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Abstract: Maxwell’s demon is a famous thought experiment and a paradigm of the thermodynamics
of information. It is related to Szilard’s engine, a two-state information-to-work conversion device
in which the demon performs single measurements and extracts work depending on the state
measurement outcome. A variant of these models, the continuous Maxwell demon (CMD), was
recently introduced by Ribezzi-Crivellari and Ritort where work was extracted after multiple repeated
measurements every time that τ is in a two-state system. The CMD was able to extract unbounded
amounts of work at the cost of an unbounded amount of information storage. In this work, we built a
generalization of the CMD to the N-state case. We obtained generalized analytical expressions for
the average work extracted and the information content. We show that the second law inequality
for information-to-work conversion is fulfilled. We illustrate the results for N-states with uniform
transition rates and for the N = 3 case.

Keywords: Maxwell demon; information-to-work conversion; correlated measurements

1. Introduction

In 1867, James Clerk Maxwell proposed a thought experiment for the better under-
standing of the scope and limitations of the second law [1]. Known as the Maxwell demon
paradox, it has spurred strong research activity for many years, setting the basis for the
thermodynamics of information and information-to-work conversion [2–10]. In 1929, Leo
Szilard introduced a simple physical model [11] in which a particle was free to move in
a box of volume V with two compartments (denoted with 0 and 1) of volumes V0 and
V1 and V = V0 + V1 (Figure 1A). In Szilard’s engine (SZ), the “demon” was an entity
able to monitor the particle’s position and store the observed compartment in a single-bit
variable σ = 0, 1. Information-to-work conversion is as follows: once the particle’s com-
partment is known, a movable wall is inserted between the two compartments, and an
isothermal process is implemented to extract work. A work-extracting cycle concludes
when the movable wall reaches its far end, and the measurement-work extraction pro-
cess restarts. The average work extracted per cycle equals the equivalent heat transferred
from the isothermal reservoir to the system: WSz

2 = −kBT(P0 log(P0) + P1 log(P1)), with
P0,1 = V0,1/V the occupancy probabilities of each compartment. For equal compartments
P0 = P1 = 1/2, Szilard’s engine can extract maximal work determined by the Landauer
bound, WSZ ≤ kBT log(2) from the reservoir without energy consumption, meaning that
heat was fully converted into work, apparently violating Kelvin’s postulate. In the 1960s
and 1970s, work by Landauer [12] and Bennett [13] found a solution to the paradox. The
solution to this paradox considers the information content of the measurement, the work
extraction, and the resetting processes of the demon [14,15]. Most importantly, to recover
the initial state at the end of the thermodynamic cycle, the demon must erase the informa-
tion acquired on the system [2]. The minimal erasure cost per bit of information equals
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kBT log(2) for equally probable outcomes. In the end, the information content stored in
the demon is always larger than or equal to the extracted work, in agreement with the
second law.

In a recent paper, a new variant of the Maxwell demon, the continuous Maxwell
demon (CMD), was introduced [16] (see also [17] for additional results), analytically solved,
and experimentally tested. In the CMD, the demon performs repeated measurements
of a particle’s location in a two-compartment box every time τ. The first time that the
demon measures that the particle changed compartments, a work extraction procedure
is implemented. The main difference with the SZ engine is that, in the CMD, a work
extraction cycle contains multiple measurements, whereas for the SZ, a single measurement
is performed at every work cycle. Compared to the SZ, the CMD can extract a more
significant amount of work W because of the larger information content of the multiple
stored bits in a cycle. Interestingly, the average work per cycle in the CMD satisfies
WCMD ≥ kBT log(2) being unbounded in the limits P0 → 0 (P1 → 1) and P0 → 1 (P1 → 0).
A model combining the SZ and CMD work extraction protocols version showed the role of
temporal correlations in optimizing information-to-energy conversion [18]. In the CMD,
the time between measurements τ is arbitrary. In particular, it can be made infinitesimal,
τ → 0, leading to an infinite number of measurements per cycle justifying the continuous
adjective of the model.
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Figure 1. (A) The 2-CMD is represented as a two-compartment box in which a work extraction
protocol is implemented (see text). The cycle of measurement is here T3

