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S1: Information-content calculation for the two-states model 
 
The two-compartment single-particle system and the single DNA pulling experiment 
can be modeled by a two-states system 𝜎 = 0,1 with kinetic rates 𝑘!→!!  for the 
system to change state  𝜎 → 𝜎′ . The equilibrium occupancies are given, 𝑃! =
𝑘!→! 𝑅  ;  𝑃! = 𝑘!→! 𝑅, where 𝑅 = 𝑘!→! + 𝑘!→!  is the full relaxation rate. Rates 
satisfy the detailed balance condition 𝑘!→! 𝑘!→! = 𝑃! 𝑃!  with 𝑃! =

!
!!!!

 ;  𝑃! =
!

!!!!!
 . The dimensionless quantity 𝜙 stands for the free energy difference (in 𝑘!𝑇 

units) between states 0 and 1, 
 
𝜙 = 𝐺! − 𝐺! /𝑘!𝑇 = ∆𝐺/𝑘!𝑇 = − log !!

!!
    .            (S1.1) 

 
For the two-compartment model 𝜙 = log 𝑉! 𝑉!  whereas in the single DNA pulling 
experiment 𝜙 equals the free energy difference between the folded and unfolded 
states. Let 𝑊! 𝜎|𝜎′  be the conditional probability of the system being in state 𝜎 at 
time t if it is in state 𝜎′ at time 0.  It satisfies the following equation, 
 
!!! !|!!

!"
=  𝑘!!!→!𝑊! 𝜎′′|𝜎′ − 𝑘!→!!!𝑊! 𝜎|𝜎′!!!              (S1.2) 

 
where 𝑊! 𝜎|𝜎′ = 1! . The equations are readily solved 
 
𝑊! 1|0 = !!→!

!
1− 𝑒!!"   ;   𝑊! 0|0 = 1−𝑊! 1|0              (S1.3) 

𝑊! 0|1 = !!→!
!

1− 𝑒!!"   ;   𝑊! 1|1 = 1−𝑊! 0|1              (S1.4)
   
The calculation of the information-content I of the stored sequences follows basic 

steps in information theory. The stored sequences are defined by 𝟎𝒏 = 𝟎, . . .𝟎
𝒏

,𝟏  
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for 0-cycles  and 𝟏𝒏 = 𝟏, . . .𝟏
𝒏

,𝟎  for 1-cycles 𝑛 ≥ 1 . The first bit in the cycle 

specifies the first measurement outcome and the corresponding cycle class, whereas 
the last bit indicates that the system has changed state and the measurement outcome 
changes bit (1 for 0-cycles and 0 for 1-cycles). Measurements are made every 𝜏 and 
we assume measurements are free of error. The probability of the sequences 𝟎𝒏,𝟏𝒏 
are defined as 𝑝!, 𝑞! respectively. These are given by, 𝑝! = 𝑃!𝑊!!!! 0|0 𝑊! 1|0  
and 𝑞! = 𝑃!𝑊!!!! 1|1 𝑊! 0|1 , and satisfy the condition, 𝑝! + 𝑞! = 1!

!!! . The 
information-content of the stored sequences is given by 
 
𝐼 = − 𝑝! log𝑝! + 𝑞! log 𝑞!!

!!!         .             (S1.5) 
 
Simple algebra shows that 𝐼 it can be decomposed into two terms, 𝐼 =  𝐼 𝐶 + 𝐼 𝑆|𝐶  
where 𝐶 stands for the cycle class and 𝑆 stands for the stored sequence. The term 𝐼 𝐶  
equals the information content related to the cycle class, i.e. the information-content 
of the first bit in the stored sequences 𝑆. Therefore 𝐼 𝐶 = −𝑃! log𝑃! − 𝑃! log𝑃! 
which equals the information content in the classical MD. The term 𝐼 𝑆|𝐶 is the 
information-content in the ensemble of sequences 𝑆 conditional to the cycle class or 
the first bit measurement. It is given by, 
 
𝐼 𝑆 𝐶 = − 𝑃!

!! !|!
!! !|!

log𝑊! 0|0 + log𝑊! 1|0 + 𝑃!
!! !|!
!! !|!

log𝑊! 1|1 +

log𝑊! 0|1        .                (S1.6) 
 
Substituting Eqs.(S1.3,S1.4) in the previous expressions gives the result reported in 
the main text, 𝐼 = 𝐼 𝐶 + 𝐼 𝑆|𝐶 = 𝐼!"# + 𝐼!(𝜏) with 𝐼!"#, 𝐼! 𝜏  given in Eq. (4,5), 
 
𝐼!"# = − !!

