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Information-to-energy conversion with feedback measurement stands as one of the most intriguing
aspects of the thermodynamics of information in the nanoscale. To date, experiments have focused on
feedback protocols for work extraction. Here we address the novel case of dissipation reduction in
nonequilibrium systems with feedback. We perform pulling experiments on DNA hairpins with optical
tweezers, with a general feedback protocol based on multiple measurements that includes either discrete-
time or continuous-time feedback. While feedback can reduce dissipation, it remains unanswered whether
it also improves free-energy determination (information-to-measurement conversion). We define
thermodynamic information ϒ as the natural logarithm of the feedback efficacy, a quantitative measure
of the efficiency of information-to-energy and information-to-measurement conversion in feedback
protocols. We find that discrete- and continuous-time feedback reduces dissipation by roughly kBTϒ
without improvement in free-energy determination. Remarkably, a feedback strategy (defined as a
correlated sequence of feedback protocols) further reduces dissipation, enhancing information-to-
measurement efficiency. Our study underlines the role of temporal correlations to develop feedback
strategies for efficient information-to-measurement conversion in small systems.
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I. INTRODUCTION

Maxwell’s demon (MD) thought experiment [1] has led
to the insight that information enhances the capacity to
extract energy from a system. In 1961, Landauer demon-
strated that any irreversible logical operation (such as bit
erasure) dissipates at least kBT log 2 per stored bit of
information [2]. Bennett [3] applied this result to the
Szilards engine [1], a single-particle version of the MD
that extracts energy from a thermal bath in a cycle. It was
shown that bit erasure is an entropy-producing step
necessary to restore the initial blank state of the memory
of the demon, in agreement with the second law [4–6].

These developments have boosted a new field of
research, namely, the thermodynamics of small sys-
tems under feedback control [7–10]. This has led to
experimental realizations of the Maxwell demon in
colloidal systems [11–14], electronic [15,16] and optical
devices [17–19], single molecules [20], quantum systems
[21–23], and tests of the Landauer limit [24–28]. The
extension of stochastic thermodynamics [29–31] to
include information and feedback has led to novel
fluctuation theorems (FTs) for work and information
[32–35], in repeated-time feedback protocols [36–39]
and analytically solvable models [40–43]. Generalized
Jarzynski equalities have been derived for isothermal
feedback processes, where an external agent performs a
single measurement on a system and applies a protocol
ωm that depends on the measurement outcome m ¼ 1;
2;…;M. A main equality useful for measurements with
feedback reads [33]

hexp ½−ðW − ΔGÞ=kBT�i ¼
XM
m¼1

P←ðmjωmÞ≡ γ ð1Þ
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with kB the Boltzmann constant and T the temperature.
Here, W is the work performed on the thermodynamic
system, ΔG is the free-energy difference, and P←ðmjωmÞ
is the probability to measure m along the time reversal
(←) of the original protocol ωm. Equation (1) defines the
efficacy parameter γð≤ MÞ which quantifies the revers-
ibility of the feedback process [44], reaching its maxi-
mum value (M) for reversible feedback process where
P←ðmjωmÞ ¼ 1 for all m. Without feedback, ωm ≡ ω
and γ ¼ 1, with Eq. (1) the Jarzynski equality. It is con-
venient to define the logarithm of the efficacy ϒ ¼ log γ,
which is a bound of the work that can be extracted in
an isothermal feedback process. ϒ might be called
thermodynamic information, information utilization, or
negentropy. For discrete-time single measurements, ϒ
is bounded from above [Eq. (1)with P←ðmjωmÞ ≤ 1],
−∞ < ϒ ≤ logM (M ¼ 2 being the one-bit Landauer
limit). Jensen’s inequality applied to Eq. (1) yields

hWdi≡ hWi − ΔG ≥ −kBTϒ ⇒ hWdi þ kBTϒ ≥ 0; ð2Þ

where hWdi is the dissipated work. Without feedback,
ϒ ¼ 0 and hWdi0 ≥ 0 where the subscript 0 denotes the
nonfeedback case. In experimental realizations of the
MD, feedback measurement is operated in equilibrium
systems and ϒ ¼ logM is the maximum extractable
(i.e., negative) work for equally likely outcomes, hWi ¼
−kBTϒ ¼ −kBT logM.
Here we address a novel situation where feedback is