0,1 = 1, 1, 1︸ ︷︷ ︸
n=3

, 0. The average

work extracted for this cycle is − log V1
V . (B) 4-CMD in circular geometry. Each compartment had

volume Vi. The cycle of measurement of the CMD reads: T4
0,2 = 0, 0, 0, 0︸ ︷︷ ︸

n=4

, 2. The initial state σ is 0 and

the final state σ′ is 2, the crossing of compartment 3 remained unnoticed for measurements made
at every time τ. (C) In the work extraction protocol, a pair of walls limiting the volume of the last
compartment, here V2, are inserted. The wall between compartments 1 and 2 is fixed, whereas the
wall between compartments 2 and 3 was movable and had no mass. To extract the work produced by
the expansion of the particle confined in 2, the movable wall is connected to a pulley device. The
average work extracted for this cycle is −kBT log V2

V .

Here, we generalize the CMD to the case of N-states (N-CMD). In a possible realization
of the N-CMD, a particle in a box of volume V can occupy N distinct compartments of
volumes Vi (Figure 1B). The demon measures in which compartment the particle is at every
time τ until a change in the compartment is detected. Then, a work extraction process is
implemented by inserting one fixed wall at one side and one movable wall at the other
side of the compartment that can expand under the elastic collisions exerted by the particle
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(Figure 1C). A pulley mechanism is attached to the movable wall to extract an average
work equal to W = −kBT log Pi with Pi = Vi/V. For N = 2, we obtain the standard CMD
(Figure 1A) (2-CMD), which corresponds to transforming the Szilard box (Figure 1B) into a
periodic torus (Figure 1C).

The outline of this work is as follows. In Section 2, we show how to generalize the
mathematical formalism of the 2-CMD to N states (N-CMD). In Section 3, we analyze
the performance of the N-CMD by studying the thermodynamic efficiency and power. In
Section 4, we analyze several cases, and in particular case N = 3, to investigate the effect of
topology on information-to-work conversion (IWC). We end with some conclusions and
future directions.

2. General Setting

Let σ (= 1, . . . , N) denote the N states of a system following Markovian dynamics
defined by transition rates that satisfy detailed balance, ensuring that the system relaxes to
an equilibrium state. Let τ be the time between consecutive measurements. The conditional
probability pτ(σ′|σ) that the outcome of the measurement is σ′ after time τ conditioned
that it starts in σ satisfies the following master equation:

∂τ pτ(σ
′|σ) =

N

∑
σ′′=1

Kσ′σ′′ pτ(σ
′′|σ) (1)

with initial condition pτ→0(σ
′|σ)→ δ

σ
′ ,σ, where δ is the Kronecker delta function. Markov

matrix Kσ′σ′′ satisfies ∑σ′ Kσ′σ′′ = 0; ∀σ′′, defining transitions rates from state σ′′ to σ′:

Kσ′σ′′ =

{
−
(

∑σ( 6=σ′′) kσ←σ′′

)
if σ′ = σ′′

kσ′←σ′′ otherwise
(2)

with kσ′←σ′′ the probability to jump from state σ′′ to σ′ during time dτ. Let us denote by Pσ

the stationary solutions of Equation (1). The detailed balance condition reads:

∀σ, σ′ ; Kσσ′Pσ′ = Kσ′σPσ (3)

The solution of Equation (1) can be written using the Perron–Frobenius theorem (see [19])
as a spectral expansion in terms of the eigenvalues and eigenvectors of K:

pτ(σ
′|σ) = Pσ ∑

α

lα
σ′ l

α
σ exp(λατ) (4)

where lα is the left eigenvector of K associated with the eigenvalue λα. The sum over the α
term in Equation (4) is symmetric in σ↔ σ′. Therefore, the conditional probabilities also
fulfil a detailed balance:

pτ(σ|σ′)
pτ(σ′|σ)

=
Pσ

Pσ′
(5)

Remark 1. Detailed balance ensures that there exists a unique stationary state Pσ associated with
the eigenvalue λ0 = 0 and that the other eigenvalues are real and negative, λα 6=0 < 0. Equation (4)
can be rewritten as follows:

pτ(σ
′|σ) = Pσ′

(
1 + ∑

α 6=0
lα
σ′ l

α
σ exp(λατ)