!!
log 𝑃! − !!

!!
log 𝑃! − 𝑃! log𝑃! − 𝑃! log𝑃!            (S1.7) 

𝐼! 𝜏 = − !! !!!!!!!!"

!! !!!!!"
log 1+ !!

!!
𝑒!!" − !! !!!!!!!!"

!! !!!!!"
log 1+ !!

!!
𝑒!!" −

log 1− 𝑒!!" − !! !"# !!
!!

+ !! !"# !!
!!

!!!"

!!!!!"
   .           (S1.8) 

 
The 𝜏 dependent contribution 𝐼! 𝜏  diverges logarithmically in the limit 𝜏 → 0, 
 
𝐼! 𝜏 → 0 = − log 𝑅𝜏 + 1+ !!! !"# !!

!!
+ !!! !"# !!

!!
+ Ο 𝑅𝜏  .          (S1.9) 

 
In a similar way one can calculate the average cycle time in the CMD, 𝑡!!"#. This is 
equal to the average number of steps in one state before the system changes state 
multiplied by the time interval 𝜏. In other words 𝑡!!"# 𝜏 is equal to the average length 
of the stored sequences, 𝟎𝒏,𝟏𝒏. It is given by, 
 

𝑡!!"# 𝜏 = 𝑛 + 1 𝑝! + 𝑞! = 1+ 𝑛 𝑝! + 𝑞! =
!

!!!

!

!!!

 

= 1+ !!
!! !|!

+  !!
!! !|!

 =  !
!!!!!"

!!!!!

!!
+ 1  ,                                   (S1.10) 
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which for finite 𝑅, 𝜏 is greater than 3 and is given by Eq.(8) in the main text. For the 
relative power between the CMD and the classical MD we first calculate the average 
power in the CMD. To optimize the extracted power in the CMD it is natural to take 
the limit 𝜏 → 0 in Eq.(S1.10). Because 𝑊!"#!"# is independent of 𝜏, maximum power is 
obtained in the limit 𝜏 → 0. Equation (S1.10) gives the leading behavior, 
 
                                         𝑡!!"# →

!
!

!!!!!

!!
         .                        (S1.11) 

 
   The average power is then given by,  
 

𝑃!"# =
!!"#
!"#

!!!"#
= 𝑘!𝑇𝑅

!"# !!!!!

!!!!
!
!"# !!!!

!!!!!

!!!!!

!!

       .                            (S1.12) 

 
In the classical MD work extraction can be applied repeatedly, let us say every 
relaxation time 1/𝑅, yielding the optimal power, 
 
𝑃!" =

!!"#
!"

!/!
= 𝑘!𝑇𝑅

!"# !!!!

!!!!
+ !"# !!!!!

!!!!!
           (S1.13) 

 
In the limit 𝜙 ≫ 1  we have, 𝑃!"# = 𝑘!𝑇𝑅 𝜙 𝑒! ! 1+ Ο 𝑒! !  and 𝑃!" =
𝑘!𝑇𝑅 𝜙 𝑒! ! 1+ Ο 1 𝜙 giving the result in the text: 𝑃!"# 𝑃!" → 1−
Ο 1 𝜙 .  
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S2: Efficiency of uncompressed sequences 
 
In order to evaluate the performance of the CMD with respect to the classical MD one 
might consider the ratio between the average extracted work and the uncompressed 
information 𝐼!"#$% =  𝑁 log 2  where 𝑁  is the average number of measurements 
performed before the pulling protocol. In the optimal condition 𝑅𝜏 ≫ 1, 𝑁 is given by 
(Eq.8 in the text), 
 

𝑁 =
1+ 𝑒!!