operated to reduce dissipation in small nonequilibrium
systems. Most systems in nature and daily life applications
are out of equilibrium and dissipative, requiring feedback to
reduce dissipation. Examples range from heat engines that
minimize heat dissipation to control energy production and
avoid extreme events (e.g., accidents in power plants) to
living organisms. Most regulatory processes in the cell
focus on housekeeping tasks: The entropy production must
be kept within bounds and reduced upon unexpected rises
due to exogenous (external) factors. The understanding of
dissipation reduction is vital in the nanoscale where
dissipative molecular processes are remarkably efficient
(for instance, the typical>90% efficiency of the Adenosine
triphosphate enzymes [ATPase] machinery). In all these
nonequilibrium systems, dissipation reduction by using
feedback is critical. The main goal of this paper is to derive
and test fluctuation theorems describing dissipation reduc-
tion in such kinds of systems.
For a nonequilibrium process, Eq. (2) shows that dis-

sipation is bounded by −kBTϒ. For ϒ> 0 (information-
to-work conversion), dissipation is reduced by at most
−kBTϒ. Conversely, one could apply feedback protocols
where ϒ < 0 (information-to-heat conversion) and dissi-
pation increases by at least −kBTϒ. The latter case is
nonproductive feedback for dissipation reduction. It has
similarities to feedback in control theory, where protocols

regulate experimental variables, e.g., by keeping them
constant [45,46]. These types of protocols counteract
deviations from a system’s specific preset conditions rather
than rectifying thermal fluctuations, leading to increased
dissipation. For the relevant case ϒ> 0, the dissipated
work is reduced with respect to the nonfeedback case
hWdi ≤ hWdi0. We define the information-to-energy or
feedback-cycle efficiency [47–49] ηI as the reduction in
dissipation ΔhWdi ¼ hWdi0 − hWdi relative to the second
law bound hWdi0 þ kBTϒ:

ηI ¼
ΔhWdi

hWdi0 þ kBTϒ
< 1: ð3Þ

This is our first key result for information-to-work con-
version in nonequilibrium conditions. For cyclic and revers-
ible MD devices hWdi0 ¼ 0, so ηI ¼ −hWdi=kBTϒ is the
standard MD efficiency.
Related to dissipation reduction is free-energy determi-

nation, a relevant question for molecular thermodynamics
where important applications have emerged in molecular
folding and ligand binding [50–52]. It is an open question
whether, by reducing dissipation, feedback can improve
free-energy determination, what we call information-to-
measurement conversion. Free-energy determination can
be improved if hWdi þ kBTϒ < hWdi0, which we denote
as weakening of the second law. Free-energy determination
improvement is related to the Jarzynski relation Eq. (1)
and its bias BN for N work (W) measurements. Inserting
ϒ ¼ log γ into Eq. (1), we define

BN ¼ hΔGNi − ΔG;

ΔGN ¼ −kBT log

�
1

N

XN
i¼1

e−
Wi
kBT

�
þ kBTϒ ð4Þ

with ΔGN the Jarzynski ΔG estimator for N experiments
and h::i the average over many realizations of the N
experiments. The exponential average of minus the work
in Eq. (4) is biased for finite N [whereas the bounded and
finite sum defining ϒð¼ log γÞ in Eq. (1) is not]. BN is
positive and monotonically decreasing with N [53], van-
ishing in the limit N → ∞. Therefore, improved free-
energy determination requires that BN for N ¼ 1 decreases
with feedback relative to the nonfeedback case. From
Eq. (4) we have

B1 ¼ hΔG1i − ΔG ¼ hWi − ΔGþ kBTϒ

¼ hWdi þ kBTϒ ≥ 0; ð5Þ

which is equivalent to Eq. (2). Therefore, weakening of the
second law implies reducing B1, leading to improved free-
energy determination for finite N.
To quantify information-to-measurement conversion, we

define the cycle efficiency ηM as the relative difference
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between the second law inequality bounds with feedback
hWdi þ kBTϒ ≥ 0 and without feedback hWdi0 ≥ 0:

ηM ¼ 1 −
hWdi þ kBTϒ

hWdi0
¼ ηI þ ðηI − 1Þ kBTϒhWdi0

: ð6Þ

This is our second main result, which leads to a new
inequality ηM ≤ ηI. Note that ηM ¼ 1 if and only if
ηI ¼ 1, in which case dissipation reduction is maximal
hWdi ¼ −kBTϒ, and ΔG ¼ hWi þ kBTϒ can be deter-
mined with certainty. Improved free-energy determination
requires ηM > 0, whereas for ηM ≤ 0, no gain in free-energy
determination is obtained with feedback: hWdi decreases
with respect to hWdi0 by exactly or less than kBTϒ. In
general, optimal free-energy determination is obtained by
maximizing ηM.
Here we address information-to-energy and information-

to-measurement conversion by combining theory and
experiment. We introduce a new feedback FT for multiple

repeated measurements that is applicable to DNA unzip-
ping experiments with optical tweezers [Fig. 1(a) and
Sec. II A]. From the pulling experiments, we measure
the work distributions and ϒ to extract the efficiencies
ηI , ηM. We investigate whether reduced dissipation with
feedback (ϒ> 0) improves free-energy determination. In a
pulling experiment without feedback, the optical trap is
repeatedly ramped up (forward, →) and down (reverse, ←)
at a constant speed between trap positions λmin and λmax
where the molecule is folded (F) and unfolded (U),
respectively, while the force f exerted by the trap is mea-
sured, producing a force-distance curve (FDC) [Fig. 1(b)
and Sec. II B]. We apply two different feedback protocols,
namely, discrete-time feedback (DTF) [Fig. 1(c), left] and
continuous-time feedback (CTF) [Fig. 1(c), right]. The
CTF protocol is the nonequilibrium generalization of a
recently introduced continuous Maxwell demon [20], DTF
and CTF being particular cases of the new feedback
protocol. We show that, while DTF and CTF protocols

(a)

(b)

(c)

(d)

FIG. 1. DNA pulling experiments with feedback measurement. (a) Schematics of the single-molecule experimental setup. The optical
trap measures the force f applied on the molecule. The control parameter λ denotes the distance between the optical trap and the pipette.
The DNA hairpin sequence is shown on the right. (b) Experimental unfolding and refolding FDCs without feedback, where we plot both
f and λ as a function of time. λ (color gray, scale on the right side) is first increased (unfolding and forward process) at a constant loading
rate r ¼ 4 pN=s. After reaching a predefined upper value, λ is decreased at the unloading rate r (folding and reverse process). Along the
time axis, we show the sequence of states (F, folded; U, unfolded) observed at specific times along the trajectory (note the transient
refolding event along →). (c) Left: pulling protocol with DTF. The initial pulling rate rF is switched to rU (purple) if the molecule is
found to be unfolded (U) at λ1 and is unchanged otherwise (orange). Right: pulling protocol with CTF. The pulling rate rF along → is
switched to rU as soon as an unfolding event is detected. In both cases, the protocol in the← process is the time reversal of the one used
in the→ process. (d) Schematics of the general first-time-feedback (FTF) protocol in a pulling experiment. The state of the system (F or
U) is repeatedly observed during→ at specified values of the control parameter λk (green boxes). At λk� , the system is observed to be in
U for the first time, and the pulling rate is switched from rF to rU . In the illustration, the first time the molecule is found to be inU along
the predetermined set of λk occurs at λk� : The molecule was in F at all observed trap positions before λk� (with λk�−1 the previous trap
position where F was observed). Note that the molecule can execute multiple transitions at intermediate values of λ (between λk�−1 and
λk� ) where no observations are made. A feedback response is triggered only when state U is observed for the first time at the specific
positions defined by the predetermined set fλkg.
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mildly reduce dissipation, they do not improve free-energy
determination (ηM ≲ 0). Remarkably, a feedback strategy
combining DTF and CTF protocols markedly increases ηI
and ηM. This sets feedback strategies (defined as a sequence
of multiple-correlated feedback protocols) as the route
to enhance the nonequilibrium information-to-energy and
-measurement efficiencies.