)
(6)

which gives pτ(σ′|σ) = Pσ′ for τ → ∞ as expected.
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In the CMD, a work-extraction cycle is defined by a sequence of n + 1 measurement
outcomes σi (1 ≤ i ≤ n + 1) repeatedly taken every time τ. In a cycle the first n outcomes
are equal (σ) ending with σ′ ( 6= σ). We define the trajectory for a cycle as follows:

Tn
σσ′ = σ, . . . , σ,︸ ︷︷ ︸

n

σ′ (7)

The probability of a given trajectory Tn
σσ′ reads:

P(Tn
σσ′) = pτ(σ|σ)n−1 pτ(σ

′|σ) (8)

This is normalized as follows:

∑
σ′( 6=σ)

∞

∑
n=1

P(Tn
σσ′) = 1 , ∀σ (9)

2.1. Thermodynamic Work and Information-Content

Like in the SZ, the work extracted by the CMD in a given cycle Tn
σσ′ equals − log(Pσ′).

Averaging over all the possible measurement cycles, we obtain the average extracted work:

WN(τ) =< − log Pσ′ >= −∑
σ

∑
σ′( 6=σ)

∞

∑
n=1

PσP(Tn
σσ′) log Pσ′

= −
N

∑
σ=1

Pσ

1− pτ(σ|σ) ∑
σ′ 6=σ

pτ(σ
′|σ) log Pσ′

(10)

which is positive by definition. In the limit τ → ∞ we obtain the following expression,

W∞
N = −

N

∑
σ=1

Pσ

1− Pσ
∑

σ′ 6=σ

Pσ′ log Pσ′ , (11)

which can be written as follows:

W∞
N =

( N

∑
σ=1

Pσ

1− Pσ

)
WSZ

N +
N

∑
σ=1

P2
σ log Pσ

1− Pσ
(12)

where WSZ
N is the classical statistical entropy of the system, which can also be interpreted

as the average work extraction of the N-states Szilard engine, denoted as N-SZ:

WSZ
N =< − log(Pσ) >= −∑

σ

Pσ log Pσ (13)

This expression can be readily minimized in the space of Pσ giving the uniform
solution, Pσ = 1/N for which W∞

N = log N. In contrast, W∞
N → − log(1− Pσ) if Pσ → 1 for

a given σ (and Pσ′ → 0 ∀σ′ 6= σ) diverging in that limit.
We define the average information content per cycle as the statistical entropy of the

measurement-cycle probabilities [20]:
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IN(τ) =< − log(PσP(Tn
σσ′)) >

= −∑
σ

∑
σ′( 6=σ)

∞

∑
n=1

PσP(Tn
σσ′) log(PσP(Tn

σσ′))

= −
N

∑
σ=1

N

∑
σ′ 6=σ

Pσ

(
pτ(σ

′|σ) log(Pσ) + pτ(σ
′|σ) log(pτ(σ

′|σ))
) ∞

∑
n=1

pτ(σ|σ)n−1

︸ ︷︷ ︸
1

1−pτ (σ|σ)

−
N

∑
σ=1

N

∑
σ′ 6=σ

Pσ pτ(σ
′|σ) log(pτ(σ|σ))

∞

∑
n=1

(n− 1)pτ(σ|σ)n−1

︸ ︷︷ ︸
pτ (σ|σ)

(1−pτ (σ|σ))2

= WSZ
N −

N

∑
σ

Pσ

1− pτ(σ|σ) ∑
σ′

pτ(σ
′|σ) log pτ(σ

′|σ)

(14)

The positivity of IN(τ) follows from the fact that pτ(σ′|σ), Pσ ≤ 1. The second term in
Equation (14) depends on τ and can be understood as the contribution of correlations
between measurements to IN(τ).

Lastly, using Equation (5), we can rearrange Equation (14) as follows:

IN(τ) = WN(τ)−
N

∑
σ

Pσ

1− pτ(σ|σ) ∑
σ′

pτ(σ
′|σ) log pτ(σ|σ′)︸ ︷︷ ︸

=∆N>0

(15)

where the second term ∆N is positive since pτ(σ|σ′) ≤ 1. Equation (15) implies the second
law inequality:

IN(τ)−WN(τ) > 0 ∀τ (16)

meaning that the cost to erase the stored sequences information content is always larger
than the work extracted by the demon.