𝑒!
+ 1 > 3          (𝑆2.1) 

 
In terms of the probability 𝑃, this is given by, 

𝑁 =
1

𝑃(1− 𝑃)− 1          (𝑆2.2) 

                        
Figure S1. The efficiency of the CMD considering the information content of 
uncompressed sequences.  
 
with 0 ≤ 𝑃 ≤ 1. Note that this expression is symmetric under the transformation 
𝑃 → 𝑃 = 1− 𝑃 as expected. The uncompressed information 𝐼!"#$% as defined above 
is larger than the minimum information 𝑘!𝑇𝐼!"#  defined in Eq.(4) in the paper 
because many bits in the stored sequence are redundant. It is important to note that the 
operation of compression is logically reversible [S1] so no energy is required for the 
compression 𝐼!"#$% → 𝐼!"# . Therefore the efficiency using the uncompressed 
information 𝐼!"#$% should be lower than the minimum efficiency as given by the 
information content 𝐼!"# of the compressed sequences, Eq.(7). The efficiency 𝜖!"#$% 
obtained using the uncompressed information 𝐼!"#$% equals, 
 

𝜖!"#$% =
𝑊!"#!"#

𝑘!𝑇𝐼!"#$%
=
−𝑃 log 1− 𝑃 − 1− 𝑃 log𝑃

1
𝑃(1− 𝑃)− 1 log 2

       (𝑆2.3) 

 
This efficiency has a local minimum equal to 1/3 at 𝑃 = 1/2 and two absolute 
maxima at 𝑃 = !

!
, !
!
 with 𝜖!"#$%!"# = 2 log 2− (log 3)/4 13 log 2 3 ≈ 0.37. The 

dependence of 𝜖!"#$% on 𝑃 is shown in Figure S1. In comparison to the efficiency as 
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given by the compressed sequences (Eq.7 in the paper) 𝜖!"#$% is always lower than 𝜖 
and vanishes in the limit 𝑃 → 0 ,1. It might seem fair to compare the work extracted 
to the uncompressed information. However the true information (equal to the 
minimum amount of energy required to erase the information content of the stored 
sequences) equals the information defined by 𝐼!"# rather than 𝐼!"#$%. 

 
A related argument could be made to emphasize 
this. Let us consider the information-content of 
a typical string produced by the CMD as shown 
in Figure S2. Clearly the information content of 
the string can be reduced to 1) the first bit and 
2) the length of the string of identical symbols. 
We refer to this representation as the 
‘compressed information’. The ‘compressed 
information’ can be stored in 1+log2N bits : one 
for the first measurement and log2N to store N 
in binary format. Here N is taken as the average 
number of bits. However we should emphasize 
that N changes from string to string making the 
argument asymptotically valid only in the limit 
of large N. This condition is met in the limits 
𝑃! → 0 or 1.   
 
It is important to realize that compression is a 
logically reversible operation that does not 
require energy expenditure [Ref S1]. Therefore 
in a first step we can reversibly compress the 
multiple-bits stored sequences into just one bit 
plus the additional log2N bits. To complete the 
cycle one still needs to erase the 1+log2N 
bits where we have stored the compressed 
information. This requires a total amount of 
work equal to: 

                          
𝑊!"#$ = 𝑘!𝑇 log 2( log!𝑁 + 1) ≃ 𝑘!𝑇 log𝑁    𝑁 ≫ 1                      𝑆2.4       .  
 
This expression coincides with the expression 𝑘!𝑇𝐼!"# obtained by the CMD in the 
limits 𝑃! → 0 and 1. To show this let us consider the case 𝑃! → 0 (the same argument 
applies if 𝑃! → 1). The average number of bits (or length) of the stored sequences is 
given by the Eq. (S2.2) . This is,   
 

𝑁 =
1

𝑃!(1− 𝑃!)
− 1          (𝑆2.5) 

 
The average number of bits in the limit 𝑃! → 0 diverges as 𝑁 → 1/𝑃! and therefore 
𝑊!"#$ → −𝑘!𝑇 log𝑃! . This should be compared with the expression of 𝑘!𝑇𝐼!"# 
(Eq.4) in the manuscript in the same limit, 𝑘!𝑇𝐼!"# → −𝑘!𝑇 log𝑃!.  
 