II. MATERIALS AND METHODS

A. Instrument design and single-molecule construct

The instrument used in this study is a miniaturized
optical tweezers setup [54] with counterpropagating lasers
focused into the same point to create a single optical trap.
The control parameter for the device is the position of the
optical trap with respect a fixed point, in our case the bead
immobilized on the tip of a micropipette [Fig. 1(a)]. Force
is directly measured from the change in light momentum
of the deflected beam using position-sensitive detectors.
The molecular construct is manipulated by using two
polystyrene beads, one coated with antidigoxigenin, the
other with streptavidin, that are connected to opposite ends
of the molecular construct through antigen-antibody and
biotin-streptavidin bonds, respectively.
For the experiments, we use a molecular construct

made of a short DNA hairpin linked to molecular
handles on both flanking sides. The DNA hairpin has a
stem consisting of 20 base pairs (bp) and a tetraloop
(underlined), (5'-GCGAGCCATAATCTCATCTG GAAA
CAGATGAGATTATGGCTCGC-3') that unfolds and
refolds cooperatively in a two-state manner. It is flanked
by two identical 29 bp double-stranded DNA handles [55].
The molecular handle is tagged with a single biotin at
the 3'-end, while the other end is tagged with multiple
digoxigenins. For pulling experiments, the molecular con-
struct (DNA hairpin plus handles) is tethered between two
beads, one is captured in the optical trap and the other is
immobilized on the tip of a glass micropipette.

B. Pulling experiments and work measurements

In pulling experiments without feedback, a mechanical
force is applied to the ends of the molecular construct
[Fig. 1(a)]. At low forces, typically below 10 pN, the
hairpin remains in its native double-stranded configuration
(folded state, F), while at higher forces it unfolds to its
single-stranded DNA configuration (unfolded state, U).
Every pulling cycle consists of two processes [Fig. 1(b)]:
the forward (unfolding) process (→) where the molecule is
initially in F at λmin and the force f increases at a constant
loading rate r until λmax is reached. During this process, the
molecule unfolds, entering state U, and the force drops by
Δf ∼ 1 pN. In the reverse (folding) process (←), the
molecule is initially in U at λmax and the force is decreased
at the unloading rate −r until reaching λmin. When the
molecule folds, the force rises by the same amount

Δf ∼ 1 pN. For a given trajectory, one can extract the
work W exerted by the optical trap on the molecular
construct.W is defined as the area below the force-distance
curve W→ð←Þ ¼ þð−Þ R λmax

λmin
fdλ with positive (negative) W

values for the → (←) process. The pulling experiment
defines a thermodynamic transformation on the mole-
cular system (DNA hairpin, handles, and bead) between
trap positions λmin and λmax with free-energy difference
ΔGFU ¼ GUðλmaxÞ −GFðλminÞ. The second law states that
hWi→ð←Þ ≥ þð−ÞΔGFU, so the average dissipated work
fulfills hWdi→ð←Þ ¼ hWi→ð←Þ − ðþÞΔGFU ≥ 0, vanishing
for a quasistatic process (i.e., infinitely slow pulling or
r → 0). If the loading rate is not too high, the molecule can
unfold and refold more than once, the average dissipated
work being typically small hWdi ∼ kBT. For higher loading
rates, the process becomes irreversible, and the thermally
activated unfolding tends to occur at higher forces while
the refolding occurs at lower forces, increasing the average
dissipation hWdi ≥ 0. The Crooks FT and the Jarzynski
equality, that is Eq. (1) with γ ¼ 1 and Eq. (8) with
ϒM ¼ 0, are fulfilled because no feedback is involved.

C. Mean-field approximation

Neglecting multiple hopping transitions between F and
U along → (←) implies that, once the molecule jumps
to U (F) at a given λ, it remains in that state until
reaching λmax (λmin). Therefore, we identify ψðλÞ ¼ c ×
pF
→ðλ; rFÞpU

→ðλ; rFÞ and ψ̃ðλÞ ¼ c0 × pF
←ðλ; rFÞpU

←ðλ; rFÞ,
where ψ (ψ̃) is the normalized probability along → (←) to
observe U at a given value of λ for the first (last) time at the
single loading (unloading) rate rF, and pσ

→ð←Þðλ; rÞ is the
fraction of trajectories observed in σð¼ F;UÞ at λ with
loading rate r. c and c0 are normalizing factors. Terms JðλÞ,
ϒ∞ in Eqs. (16b) and (17b) give