2.2. Comparison with the Szilard Engine

Equating Expressions (14) and (15) for IN(τ), we obtain a relation between WN(τ)
and WSZ that compares the average work extracted in the N-CMD to the N-SZ engine
as follows:

WN(τ)−WSZ
N =< − log

Pσ′

Pσ
>

= −∑
σ

pσ

1− pτ(σ|σ) ∑
σ′

pτ(σ
′|σ) log

pτ(σ′|σ)
pτ(σ|σ′)

≥ 0
(17)

where the first equality follows from the difference between the first right-hand side
of Equations (10) and (13). This shows that the CMD’s average work per cycle is al-
ways larger or equal to SZ. The equality holds for the uniform case Pσ = 1/N where
WN(τ) = WSZ

N = log N.

3. Thermodynamic Power and Efficiency
3.1. Average Cycle Length

As a preliminary, we first compute the average time of a cycle of measurement. This is
similar to the mean first residence time of the system, except for the fact that (unobserved)
hopping events are permitted. We define it as follows:

tc
N ≡ τ < n > (18)
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and obtain the following expression:

tc
N = τ

(
1 + ∑

σ

Pσ

1− pτ(σ|σ)

)
(19)

The following equalities are shown:

lim
τ→0+

tc
N = −∑

i

1
∑α 6=0(lα

i )
2λα

> 0 (20)

lim
τ→∞

tc
N = +∞ (21)

The average cycle time is the mean first passage time [21] of the discrete time random walk
defined by a cycle of measurements.

3.2. Thermodynamic Power

We define the thermodynamic power as the average work WN extracted per cycle
time tc

N :

ΦN(τ) =
WN
tc

N
(22)

In the limit of uncorrelated measurements τ → ∞, we obtain from Equations (11) and (19):

Φ∞
N = − 1

τ

∑N
σ=1

Pσ
1−Pσ

∑σ′ 6=σ Pσ′ log Pσ′

1 + ∑σ
Pσ

1−Pσ

(23)

For N = 2, we recover the results in [16,17].

3.3. Information-to-Work Efficiency

In the spirit of the efficiencies defined for thermal machines, we define the information-
to-work conversion (IWC) efficiency of the CMD as the ratio between WN , taken to be the
objective function, and IN , taken to be the cost function, for the optimization of the CMD:

ηN =
WN
IN

(24)

Using Equation (15), we can rewrite ηN as follows:

ηN =
1

1 + ∆N
WN

(25)

From Equation (16), ηN < 1. In the limit τ → ∞, we obtain:

lim
τ→∞

ηN =
1

1 +
∑i

Pi
1−Pi

log Pi

∑i
Pi

1−Pi
∑j 6=i Pj log Pj

(26)

In limit Pσ → 1 for a given state σ, one can check that the N-CMD reaches maximal
efficiency 1.

4. Particular Cases

Here, we analyze some specific examples.

4.1. Case N=2

We now turn to the N = 2 case considered in [16] as an example of our formulae. The
kinetic rate matrix in this case reads:
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K =

(
−k1←0 k0←1
k1←0 −k0←1

)
(27)

Here, we do not need to make any particular choice of rates k
σ
′
σ

to ensure detailed balance
since, for two states, a detailed balance unconditionally holds. Applying the procedure
sketched in Section 2, we solve the master equation:

pτ = (pτ(σ|σ
′
))

σ,σ′=0,1

(
P0 + P1 exp(−Rτ) P0(1− exp(−Rτ))
P1(1− exp(−Rτ)) P1 + P0 exp(−Rτ)

)
(28)

where R = k1←0 + k0←1, P0 = k0←1
R and P1 = k1←0

R such that P0 + P1 = 1. pτ is normalized
per column:

pτ(σ
′ |σ) + pτ(1− σ

′ |σ) = 1 , ∀σ = 0, 1 (29)

First, let us consider W2. Since N = 2 and by normalization, there is only one term in the
sum ∑σ

′ 6=σ
of Equation (10). Thus, W2 simplifies to:

W2 = −P0 log(1− P0)− (1− P0) log(P0) (30)

We recover the result obtained in [16] and coincidently show that the τ independence of this
result is a particular feature of the N = 2 case. Moreover, since W2 had a simple expression,
we obtained a tractable expression for the comparison with the SZ average work extracted,
c.f. Equation (17):

W2 −WSZ
2 = (1− 2P0) log

(1− P0

P0

)
(31)

This quantity is positive and vanishes only for uniform probability, Pσ = 1
2 , as shown in

Section 3.1. Using normalization Equation (29) again in the definition of IN Equation (14),
we obtain I2 as follows:

I2 = −P0 log P0 − (1− P0) log(1− P0)

− P0

(
pτ(0|0)
pτ(1|0)

log pτ(0|0) + log pτ(1|0)
)

− (1− P0)

(
pτ(1|1)
pτ(0|1)

log pτ(1|1) + log pτ(0|1)
) (32)

which is the result obtained in [16]. The remaining results of [16] are obtained by combining
Equations (28), (30), and (32).

4.2. Uniform Transition Rates

In this subsection, we take the following particular case for the Markov matrix K:

Kσ′σ = R×
{
−(N − 1) if σ′ = σ
1 otherwise

(33)

In this case, there are only two independent conditional probabilities; we can thus rewrite
the master equation as follows:

∂τ pτ(σ|σ) = R(1− Npτ(σ|σ)) (34)

Via normalization, we obtain pτ(σ′|σ) as follows:

pτ(σ
′|σ) = 1

N − 1
(1− pτ(σ|σ)) ; σ′ 6= σ (35)

In the remainder of this subsection, we define the dimensionless rescaled time between two
measurements as τ̃ = Rτ. The solution of Equation (34) reads:
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pτ(σ|σ) =
1
N
(1 + (N − 1) exp(−Nτ̃)) (36)

This particular case allows for us to obtain a glimpse of the dependence of the quantities
introduced in Section 2 with N. The average work extracted is as follows:

WN = log N. (37)

We see that the work extracted does not depend on τ. IN reads:

IN = log N − N
N − 1

log
( 1

N
(1− exp(−Nτ̃))

)
(38)

The first remark is that in the limit τ̃ → ∞, I∞
N = 2N−1

N−1 log N︸ ︷︷ ︸
WN

.

One way to optimize the CMD is to maximize IWC efficiency, defined as follows:

ηN ≡
WN
IN

=
log N

log N −
N log

(
1−e−Nτ̃

N

)
N−1

(39)

We find the asymptotic efficiency η∞
N = N−1

2N−1 for τ̃ → ∞ and ηN = 1
2 for N → ∞. For the

thermodynamic power, we obtain:

ΦN ≡
WN
tc

N
=

log N
Nτ̃eNτ̃

(N−1)(eNτ̃−1)
+ τ̃

(40)

where tc
N is the average cycle time that we analyzed in Section 3.1. One can show that the

maximum thermodynamic power ΦN = (N − 1) log(N) is obtained in the limit τ̃ → 0.
This shows that the maximum IWC efficiency Equation (39) and the efficiency at maximum
power Equation (40) are obtained in two different limits, a general result expected for
thermodynamic machines [22].

4.3. Case N = 3

The 3-CMD is the simplest case in which two different topologies of the state space are
available. They are defined in Figure 2 and are denoted as triangular (Panel A) and linear
(Panel B), respectively. We denote the energy of state σ(σ = 0, 1, 2) by εσ. Taking β = 1, the
detailed balance assumption Equation (3) then reads:

Kσσ′

Kσ′σ
= exp(−(εσ − εσ′)) , ∀σ 6= σ′ (41)

Here we take ε0 = 0. This implies that the energies of states 1, 2 read:

ε1 = log(
P0

P1
) (42)

ε2 = log(
P0

P2
) (43)

In the linear case, taking as a particular case k01 = 1 and k21 = 1, we obtain the following
Markov matrix:

Klin
3 =

−1 exp(ε1) 0
1 −(exp(ε1) + exp(ε1 − ε2)) 1
0 exp(ε1 − ε2) −1

 =

−1 P0
P1

0
1 − P0

P1
(1 + P2

P0
) 1

0 P2
P1

−1

 (44)
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where we used Equations (42) and (43) to give an expression of Klin
3 depending only on