Figure S2: The total energy 
expenditure for measurement 
erasure is set by 𝐼!"# rather than 
𝐼!"#$% (see text for details).  
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Summing up, a minimum of two measurements is necessary for our Szilard motor to 
operate. Indeed, At 𝑃!  =  𝑃!  =  1 2, data compression is not effective, three bits are 
necessary on average and the CMD is way less efficient than the classical MD in this 
regime. Efficiency is 33% for the CMD and 100% for the classical MD. Still, as we 
mentioned above, the CMD attains 100% efficiency asymptotically if 𝑃! → 0 or 1. 
This is due to the fact that compression in this regime can reduce the large strings of 
experimental measurements to a few bits of relevant information. It is in this regime 
that the CMD can deliver arbitrary large amounts of work. The calculation of the 
compression of information 𝐼!"#$% → 𝐼!"#  for arbitrary 𝑃!  along the reasoning 
outlined above requires including the contribution of the variable length 𝑁 of the 
stored sequences. In fact, the average value of 𝑁 given in Eq. (S2.5) does not account 
alone for the full information-content of the ¨book¨ containing compressed sequences 
in the above format (one first bit plus (log2N) bits for the length). In this regard the 
expression 𝑊!"#$ → −𝑘!𝑇 log𝑃! is just a lower bound to the exact expression for the 
minimum information-content,𝑘!𝑇𝐼!"# as given in (Eq.4) in the manuscript. 	
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S3 : Mean work per cycle in a Szilard engine, the adiabatic case 
 
In order to understand work extraction from the Szilard Engine we shall compute the 
work extracted per cycle in a limit case i.e. when the forward (FW) part of the 
protocol is instantaneous while the reverse part of the protocol (RV) is adiabatic. 
Likewise in the main text, 0 (1) denotes de folded (unfolded) state respectively. The 
initial value of the control parameter, 𝜆!, will determine the probability of finding the 
molecule in the folded state, 𝑃!, or in the unfolded state, 𝑃!. The logarithm of the ratio 
of these two probabilities is denoted by 𝜙 and equals the free energy difference 
between the folded and the unfolded state, 
 

𝜙 = − log !!
!!

= − log !!!!!

!!!!!
= 𝛽(𝐺! − 𝐺!) = 𝛽∆𝐺  .           (S3.1) 

 
Let us assume the molecule is initially in the unfolded state 1. The control parameter 
𝜆 will be raised instantaneousely to the value 𝜆! > 𝜆!. During this transition the 
system will be confined to the unfolded free energy branch 𝐺! and the total work 
performed on the system will be: 
 
𝑊!

!" = 𝐺! 𝜆! − 𝐺! 𝜆!                  (S3.2) 
 
After reaching 𝜆! the protocol will be reversed and the control parameter will be 
returned adiabatically to 𝜆!. Along this part of the protocol the work performed on the 
system will be : 
 
𝑊!

!" = 𝐺 𝜆! − 𝐺 𝜆!       ,                (S3.3) 
 
where the full equilibrium free energy 𝐺(𝜆) and the partial free energies 𝐺! 𝜆 ,𝐺! 𝜆  
are related by : 
 
𝐺(𝜆) = −𝑘!𝑇 log 𝑒!!!!(!) + 𝑒!!!!(!)          .            (S3.4) 
  
 
Now if 𝜆! ≫ 𝜆!  thermodynamic stability implies 𝐺! 𝜆! ≫ 𝐺! 𝜆!  and as a 
consequence we can approximate: 
 
𝐺(𝜆!) = −𝑘!𝑇 log 𝑒!!!!(!!) + 𝑒!!!!(!!) ≈𝐺! 𝜆!             (S3.5) 
 
and 
 
𝑊!

!" ≈ 𝐺 𝜆! − 𝐺! 𝜆!   .                 (S3.6) 
 
This allows us to compute the maximum average work per cycle as a function of 𝜙 : 
 

𝑊! =𝑊!
!" +𝑊!

!" ≈ 
 
≈ 𝐺 𝜆! − 𝐺! 𝜆! =−𝑘!𝑇 log 𝑒!!!! !! + 𝑒!!!! !! −𝐺! 𝜆! = 
 
=−𝑘!𝑇 log 𝑒!!!! !! (1+ 𝑒!!∆! !! ) −𝐺! 𝜆! = −𝑘!𝑇 log 1+ 𝑒!!     .      (S3.7) 
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A similar computation can be performed if the molecule is initially found in the 
folded state, replacing 𝜆! with 𝜆! < 𝜆!. In this case the maximum average work per 
cycle will be given by: 
 
𝑊! ≈ −𝑘!𝑇 log 1+ 𝑒!                        (S3.8) 
 
Equations (S3.7) and (S3.8) are the equivalent of the two-compartment ideal gas 
model given in the text with the transformation 𝑃! = 𝑉! 𝑉 = 1 (1+ 𝑒!).  Summing 
up, the maximum average work per cycle in the classical MD will be given by,  
 
𝑊!"#!" = 𝑃!𝑊! + 𝑃!𝑊! = 𝑘!𝑇

!"# !!!!

