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S1 DERIVATION OF EQUATIONS (36-41) IN THE MAIN TEXT

If misalignment is negligible the experimental setup is described by two co-

ordinates y1, y2, as discussed in the Main Text. The equilibrium probability

distribution for y1, y2 is a Gaussian distribution:

P (y1, y2) =
1

Z
exp

(
(y1, y2) · K̄′(y1, y2)

kBT

)
, (1)

so that the covariance matrix is easily obtained as:

 〈y2
1〉 〈y1y2〉

〈y1y2〉 〈y2
2〉

 = kBT K̄
′−1

=
kBT

k1k2 + kmk1 + k2km

 k2 + km km

km k1 + km

 .

(2)

If we set:

κ = k1k2 + kmk1 + k2km (3)

then, from (2) we get:

k1

κ
=
〈y2

2〉 − 〈y1y2〉
kBT

, (4)

k2

κ
=
〈y2

1〉 − 〈y1y2〉
kBT

, (5)

km
κ

=
〈y1y2〉
kBT

. (6)
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Moreover, using the identity:

1

α
=

α

α2
=
k1k2

α2
+
k1km
α2

+
kmk2

α2
(7)

we get:

κ−1 =
〈y2

1〉〈y2
2〉 − 〈y1y2〉2

(kBT )2
. (8)

In experimental set-ups where forces are measured directly, it is convenient

to extract the trap stiffness on the basis of force fluctuation measurements.

Force and bead positions have an affine relation:

fi = kiyi + f0
i , (9)

where f0
i is the mean tension measured in trap i. This affine relation can

be put in a matrix form as:

f = k̄Dy + f0 (10)

with f = (f1, f2), y = (y1, y2) and

k̄D =

 k1 0

0 k2

 . (11)
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Given the affine relations, Eq. (9),(10), the force covariance matrix for the

force is now given by:

 σ2
11 σ2

12

σ2
12 σ2

22

 = kBT k̄D
(
K̄′
)−1

k̄D =

= kBT

 (k2+km)k21
k1k2+k1km+k2km

k1k2km
k1k2+k1km+k2km

k1k2km
k1k2+k1km+k2km

(k1+km)k22
k1k2+k1km+k2km

 ,

(12)

with σ2
ij = 〈fifj〉− 〈fi〉〈fj〉, i = 1, 2. Using Eq. (12) it is easy to show that:

k1 =
σ2

11 + σ2
12

kBT
(13)

k2 =
σ2

22 + σ2
12

kBT
(14)

These formulae can be used to invert any element of the covariance matrix

to get km:

km =
1

kBT

σ2
12

(
σ2

11 + σ2
12

) (
σ2

22 + σ2
12

)
σ2

11σ
2
22 − σ4

12

(15)

S2 EXPERIMENTAL VARIANCE AS A FUNCTION OF

MEASUREMENT LENGTH

The power spectrum of a fluctuating linear mode, x (Ornstein-Uhlembeck

process) is:

S(ω) = σ
2ωc

π(ω2 + ω2
c )
, (16)

where σ is the variance 〈δx2〉 of the process and ωc its corner frequency.

Integrating the power spectrum in the range between the inverse of the
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acquisition time T and the acquisition bandwidth B yields the expected

variance:

〈δx2〉B,T =

∫ 2πB

2π/T
dωS(ω) =

2σ

π

(
arctan

(
2πB

ωc

)
− arctan

(
2π

Tωc

))
(17)

If the acquisition bandwidth is much larger than the corner frequency (B �

ωc) this can be approximated as:

〈δx2〉T = σ

(
1− 2

π
arctan

(
2π

Tωc

))
. (18)

If a signal y is the superposition of two linear modes with variances σ1, σ2

and corner frequencies ω1, ω2 the expected behavior for the variance 〈δx2〉T

as a function of the acquired trace is:

〈δy2〉T = σ1

(
1− 2

π
arctan

(
2π

Tω1

))
+ σ2

(
1− 2

π
arctan

(
2π

Tω2

))
, (19)

which is the form of the fit used in Figure 5B.

