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The relation between entropy and information dates back to 
the classical Maxwell demon paradox1, a thought experiment 
proposed in 1867 by James Clerk Maxwell to violate the sec-
ond law of thermodynamics. A variant of the classical Maxwell 
demon is the Szilard engine, proposed by Leo Szilard in 19291. 
In it, at a given time, the demon observes the compartment 
occupied by a single molecule in a vessel and extracts work 
by operating a pulley device. Here, we introduce the continu-
ous Maxwell demon, a device capable of extracting arbitrarily 
large amounts of work per cycle by repeated measurements 
of the state of a system, and experimentally test it in single 
DNA hairpin pulling experiments. In the continuous Maxwell 
demon, the demon monitors the state of the DNA hairpin 
(folded or unfolded) by observing it at equally spaced time 
intervals, but it extracts work only when the molecule changes 
state. We demonstrate that the average maximum work per 
cycle that can be extracted by the continuous Maxwell demon 
is limited by the information content of the stored sequences, 
in agreement with the second law. Work extraction efficiency 
is found to be maximal in the large information-content limit 
where work extraction is fuelled by rare events.

In the Szilard engine, the demon performs a one-bit measurement 
by observing, at a given time, the compartment occupied by a single 
molecule in a vessel of volume V at temperature T (Fig. 1a). The 
engine operates as follows: if the molecule occupies the left compart-
ment (V0), a pulley device extracts the mean work W0 = −kBTlogP0, 
where kB is the Boltzmann constant and P0 = V0/V is the probability of 
the molecule observed in the left compartment; if it occupies the right 
compartment (V1 = V − V0), the mean extracted work is W1 = −kBT-
logP1, with probability P1 = 1 − P0. The maximum average work per 
cycle that can be extracted in the classical Maxwell demon (MD) is

= + = − +W P W PW k T P P P P( log log ) (1)max
MD

0 0 1 1 B 0 0 1 1

It is maximal for P0 = P1 = 1/2, ≤ =W W k T log2max
MD

L B , with WL being 
the Landauer limit. The resolution of the MD paradox, that is, the fact 
that the engine can fully convert heat into work without any other 
change, came from the thermodynamics of data processing. Half a 
century ago, it was shown that any irreversible logical operation, such 
as bit erasure, requires energy consumption typically of the order of 
kBT (refs. 2,3). In general, Wmax

MD is equal to the information content I of 
one bit, −P0logP0 − P1logP1, restoring the second-law inequality

≤ =W W k TI (2)max
MD

B

with W being the mean extracted work. Subsequent developments 
in experimental physics, often in combination with theorems of 

fluctuation and information feedback4–8, have provided experimen-
tal realizations and models of the MD that have tested equation (2) 
and the Landauer limit9–16.

Here, we introduce the continuous MD (CMD), an information-
to-energy conversion device that takes advantage of extracting work 
from rare events. The CMD is exemplified in Fig. 1b. The demon 
monitors the motion of the molecule by observing it at equally 
spaced time intervals τ, but extracts work only when the molecule 
changes compartment. A work extraction cycle starts with an initial 
observation of the compartment occupied by the molecule, which 
can be 0 (left compartment) or 1 (right compartment), followed by a 
series of repeated measurements every τ until the molecule changes 
compartment. We classify cycles into two classes, 0-cycles and 
1-cycles, for cycles with an initial outcome measurement equal to 0 
and 1, respectively. This is then followed by a series of n − 1 repeated 
measurements of equal outcome made at times τ, 2τ, 3τ,…, (n − 1)τ 
until the molecule changes compartment at time nτ: 0 → 1 for a 
0-cycle and 1 → 0 for a 1-cycle. For cycles containing multiple 
observations, the demon stores in memory the (n + 1)-bit sequence 
containing n equal measurement outcomes plus the final (differ-
ent) outcome. Stored sequences are defined as 

� ��� ���
= . . .0 {0, 0, 1}n

n

 for 

0-cycles and 
� ��� ���

= . . .1 {1, 1, 0}n

n

 for 1-cycles (n ≥ 1). The mean work 
per cycle depends on the last bit in the cycle and is W1 = −kBTlogP1 
for 0-cycles and W0 = −kBTlogP0 for 1-cycles. The average maxi-
mum work per cycle that can be extracted by the CMD is indepen-
dent of the time interval τ and is given by