!!!!
+ !"# !!!!!

!!!!!
                  (S3.9) 

 
whereas for the CMD, 
 

𝑊!"#!"# = 𝑃!𝑊! + 𝑃!𝑊! = 𝑘!𝑇
!"# !!!!!

!!!!
+ !"# !!!!

!!!!!
           (S3.10) 

 
which are Eq.(1,3) in the main text. 
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S4 : Dissipation losses during the work extraction cycle. 
 
In our experimental protocol, the ‘fast change’ is performed at a pulling speed of 2 
nm/ms and takes approximately 10 ms. On such timescales the molecule remains in a 
specific folding state during the transition. As a consequence the main source of 
dissipation is due to the friction affecting the plastic bead used in the manipulation, an 
effect that is intrinsically captured in our measurements. In Figure S3 we demonstrate 
that this effect is negligible. Figure S3A shows a typical realization of our pulling 
protocol as a function of time during a work extraction cycle. The force is directly 
measured by detecting changes in the linear momentum of the trapping beam. Fig 
S3B shows the same data in terms of the control parameter λ. Here the orange points 
correspond to the first and fast part of the pulling (i.e. when the position of the trap is 
rapidly changed) whereas the red line corresponds to the second and slow part of the 
pulling cycle (i.e. when the original position of the trap is adiabatically recovered 
during the work extraction cycle). Finally the green data correspond to the partial 
equilibrium in the folded state as estimated from the second slow part of the pulling 
work extracting cycle. 
	
The partial equilibrium corresponds to the state of the system when configurations are 
constrained to the folded basin but the mechanical and thermodynamic variables are 
equilibrated. Partially equilibrated states are described by Boltzmann-Gibbs 
distributions restricted to the set of configurations belonging to specific state (in this 
case the folded state). 
 
In presence of strong friction effects we would expect the green and orange (and the 
corresponding work estimations) to differ. The total work along the cycle can be 
measured taking the difference between the force along the slow and fast part of the 
protocol. These quantities are shown in Fig S3C (green line shows the estimation 
based on the partial equilibrium force and orange line shows the direct measurement). 
In Fig S3D we show the estimated work obtained by numerical integration of the 
curves in Fig. S3C.  for different values of the upper integration limit 𝜆: 
 

𝑊 = (𝑓!"
!

!
− 𝑓!")𝑑𝜆  .                  (S4.1) 

The estimation shows that the two estimates are consistent within the experimental 
error, showing that friction effects are negligible. This is further illustrated in S3E, 
that shows how for the condition 𝑃!  =  𝑃!  =  1 2, the Landauer limit is reached by 
increasing the pulling speed (Red data low speed, green data medium speed, blue data 
fast speed, dashed line Landauer limit). 
	
The extent of friction effects can also be estimated by introducing a simple model. In 
the absence of hopping the system can be effectively approximated as a series of two 
springs (see Fig. S4). When the trap-pipette distance is increased at constant speed 𝑣 
the equation of motion for the bead position, 𝑥, reads: 
 

𝛾𝑥 = −𝑘!𝑥 − 𝑘! 𝑥 − 𝜆 + 𝜂                   (S4.2) 
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where η  is a Gaussian white noise with correlation < 𝜂!𝜂! >= 𝑘!𝑇𝛾𝛿 𝑡 − 𝑠 . 
Moreover k! is the stiffness of the molecular tether and k!  is the stiffness of the 
optical trap. Taking the average on both sides gives, 
 

𝛾 < 𝑥 >= −𝑘! < 𝑥 > −𝑘! < 𝑥 > −𝜆 .                                                (S4.3) 
 
We consider the case of constant pulling speed i.e. 𝜆 = 𝜆! + 𝑣𝑡 , which can be solved 
as :  
 

< 𝑥! >= 𝑅𝜆! + 𝑅𝑣𝑡 + 𝑒!!" 𝑥! − 𝑅𝜆! +
𝑣𝑘!