P0, P1, P2. In the triangular case, taking k01 = 1 and k21 = 1 and k02 = 1 as a particular case,
we obtain similarly the following Markov matrix:

Ktri
3 =

−2 exp(ε1) exp(ε2)
1 −(exp(ε1) + exp(ε1 − ε2)) 1
1 exp(ε1 − ε2) −(1 + exp(ε2))

 =

−2 P0
P1

P0
P2

1 − P0
P1
(1 + P2

P0
) 1

1 P2
P1

−(1 + P0
P2
)

 (45)

The solution of Equation (1) with Markov matrix (44) in the linear case and (45) in the
triangular case, can be written using the Perron-Frobenius theorem [19] as the following
spectral expansion:

Pσ(τ) = Ψ0 + cσ
1 Ψ1 exp(λ1τ) + cσ

2 Ψ2 exp(λ2τ) (46)

where λ1, λ2 < 0 and cσ
1 , cσ

2 are the coefficients determined in the limit τ → 0, which depend
on the conditional state σ. These coefficients are gathered in Table 1 for both models.

k10
k01

k21
k12

k10

k01

k21

k12

k20

k02

Figure 2. Definition of the state spaces for the 2 topologies available for the 3-CMD: (A) Triangular
3-CMD, (B) Linear 3-CMD.

Table 1. Coefficients of the spectral expansion Equation (46).

cσ
1 cσ

2

σ = 0 −(P2 +
P2

2 +P2(P0+P1)
P0+P2

)
P1P2

P0+P2

σ = 1 0 P2(P1−1)
P0+P2

σ = 2 P0
P0+P2

P1P2
P0+P2

Ψ0, Ψ1, Ψ2 are the eigenvectors of both Klin
3 , Ktri

3 :

• Ψ0 is the eigenvector associated to the eigenvalue 0 and it corresponds to the stationary
probability. Since the detailed balance condition Equation (3) holds, the stationary
probability is the Boltzmann distribution. Thus,

Ψ0 =

P0
P1
P2

 =
1
Z

 1
exp(−ε1)
exp(−ε2)

 (47)

where Z = 1 + exp(−ε1) + exp(−ε2)
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• Ψ1 is the eigenvector associated to the second eigenvalue, which reads λlin
1 = −1 in

the linear case, and λtri
1 = −(1 + 1−P1

P2
) in the triangular case. Ψ1 reads:

Ψ1 =

−1
0
1

 (48)

• Ψ2 is the eigenvector associated in both models to the eigenvalue λ2 = − 1
P1

. It reads:

Ψ2 =


P0
P2

− 1−P1
P2

1

 (49)

Uncorrelated Measurements on the 3-CMD

We now turn to the limit τ → ∞. In this limit of uncorrelated measurements, the
time between consecutive measurements τ is larger than the relaxation time of the system,
the inverse of the lowest eigenvalue, ∼−1/λ1. In this limit, Pσ(τ) reduces to Boltzmann
distribution Equation (47) and pτ(σ′|σ) = Pσ′ . Therefore, the two models (linear and
triangular) are indistinguishable. Results for work and information are shown in Figure 3.
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Figure 3. W2, I2, W3, I3 as a function of P2 for P1 fixed in each panel. Large work extraction is obtained
in the limit of rare events P1 → 0 and P2 → 0, 1.

First, it is clear that the second law Inequality (16) was satisfied. In the limit P1 → 0,
we recovered the 2-CMD. Our generalized expressions for work and information content
reproduced well the trend observed in Figure 1c of [16]. In the limit of rare events, where
P1 → 0 and P2 → 0, 1, we recovered the infinite average work extraction described for the
2-CMD. Large work extraction was only obtained in the 2-CMD limit.

Efficiency η3 is shown in Figure 4. For P1 → 0 and P2 → 0 or P2 → 1, we recovered the
limit of rare events and maximal efficiency η3 → 1. In the 3-CMD, we have η3 ∈ [2/5, 1].
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Figure 4. W2, I2, W3, I3 as a function of P2 for P1 fixed in each panel.