= + = − +W P W PW k T P P P P( log log ) (3)max
CMD

0 1 1 0 B 0 1 1 0

with P0 and P1 being the probabilities of 0-cycles and 1-cycles, 
respectively (that is, determined by the initial bit in the cycle). 
Albeit similar to equation (2), the functional dependence of Wmax

CMD 
on P0 in equation (3) is different (Fig. 1c). In particular, Wmax

CMD in 
equation (3) is minimal (rather than maximal) for P0 = P1 = 1/2, 
the Landauer limit being a lower (rather than an upper) bound, 

> =W W k T log 2max
CMD

L B . Moreover, Wmax
CMD diverges in the lim-

its P0 → 0, 1, showing that the CMD can extract arbitrarily large 
amounts of work. Should this violate the second-law inequal-
ity (equation (2))? The answer is negative because when Wmax

CMD

diverges, so does the information content of the stored sequences 
0n, 1n, preserving the general Landauer inequality W ≤ kBTI. In fact, 
work extraction cycles in the CMD require storing multiple-bit 
sequences of the class 0n, 1n (Fig. 1b), whose length diverges in the 
limits P0 → 0, 1 when the molecule changes compartment after many 
measurements. This is in contrast with the classical MD where work 
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extraction cycles require only a single-bit measurement (Fig. 1a). 
For a two-state system, with relaxation rate R, the average infor-
mation content in the stored multiple-bit sequences can be exactly 
computed (Supplementary Section 1). It is given by I(τ) = Imin + I1(τ), 
where Imin > 0 is the minimum information content and I1(τ) > 0 is a 
monotonically decreasing function of τ such that I1(τ → ∞) = 0. The 
expressions for Imin and I1(τ) are given by

= − − − −
P

I
P
P

logP
P
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The minimum information content is obtained in the limit 
Rτ ≫ 1, where τ = − ∕ + ∕τ−I P P P P P P( ) e ( log( ) log( ) )R

1 0 0 1 1 1 0  + O( τ−e R2 ),  
whereas a diverging value is obtained for Rτ ≪ 1: 

τ τ→ = − + + +I R( 0) log( ) 1 P P
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0
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0
, giving Imax (τ) = − log 

(Rτ) + 1 − log P0 − log P1. The chain of inequalities follows:

τ τ≤ < < <  W W k TI k TI k TI( ) ( ) ( 6)max
CMD

B min B B max

We stress that Wmax
CMD is independent of τ. The lowest value of Imin in 

equations (4) and (6) is obtained for P0 = P1 = 1/2, =I 3 log(2)min ,  
with stored sequences containing three bits on average. This is in 
contrast with the classical MD where the information content of 
one-bit sequences is equal to log(2). In fact, the CMD must store at 

least two bits per cycle (the first bit defining the cycle class, the last 
bit closing the cycle when the molecule changes compartment). The 
efficiency of the CMD is defined by the ratio of Wmax

CMD (equation (3))  
to the energy required to erase the stored sequences, Q = kBTI. 
Maximum efficiency ϵmax is obtained in the limit τ → ∞:
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Interestingly, for P0 = P1 = 1/2, the efficiency is minimal in the CMD 
ϵ = ∕( 1 2)max , whereas it is maximal in the classical MD (ϵ = 1max ). 

Instead, in the limits P0 → 0, 1 the CMD yields ϵ → 1max . The behav-
iour of τ ϵW W I I, , ( ) , ,max

MD
max
CMD

min max is shown in Fig. 1c (continuous 
lines). Note that for uncompressed sequences (that is, containing 
redundant information), the efficiency is lower than equation (7) 
(Supplementary Section 2).

Equation (5) shows that information content diverges in the 
continuum time limit τ → 0 when sequences contain an arbi-
trary large number of bits. However, it does so logarithmically, 

τ τ→ −I R( ) log( )max , rather than linearly with the number of bits, 
Imax(τ) → 1/Rτ, showing that stored sequences are highly redundant 
for τ ≪ 1/R. A similar problem is found in data compression where 
information can be encoded using fewer bits than in the original 
representation17. In general, the information content of sequences, 
storing the outcome of measurements repeated at τ, diverges loga-
rithmically for τ smaller than the de-correlation time.