𝜔(𝑘! + 𝑘!)
1− 𝑒!!" ,    (S4.4) 
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Figure S3: A) Pulling protocol 
during work extraction showing the 
first fast change followed by the 
slow recovery. B) Pulling trajectory 
as a function of the control 
parameter λ. Orange line shows the 
fast change, red lines shows the 
slow recovery. Green line shows 
the estimated equilibrium force in 
the unfolded state. C) Force 
difference between the fast and 
slow part of the trajectory. The 
integral of this quantity gives the 
work extracted in the cycle. In 
orange we show the estimate based 
on the measured force and in green 
the estimate based on the partially 
equilibrated force in the unfolded 
state. D) Work estimates based on 
direct measurement (orange) and 
estimate of the partially 
equilibrated force (green). The two 
estimates are compatible within the 
experimental error. E) Average 
work extracted for different pulling 
speeds. High speed (blue data), 
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where 𝜔 = (𝑘! + 𝑘!)/𝛾, 𝑅 = !!
(!!!!!)

 and 𝑥! is the initial condition. The first term 

between brackets corresponds to the equilibrium solution, 𝑥!" = 𝑅𝜆! + 𝑅𝑣𝑡  .The 
position of the bead relates to the force measured in the optical trap as: 
 

< 𝑓 >= 𝑘! < 𝑥 > −𝜆 ,              (S4.5) 
 
and the total contribution of friction to the overall dissipation along the extracting 
cycle can be estimated by integrating the difference between 𝑓  above ad the 
equilibrium force 𝑓!" = 𝑘! 𝑥!" − 𝜆  : 
 

𝑊!"## = (< 𝑓 > −𝑓!")
!!

!
𝑑𝜆 ≈

𝑘!𝑣𝑅
𝜔 Δ𝜆                (S4.6) 

 
where transients have been neglected. In our system ω ∼  3 ms!!,𝑅 = !

!"
, 𝑣 =

2 !"
!"
, 𝑘! = 0.06 !"

!"
, 𝑘! = 1 pn/nm and 𝛾 = 3 pN ms/nm  so: 

 
                                                   𝑊!"## = 0.04 !"

!"
≈ 0.01 𝑘!𝑇,              (S4.7)  , 

 
well within our experimental error. 

	
		
		
	
	
	
	
	
	
	
	
	
	
	

	
	
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4: Linear modelling of the 
experimental system. In the absence 
of folding/unfolding transitions the 
system can be modelled as a series 
of two springs. Here 𝑘! and 𝑘!  are 
the stiffness of the molecular tether 
and of the optical trap respectively. 
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S5 : Key qualitative features of the CMD as a work-extraction machine 
 
The remarkable aspects of the CMD are the following: 
 
1) The CMD can extract arbitrary large amounts of work per cycle. In contrast the 
Szilard engine is limited to an average of k!T log 2 per cycle.  
 
This is an essential point, especially at the nanoscale. In a macroscopic setting we can 
always imagine performing a given transformation (e.g. lifting a weight, Fig. S5 
upper panel) either by delivering small amounts of work several times or by one 

single application of a large amount 
of work. At the microscopic scale 
the situation is quite different. For 
example, the enzymatic breaking of 
a single chemical bond in a single 
enzymatic cycle often requires the 
expenditure of large amount of 
energy, that might well exceed 
k!T log 2 . As a consequence, if 
Maxwell-Demon-like devices are to 
be found in nature or used in 
technology, they must be able to 
deliver a specific amount of work 
per cycle. This can be achieved with 
information-to-energy conversion 
devices which store multiple bit 
sequences, rather than just one-bit 
devices such as the standard Szilard 
engine. 
 
 2) The efficiency of our scheme 
increases with the amount of work 
delivered per cycle. Notably 
efficiency does asymptotically reach 

100% in the limit 𝑃! → 0 or 1 , a 
regime dominated by rare events. 
This limit matches the efficiency of 
the standard Szilard engine while 
delivering more work per cycle. It is 
in this sense that we consider the 
CMD being able to exploit rare 
events better than the MD does. 
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Figure S5: Macroscale v.s. microscale. At the 
macroscale thermodynamic transformations can 
often be performed using multiple cycles each 
delivering a small amount of work.  At the 
microscale, e.g. in enzymatic reactions, a fixed 
amount of work must be delivered in a single 
cycle which is possible using a CMD rather than 
a standard MD  