S3 DUMBBELL DYNAMICS

The discussion in the main text shows that, in absence of misalignment,

using the differential and center of mass coordinates, the stiffness tensor is

diagonalized and the four fluctuation modes are uncoupled. In non-ideal

cases the decoupling is not complete, but the four dimensional problem is

reduced into independent lower dimensional problems. Both in the case of

trap and of tether misalignment the dynamics of the center of mass is decou-

pled from that of the differential coordinate: the off diagonal terms couple
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either y− with z− or y+ with z+ but never y− with z+ or y+ with z−. This

fact does greatly simplify the description of the dynamics of the dumbbell in

Fig. 3A of the main text: instead of considering a four dimensional problem

we can consider two independent two dimensional problems:

Ṙ = µ̄R
(
−K̄+R + ηR

)
, (20)

ṙ = µ̄r
(
−K̄−r + ηr

)
. (21)

Here we arranged the coordinates in two vectors: R = (y+, z+), r = (y−, z−),

K̄+ is the subtensor of K̄ which affects y+ and z+, and K̄− is the subtensor

which affects y− and z−. For example, in the case of tether misalignment:

K̄− =


y− z−

y− ky + 2u(ε) εw(ε)

z− εw(ε) kz + 2v(ε)

. (22)

with,

u(ε) = km(1− ε2) +
f

r0
ε2 (23)

v(ε) =
f

r0
(1− ε2) + kmε

2 (24)

w(ε) =

(
km −

f

r0

)√
1− ε2, (25)
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and

K̄+ =


y+ z+

y+ ky 0

z+ 0 kz

. (26)

Moreover µ̄R, µ̄r are tensors describing both viscous friction on each particle

and hydrodynamic interactions while ηR, ηr are Gaussian noises with zero

mean and correlations:

〈ηR(t)ηR(s)〉 = 2kBT µ̄Rδ(t− s)

〈ηr(t)ηr(s)〉 = 2kBT µ̄rδ(t− s).

After Bachelor (1) we set:

µ̄R =
(
γ−1 + Γ−1

) r0 ⊗ r0

r2
0

+

+
(
λ−1 + Λ−1

)(
I − r0 ⊗ r0

r2
0

) (27)

and

µ̄r =
(
γ−1 − Γ−1

) r0 ⊗ r0

r2
0

+

+
(
λ−1 − Λ−1

)(
I − r0 ⊗ r0

r2
0

)
,

(28)

where λ, γ,Λ,Γ are scalar parameters depending on r0. In brief, γ (λ) is the

hydrodynamic friction coefficient for motions along (perpendicular to) r0,

while Γ (Λ) is the intensity of hydrodynamic interactions along (perpendic-

ular to) r0 (the vector connecting the centers of the beads in Fig.3A of the
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main text). It is important to bear in mind that µ̄R, µ̄r, ky, kz, km, r0 are

functions of the trap–to–trap distance RT or, equivalently, of the mean ten-

sion along the tether. The equilibrium probabilities generated by (20),(21)

are given by the Boltzmann distribution i.e.:

Qeq(R) =
1

ZR
exp

(
−U(R)

kBT

)
, (29)

Peq(r) =
1

Zr
exp

(
−V (r)

kBT

)
, (30)

with

U(R) =
1

2
R · K̄+R, (31)

V (r) =
1

2
r · 2K̄−r (32)

and ZR, Zr partition functions. The variance of equilibrium fluctuations in

R and r is connected to the elastic properties of traps and tether by:

〈R⊗R〉 = K̄−1
+ kBT, 〈r⊗ r〉 =

(
2K̄−

)−1
kBT. (33)

Information about hydrodynamic interactions can be obtained from the

time-dependent correlation functions (tensors) of R and r:

C̄R(t) = 〈R(t)⊗R(0)〉 (34)

C̄r(t) = 〈r(t)⊗ r(0)〉, (35)
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which characterizes the decay of fluctuations and allows to distinguish the

presence of different contributions to the total variance. The computation

of the correlation functions yields:

C̄R(t)

kBT
= e−µ̄RK̄+tK̄−1

+ (36)

C̄r(t)

kBT
= e−µ̄r(2K̄−)t (2K̄−)−1

. (37)

S4 ANALYSIS OF FLUCTUATIONS: THE UNCOUPLED CASE ε = 0

The simplest and most desirable experimental condition is that in which

the tether is perfectly aligned to the y axis (ε = 0, Fig.3B). In this case

fluctuations along the two axis are uncoupled. In the model this corresponds

to the vanishing of all off-diagonal elements in the hydrodynamic and elastic

tensors. Indeed, when ε = 0,

µ̄R =

 γ−1 + Γ−1 0

0 λ−1 + Λ−1

 , (38)

µ̄r =

 γ−1 − Γ−1 0

0 λ−1 − Λ−1

 , (39)

K̄+ =

 ky 0

0 kz

 (40)

K̄− =

 ky + 2km 0

0 kz + 2 f
r0

 . (41)
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The correlation functions are also diagonal in this case:

C̄R(t)

kBT
=

 e−ν+t

ky
0

0 e−ν−t

kz

 (42)

C̄r(t)

kBT
=

 e−ω+t

ky+2km
0

0 e−ω−t

kz+2f/r0

 . (43)

The above expressions shows the presence of 4 different frequencies in the

fluctuation spectrum:

ν+ =

(
1

γ
+

1

Γ

)
ky (44)

ν− =

(
1

λ
+

1

Λ

)
kz (45)

ω+ =

(
1

γ
− 1

Γ

)
(ky + 2km) (46)

ω− =

(
1

λ
− 1

Λ

)(
kz + 2

f

r0

)
. (47)

From the measurement of C̄R(t) and C̄r(t) it is possible to obtain the

stiffness of both traps and molecule:

ky =
kBT(

C̄R(0)
)
yy

=
kBT(
σ̄2
R

)
yy

(48)

km =
1

2

(
kBT(

C̄r(0)
)
yy

)
. (49)

The time correlation function for fluctuations of R and r, Eq. (42),(43)

carries further information regarding hydrodynamic interactions, which can
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be retrieved once the stiffnesses ky, km are known:

1

γ
+

1

Γ
= − 1

ky

d

dt
log(

(
C̄R
)
yy

)

∣∣∣∣
t=0

(50)

1

γ
− 1

Γ
= − 1

2km

d

dt
log(

(
C̄r
)
yy

)

∣∣∣∣
t=0

. (51)

S5 ANALYSIS OF FLUCTUATIONS WITH TETHER

MISALIGNMENT ε 6= 0

In presence of tether misalignment (ε 6= 0) we have:

K̄+ =

 ky 0

0 kz

 (52)

K̄− =


y− z−

y− ky + 2u(ε) εw(ε)

z− εw(ε) kz + 2v(ε)

. (53)

〈y2
+〉 = kBT

(
K̄−1

+

)
y+y+

=
kBT

ky
(54)

〈y2
−〉 = kBT

(
2K̄−1

m

)
yy

=

=
kBT

2km

(
1 +

(
r0km
f
− 1

)
ε2
)

+O(ε3).
(55)

Since we will be interested in tether misalignment for short tethers (≤ 3 kbp),

in the last expression we have neglected the trap stiffness with respect to the

tether stiffness: (km � ky, kz; f/r0 � kz). Note that whereas the variance
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of R is not affected by the coupling ε, the variance of r does. The increased

〈y2
−〉 is due to the superposition of two contributions, one due to fluctuations

in the optical plane and the other due to fluctuations along the optical axis.

In order to separate these two types of fluctuations we need to characterize

their correlation function. The µ̄r appearing in the correlation function

Eq.(37) is left invariant under a rotation of r0. This is also approximately

true for K̄− if km � ky, kz; f/r0 � kz. As a consequence the correlation

function in presence of coupling can be computed as a rotation of C̄r(t)

obtained in the previous section (Eq. (43)). If we denote by C̄r(t, ε) the

correlation function in presence of a coupling of strength ε and by R̄(ε) a

rotation of an angle θ (ε = sin θ) we get:

R̄(ε) =

 √1− ε2 ε

−ε
√

1− ε2

 (56)

and

C̄r(t, ε) = R̄(ε)T C̄r(t)R̄(ε), (57)(
C̄r(t, ε)

)
yy

kBT
=
(
1− ε2

) e−2ω+t

2km
+ ε2

r0e
−2ω−t

2f
. (58)

Similar although more cumbersome formulas can be obtained in more

general cases, i.e. when the trap stiffness ky, kz are comparable or larger

than km, f/r0 respectively. Summarizing, in presence of misalignment along

the z axis we expect the correlation function of the relative distance to

be a double exponential exhibiting two widely separated timescales: a fast

timescale (ω−1
+ ) due to fluctuations in the optical plane and a slow timescale
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(ω−1
− ) due to fluctuations along the optical axis. Once the two components

have been separated through fitting, as shown in the Main Text, the same

analysis as in the uncoupled case can be performed on the fast component of

the correlation function, to measure the molecular stiffness and the hydro-

dynamic parameters. From the slow contribution of the correlation function

(second term in the r.h.s. of Eq. (58)) it is also possible to extract the

coupling parameter, since the ratio f/r0 is independently known. In all the

experiments presented in this paper, the coupling parameter was not higher

than 0.25, which corresponds to an angle θ ' 15o. In our setup, especially

for short tethers, we can have ε2 ' α, making the slow contribution to the

variance (55) comparable or even bigger than the one due to fast fluctua-

tions.
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