Recent technological advancements have made possible the prac-
tical implementation of Szilard engines9,10,13. Here, we report a room-
temperature nanoscale Szilard engine composed of a single DNA 
molecule manipulated by optical tweezers (Fig. 2a). In our experi-
ments, a single DNA hairpin was tethered between two micrometre-
sized plastic beads (Materials and methods). The force applied on 
the molecule was controlled and measured, varying the position of 
the optical trap, λ. Under a suitable force, the molecule will exhibit 
spontaneous fluctuations between the folded and the unfolded states. 
This is equivalent to the initial state of the Szilard engine, where the 
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Fig. 1 | Classical MD versus CMD. a, In the classical MD, a single observation is made, and depending on the measurement outcome (0, 1), a work 
extraction process is implemented, which yields W0 and W1 values, respectively. b, In the CMD, multiple observations are made every τ, and a work 
extraction process is implemented when the molecule changes compartment (1 → 0, 0 → 1), yielding W0 and W1 values, respectively. The black dots 
indicated by 0 (upper right) indicate multiple measurements in the right vessel V0 until the molecule changes compartment (0 → 1). c, Work, information 
content and efficiency as a function of P0 for the classical MD and the CMD. Mean work (classical MD: pink triangles; CMD: blue diamonds) obtained from 
the experiments (see Figs. 2 and 3) and theoretical prediction from equations (1) and (3) (pink and blue lines). The horizontal line shows WL = kBTlog2. 
Information content in the CMD for different values of Rτ (equations (4), (5) and (6)) from Rτ = 0.1 to Rτ = ∞ (light to dark green lines). Maximum 
efficiency in the CMD (equation (7)) obtained from experiments and theory (orange diamonds and line, scale on the right axis). In all cases, error bars 
represent the standard error of the mean.
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molecule can freely transition from the left to the right compart-
ment. In the classical MD, the state of the DNA hairpin is observed 
at a given time, and depending on whether it is folded or unfolded, 
a pulling protocol to extract work is implemented, using the DNA as 
a pulley device (Fig. 2b, top). In the CMD, the state of the hairpin is 
monitored every τ, and the same protocol is implemented when the 
molecule changes state (Fig. 2b, bottom). The work extraction proto-
col is cyclic, that is, the control parameter λ is first driven away from 
its initial value λ0 and then driven back to it. Whereas the first, for-
ward, part of the protocol is swift (irreversible), the second, reverse 
part, is slow (adiabatic). Less work is consumed in the forward  
part of the protocol than can be extracted in the reverse part, yielding  

a net amount of extracted work (Supplementary Section 3). It is 
possible to show that dissipation losses during the work extrac-
tion cycle are negligible (Supplementary Section 4). The spontane-
ous hopping events observed in the adiabatic part of the protocol 
(Fig. 2b, red traces) are the equivalent of the collisions against the 
inserted wall in the one-molecule Szilard gas and contribute to 
net work extraction. Let the bit 0 (1) denote the folded (unfolded) 
state. We have =

+ ϕP0
1

1 e
 and =

+ ϕ−P1
1

1 e
, with ϕ being the equilib-

rium free-energy difference (in units of kBT) between the folded and  
the unfolded states at λ0: ϕ = − ∕ = Δ ∕ = − ( )G G k T G k T( ) logB

P
P0 1 B

0

1
, 

where G is the Gibbs free energy.
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A comparison of the results obtained for the classical MD and the 
CMD is shown in Fig. 3. In Fig. 3a, we show hopping traces at dif-
ferent equilibrium conditions (−1.4 < ϕ < 1.4). Figure 3b,c shows the 
extracted work distributions together with the mean extracted work 
Wmax (circles) measured over many cycles in the classical MD and the 
CMD (work distributions being independent of the value of τ). The 
difference between both the work distributions and the mean extracted 
work is clear. Distributions are bimodal for ϕ ≠ 0, with larger amounts 
of work extracted from the CMD than from the classical MD. In par-
ticular, the Landauer limit (vertical dashed line) is an upper bound for 
the classical MD, but a lower bound for the CMD. The Landauer limit 
is met in both cases at the coexistence point P0 = P1 = 1/2, ϕ = 0. The 
measured values for W W,max

MD
max
CMD and ϵmax are shown in Fig. 1c and 

compared with the theoretical predictions in equations (1), (3) and (7).
It is remarkable that the Landauer limit turns into a lower bound 

of the mean extracted work for the CMD (rather than an upper 
bound). The large amount of work that can be extracted in the CMD 
in the limit |ϕ| ≫ 1 comes at the price of the long time required to 
observe the system leaving the most probable state. In fact, the 
average cycle time in the CMD, tc