4.4. Correlated Measurements in the 3-CMD

Correlated measurements are those where τ is lower than or comparable to the equi-
librium relaxation time. Equation (46) shows that the dynamics of the linear and triangular
topologies for the 3-CMD are very similar. Indeed, in the limit of uncorrelated measure-
ments, the two dynamics reduce to the same Boltzmann distribution. They also collapse in
the limit P1 → 1 (with P0, P2 → 0), indeed in this case λlin

1 = λtri
1 . In between, the topology

of the network is relevant. For correlated measurements, we obtained the results shown in
Figure 5.

First, the average cycle time (upper-left panel in Figure 5) in the linear case was
generally larger than that in the triangular case. The direct consequence, since the average
work extraction was comparable in both cases, was that the thermodynamic power (upper-
right panel in Figure 5) extracted by the linear 3-CMD was lower than the thermodynamic
power extracted by the triangular 3-CMD. Moreover, the thermodynamic power decreased
logarithmically to 0 when τ increases. Thus, 3-CMD had optimal power production in
limit τ → 0, i.e., in the limit of continuous measurements. The efficiency of the 3-CMD
as a function of τ is plotted in the lower-left panel of Figure 5. The linear 3-CMD was
generally less efficient than the triangular 3-CMD. The reason for this is in the lower-right
panel of Figure 5, where W3 and I3 are plotted against τ for both models. For a comparable
work extraction, the linear 3-CMD needs to store more information. Again, in the limit of
uncorrelated measurements, the two models converge to the same result.
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Figure 5. The 3-CMD for correlated measurements for P1 = P2 = 0.001. (upper left) Average cycle
length tc

3/τ in both models, Equation (19); (upper right) thermodynamic power; (lower left) efficiency;
(lower right) average information content and work extraction in kBT units (orange and red lines
collapse on top of each other).

5. Concluding Remarks

In this work, we generalized the 2-CMD of [16,17] to N-states. We obtained generalized
expressions of the average extracted work, the average information content stored in the
demon’s memory, and of thermodynamical quantities such as the thermodynamic power
and the information-to-work efficiency of the N-CMD. We proved that the second law
inequality holds for the N-CMD, thus giving bounds on the efficiency of the engine.
Comparing the N-CMD to the N-SZ engine, we also showed that the N-CMD could extract
more work on average than the N-SZ engine. The most efficient setting of the N-CMD
was in the limit of rare events already described in [16]. In the N-CMD case, this limit was
obtained by first taking the 2-CMD limit. Thus, no configuration is more efficient in the
N-CMD than the 2-CMD limit.

In future work on the N-CMD, it would be interesting to implement a graph theoretic
procedure to obtain, for instance, a more precise explanation of the difference between the
linear and triangular cases (connected graph versus fully connected graph). It would also
be interesting to determine the distributions of the quantities computed here [23] and thus
optimize the fluctuations of the N-CMD.

Author Contributions: F.R. conceived the work, and P.R. did the calculations. All authors have read
and agreed to the published version of the manuscript.

Funding: FR was supported by the Spanish Research Council Grant PID2019-111148GB-100 and the
Icrea Academia Prize 2018.



Entropy 2023, 25, 321 13 of 13

Data Availability Statement: Data is available upon contacting the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leff, H.S.; Rex, A. Maxwell’s Demon. In Entropy, Information, Computing; Princeton University Press: Princeton, NJ, USA, 1990;

pp. 160–172.
2. Plenio, M.B.; Vitelli, V. The physics of forgetting: Landauer’s erasure principle and information theory. Contemp. Phys. 2001,

42, 25–60. [CrossRef]
3. Ritort, F. The noisy and marvelous molecular world of biology. Inventions 2019, 4, 24. [CrossRef]
4. Rex, A. Maxwell’s demon—A historical review. Entropy 2017, 19, 240. [CrossRef]
5. Ciliberto, S. Experiments in stochastic thermodynamics: Short history and perspectives. Phys. Rev. X 2017, 7, 021051. [CrossRef]
6. Barato, A.; Seifert, U. Unifying three perspectives on information processing in stochastic thermodynamics. Phys. Rev. Lett. 2014,

112, 090601. [CrossRef] [PubMed]
7. Barato, A.C.; Seifert, U. Stochastic thermodynamics with information reservoirs. Phys. Rev. E 2014, 90, 042150. [CrossRef]

[PubMed]
8. Bérut, A.; Petrosyan, A.; Ciliberto, S. Detailed Jarzynski equality applied to a logically irreversible procedure. Europhys. Lett.

