre-
ting data to a parabolic form. In Fig. 4, we show the tem-qyency required to probe lengths of ordérin simulations.
peratureT, versus the perio®. Data can be fitted to a power The value ofP is expected to be around 201(F (Ref. 22),
law (7) with T.=0.19+0.04 showing the existence of a which is of the same order as the largest time that we probe
finite-temperature transition in the zero-frequency limit.jn our simulation,P=150 000. Thus we cannot, with the
Since this value is very close to the one obtained for thgyresent simulations, exclude the possibility of a chiral-spin
chiral glass transitichand the spin-glass transitidh,we  coupling scenario. Simulations for much lower frequencies
have repeated a fit but imposing the value Toobtained in  are needed in order to probe this decoupling-recoupling sce-
these works, i.eJ.=0.16, in order to reduce the number of narig and to tell if the spin transition that we observe is
parameters of the fit. With this condition, we obtain a valuejndeed due to the chiral glass transition or not.
of zv=5+0.5 in good agreement with other estimates.

In this paper we have performed ac susceptibility simula- We want to thank F. Ricci-Tersenghi for discussions in the
tions for the Heisenberg spin-glass model. By carefully adearly stages of this work. One of the auth@hd.P.) also
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determined the relaxation time associated with each temperavork was done. F.R. has been supported by the Spanish
ture. Extrapolating the relaxation time to the limit of zero Grant No. BFM2001-3525, the STIPCO EEC network, and
frequency, we extract a value of critical temperatdig the sPHINX program of the ESF. Laboratoire de Physique
=0.19+0.04 compatible with either the values obtained forThéorique et Hautes Energies is Unité Mixte de Recherche
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