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S1 Derivation of the kinetic barrier in the KD model

Let us consider the system presented in Fig. S1, where a Brownian particle diffuses in

one dimensional potential of mean force V (x). The time evolution of the probability den-

sity function p(x, t) to find the particle at position x at time t follows the Fokker-Planck

equation,1,2

∂p(x, t)

∂t
= D

∂

∂x

[
∂

∂x
+

1

kBT

dV (x)

dx

]
p(x, t) (S1)

where D = kBT/γ is the diffusion coefficient, γ is the friction coefficient, kB is the Boltzmann

constant, and T is the temperature.

By considering that the particle at time t = 0 is located in a region R = [a, b] at position

x0 ∈ R, then p(x, 0) = δ(x− x0). Considering the survival probability defined as the proba-
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Figure S1: Brownian particle in a double well potential. The minim and maximum
values of V (x) are located at xmin and x†, respectively. Positions a and b are used to model
the absorbing and reflecting boundaries of the dynamics of the particle (red dot).

bility of the Brownian particle to remain inside R at time t, Sx0(t,R) =
∫
x∈R p(x, t)dx, it is

possible to determine the density function of the survival time, which is equal to −∂Sx0 (t,R)

∂t
.

The mean first passage time τ is defined as τ(x0) = −
∫∞
0
dt t

∂Sx0 (t,R)

∂t
. A differential equa-

tion can be written and solved for τ(x), with absorbing (τ(b) = 0) and reflecting (∂τ
∂x
|x=a = 0)

boundary conditions. The mean first passage time for a given position x equals,

τ(x) =
1

D

∫ b

x

dy e
V (y)
kBT

∫ y

a

dz e
−V (z)
kBT . (S2)

Finally, the kinetic rate to unfold k→ is defined as the inverse of the mean first passage time

evaluated at a = xmin (k→ = τ(a)−1),

k→ =
D∫ b

a
dy e

V (y)
kBT

∫ y
a
dz e

−V (z)
kBT

. (S3)

By equating Eq. (S3) and Eq. (1a) we get:

B = kBT

[
log

(
k0
D

∫ b

a

dy e
V (y)
kBT

∫ y

a

dz e
−V (z)
kBT

)]
. (S4)

For a DNA/RNA molecule forming a hairpin structure, the reaction coordinate x for the

unfolding-folding reaction (N↔U) equals the number of released base-pairs m. As m is an
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integer, the double integral in Eq. (S4) becomes a double sum with limits a ≡ 0 and b ≡M .

These limits correspond to the configurations where the molecule is folded in N (m = 0)

and unfolded in U (m = M), respectively. Intermediate m values (0 < m < M) indicate

partially folded configurations. Taking dy, dz ≡ l0 equal to the inter-monomer distance, we

can rewrite Eq. (S4) as,

B = kBT

[
log

(
k0l

2
0

D

M∑
m=0

m∑
m′=0

e
Vm−Vm′

kBT

)]
(S5)

The diffusion coefficient satisfies D ' k0l
2
0, therefore we get Eq. (4).

S2 Reconstruction of the kinetic rates

To determine k0, we use the fact that the kinetic barrier to unfold at zero force can be

approximated by the folding free energy, i.e., Bij(f = 0) ' ∆G0
ij. This result can be

obtained from Eq. (4) by calculating Bij(0) for ∆G0
m = mg with g > 0 the average free

energy per bp. Extrapolating ki→j(f) to zero force, we can determine the attempt rate k0

using Eq. (1a),

k0 ' ki→j(f = 0) exp
(∆G0

ij

kBT

)
. (S6)

To extrapolate the ki→j(f) to zero force, we need to reconstruct the kinetic rates at suffi-

ciently low forces. A possible strategy is to take advantage of the detailed balance condition

by merging Eqs. (1b) and (2),

log

(
ki←j(f)

ki→j(f)

)
=

1

kBT

[
∆G0

ij −
∫ f

0

(xj(f
′)− xi(f ′))df ′

]
, (S7)

with xi (xj) being the extension of the initial (final) state, ∆G0
ij the folding free-energy, and

ki→j(f) (ki←j(f)) the force-dependent unfolding (folding) kinetic rate.
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To illustrate and test the approach, we have analyzed the HI1 molecule by extrapolating

the unfolding and folding kinetic rates to zero force. The extrapolation has been done by

fitting simultaneously the unfolding kinetic rate to a quadratic function (in log k versus f

scale) and imposing Eq. (S7) to reconstruct the folding rate. The term,
∫ f
0

(xj(f
′)−xi(f ′))df ′

in Eq. (S7) is determined by using the elastic parameters of ssDNA.3 The extrapolated

unfolding and folding kinetic rates of HI1 are shown as solid lines in Fig. S2 for i, j =

{N, I, U}. Let us mention that the quadratic fits to the unfolding rates in a log-normal

plot agree with the curvature reported in a previous study using a similar approach.4 The
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Figure S2: Reconstructed kinetic rates. Symbols correspond to the experimental values
and solid lines correspond to the reconstructed kinetic rates.

extrapolated kinetic rate values from kN→I(f) (yellow line in Fig. S2) and kI→N(f) (green

line in Fig. S2) are equal to kN→I(0) = (7.7±1)×10−6s−1 and kI→N(0) = (9.5±1)×10−6s−1.

Using the average experimental folding free energy values reported in Tab. (1) and Eq. (S6),

we get kNI0 = (8± 1)× 107s−1 and kIU0 = (8± 1)× 106s−1, which agree pretty well with the

values summarized in Tab. (1) obtained by matching the experimental data to the predicted

kinetic barriers (Eqs. (9a) and (9b)).
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