2013, 103, 60002. [CrossRef]
9. Berut, A.; Petrosyan, A.; Ciliberto, S. Information and thermodynamics: Experimental verification of Landauer’s Erasure principle.

J. Stat. Mech. Theory Exp. 2015, 2015, P06015. [CrossRef]
10. Lutz, E.; Ciliberto, S. From Maxwells demon to Landauers eraser. Phys. Today 2015, 68, 30. [CrossRef]
11. Szilard, L. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys.

1929, 53, 840–856. [CrossRef]
12. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. [CrossRef]
13. Bennett, C.H. The thermodynamics of computation—A review. Int. J. Theor. Phys. 1982, 21, 905–940. [CrossRef]
14. Sagawa, T.; Ueda, M. Information Thermodynamics: Maxwell’s Demon in Nonequilibrium Dynamics. In Nonequilibrium Statistical

Physics of Small Systems: Fluctuation Relations and Beyond; Wiley Online Library: Hoboken, NJ, USA, 2013; pp. 181–211. [CrossRef]
15. Parrondo, J.M.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [CrossRef]
16. Ribezzi-Crivellari, M.; Ritort, F. Large work extraction and the Landauer limit in a continuous Maxwell demon. Nat. Phys. 2019,

15, 660–664. [CrossRef]
17. Ribezzi-Crivellari, M.; Ritort, F. Work extraction, information-content and the Landauer bound in the continuous Maxwell

Demon. J. Stat. Mech. Theory Exp. 2019, 2019, 084013. [CrossRef]
18. Garrahan, J.P.; Ritort, F. Generalized Continuous Maxwell Demons. arXiv 2021, arXiv:2104.12472.
19. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 1992; Volume 1.
20. Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing); Wiley-Interscience:

Hoboken, NJ, USA, 2006.
21. Benichou, O.; Guérin, T.; Voituriez, R. Mean first-passage times in confined media: From Markovian to non-Markovian processes.

J. Phys. A Math. Theor. 2015, 48, 163001. [CrossRef]
22. Goupil, C.; Herbert, E. Adapted or Adaptable: How to Manage Entropy Production? Entropy 2019, 22, 29. [CrossRef]
23. Van den Broeck, C.; Esposito, M. Ensemble and trajectory thermodynamics: A brief introduction. Phys. A Stat. Mech. Its Appl.

2015, 418, 6–16. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/00107510010018916
http://dx.doi.org/10.3390/inventions4020024
http://dx.doi.org/10.3390/e19060240
http://dx.doi.org/10.1103/PhysRevX.7.021051
http://dx.doi.org/10.1103/PhysRevLett.112.090601
http://www.ncbi.nlm.nih.gov/pubmed/24655235
http://dx.doi.org/10.1103/PhysRevE.90.042150
http://www.ncbi.nlm.nih.gov/pubmed/25375481
http://dx.doi.org/10.1209/0295-5075/103/60002
http://dx.doi.org/10.1088/1742-5468/2015/06/P06015
http://dx.doi.org/10.1063/PT.3.2912
http://dx.doi.org/10.1007/BF01341281
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1002/9783527658701.CH6
http://dx.doi.org/10.1038/nphys3230
http://dx.doi.org/10.1038/s41567-019-0481-0
http://dx.doi.org/10.1088/1742-5468/ab3340
http://dx.doi.org/10.1088/1751-8113/48/16/163001
http://dx.doi.org/10.3390/e22010029
http://dx.doi.org/10.1016/j.physa.2014.04.035

	Introduction
	General Setting
	Thermodynamic Work and Information-Content
	Comparison with the Szilard Engine

	Thermodynamic Power and Efficiency
	Average Cycle Length
	Thermodynamic Power
	Information-to-Work Efficiency

	Particular Cases
	Case N=2
	Uniform Transition Rates
	Case N = 3
	Correlated Measurements in the 3-CMD

	Concluding Remarks
	References