CMD, is given by (Supplementary 
Section 1)
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From equations (1) and (3), we obtain for the relative power 
between the two cases, PCMD/PMD → 1 − Ο(1/|ϕ|) in the limit |ϕ| ≫ 1, 
showing that the extracted power of both engines is asymptotically 
the same. The advantage of the CMD with respect to the classical 
case is the large amount of work per cycle that can be extracted in 
the CMD (Fig. 3c). This originates from the potentially unlimited 
information content of the stored sequences, which in the one-bit 
classical MD cannot exceed log(2). Moreover, the CMD captures 
rare dynamic events that deliver large amounts of work, whereas 
the classical MD captures typical events that yield only a moder-
ate amount (Supplementary Section 5). The fact that the average 
power is asymptotically the same does not imply that the power dis-
tributions for finite time are equal. In fact, the work distributions 
obtained for the classical MD and the CMD (Fig. 3b,c) are already 
different, meaning that the distributions of power for finite time will 
be different too. The analytical calculation of such power distribu-
tions requires the application of large deviation theory, as has been 
done in the case of fluctuating efficiencies in heat engines18.

Our calculation of the information content, based on the 
Shannon entropy of the stored sequences, follows the spirit of the 
path thermodynamics approach applied to other non-equilibrium 
systems19. Although other information theoretical quantities intro-
duced in the field of dynamic systems might be suitable to analyse 
our experimental data20,21, all probably give the same result in the 
rare events limit |ϕ| ≫ 1. Furthermore, our information-content 
calculation might be extended to other non-equilibrium situations 
where work extraction is fuelled by rare dynamic events, such as 
in the context of fluctuation theorems for repeated feedback22 or 
machines with temporal correlations23,24.

Finally, the CMD might be applicable to other contexts such as 
biological and quantum systems25,26. For example, the CMD might 
be relevant in regulatory biological networks when the concentration 
of molecular species reaches a given threshold, such as during the 
generation and transmission of action potential signals across the cell 
membrane and signal transduction processes in general27. In all these 
cases, there is a continuously monitored physical variable, and the 
cell responds when such a variable changes abruptly. For example, 
the action potential signal is generated when the potential differ-
ence across the cell membrane reaches a threshold. In this case, the 
work extracted would be equal to the free energy required to produce 

that action potential signal at a specific membrane location, whereas 
information would be contained in the stored trains of bits defined by 
an inactive (0) or active (1) membrane potential relative to the thresh-
old. We cannot avoid wondering whether the information-to-energy 
conversion in the CMD might have consequences in self-organiza-
tion and selection processes taking place during the evolution of bio-
logical matter28. The astonishing complexity of living matter might 
be seen as the outcome, over long evolutionary timescales, of a large 
work extraction process (used to build new and emergent high-free-
energy structures) in environments suitable to store large amounts of 
information utterly erased by noise and randomness.
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Methods
Experiments were performed with a highly stable miniaturized optical tweezers 
set-up29. Two tightly focused counterpropagating laser beams (power 200 mW, 
wavelength 845 nm) were used to create a single optical trap. Experiments were 
carried out in a microfluidics chamber. Force measurements, based on detection 
of light momentum changes, were performed using position-sensitive detectors to 
measure the deflection of the laser beam after it interacted with the trapped object. 
The position of the trapping beam defines λ, which was measured by diverting ∼8% of 
each laser beam to a secondary position-sensitive detector. The instrument resolution 
was 0.1 pN and 1 nm at a 1 kHz acquisition rate. In the experiments, a molecular 
construct consisting of a 20 bp DNA hairpin flanked by two short 29 bp DNA handles 
(labelled with biotin and digoxigenin) was tethered between two polystyrene beads. 
One type of bead was optically trapped, whereas the other bead was immobilized on 
the tip of a micropipette by air suction. Each handle could selectively bind to either 
streptavidin- (1.87 μm, Spherotech) or antidigoxigenin-coated beads (3.0–3.4 μm, 

Kisker Biotech). The synthesis protocols for short (20 bp) DNA hairpins have 
been previously described30. All experiments were performed at 25 °C in a buffer 
containing 10 mM Tris, 1 mM EDTA, 100 mM NaCl and 0.01% NaN3 (pH 7.5).
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