JMFAðλÞ ¼ IFðλÞ þ IUðλÞ þ log

�
c0

c

�
; ð7aÞ

ϒMFA ¼ log

�Z
λmax

λmin

ψðλÞeJMFAðλÞdλ
�

¼ log

�R λmax
λmin

pF
←ðλ; rFÞpU

←ðλ; rUÞdλR λmax
λmin

pF
←ðλ; rFÞpU

←ðλ; rFÞdλ

�
ð7bÞ

with IFðλÞ and IUðλÞ in Eq. (7a) the partial thermodynamic
information as in Eq. (12) for DTF at a given λ. For the
experiments of hairpin L4, the transition state is located
at half-distance of the molecular extension, resulting
in nearly symmetric forward and reverse processes
without feedback. Therefore, c0 ≅ c and logðc0=cÞ ≅ 0.
Equation (7a) shows JMFAðλÞ in CTF equals the sum of
the IσðλÞ corresponding to DTF.ϒMFA in Eq. (7b) is a good
approximation for ϒ∞ under highly irreversible pulling
conditions where the molecule executes a single unfolding
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(folding) transition during → (←). Equations (7a) and (7b)
can be approximated using the Bell-Evans model for
pσ
→ð←Þðλ; rÞ as shown in Figs. 2(c) and 4(c).

III. RESULTS

A. First-time feedback

To address DTF and CTF in full generality, we introduce
the FTF protocol, a repeated-time feedback protocol
suitable for pulling experiments [Fig. 1(d)] that interpolates
between DTF and CTF. In the FTF protocol, the trap-
position range ½λmin; λmax� is discretized in M þ 1 steps,
fλk; 0 ≤ k ≤ Mg with boundaries λ0 ¼ λmin; λM ¼ λmax.
The feedback protocol needs at least one intermediate
measure position, so M ≥ 2. The initially folded (F)
molecule is pulled at a loading rate rF, and measurements
are taken at every discrete position λk along the forward
(→) process [Fig. 1(d)]. The state σkð¼ F;UÞ is monitored
at every λk until a λk� is reached where the molecule is
observed to be in U for the first time fσk� ¼ U;
σk ¼ F; 0 ≤ k < k�g. At λk� , the loading rate is changed
to rU [Fig. 1(d), top]. Like in generic isothermal feedback
processes, the conditional reverse (←) process is the time

reverse of → [9]: The unloading rate is equal to rU from
λmax to λk� , after which the unloading rate is changed back
to rF between λk� and λmin [Fig. 1(d), bottom]. Therefore,
no feedback is implemented on←. Let pσ

→;kðrÞ½pσ
←;kðrÞ� be

the probability to observe the molecule in state σ (F or U)
at λk along → ð←Þ at the pulling rate r. We derive a
detailed- and full-work FT for FTF (Appendix A). The full-
work FT reads

ρ→ðWÞ
ρ←ð−WÞ ¼ exp

�
W − ΔGFU þ kBTϒM

kBT

�

with ϒM ¼ log

�XM
k¼1

pU
←;kðrUÞ

pU
←;kðrFÞ

ψ̃k

�
: ð8Þ

W is the work measured between λmin and λmax (Sec. II B),
while ΔGFU is the free-energy difference between the
state U at λmax and the state F at λmin, ΔGFU ¼
GUðλmaxÞ −GFðλminÞ. Work distributions are given by

ρ→ðWÞ ¼
XM
k¼1

ρ→ðWjkÞψk; ð9Þ

(a) (b)

(c) (d)

FIG. 2. Discrete-time feedback. (a) Experimental force-time unfolding curves. The molecule is pulled at rF ¼ 4 pN=s, and the
observation is made at λ1: If the molecule is folded (σ ¼ F), the pulling rate remains unchanged (r ¼ rF, orange curves); if it is unfolded
(σ ¼ U), the pulling rate is changed to rU ¼ 17 pN=s, making refolding events less likely (purple curves). The schematic summarizes
the feedback protocol and the reaction to the measurement outcome. (b) Bottom: detailed-feedback FT. ρ→ðWjσÞ (solid lines) and
ρ←ð−Wjσ; rσÞ (dashed lines) for σ ¼ F, U (orange, purple) trajectories. Top: test of the detailed-feedback FT Eq. (12) for σ ¼ F, U.
(c) Probabilities pσ

→ðrFÞ, pσ
←ðrσÞ, and (d) information terms Iσ and ϒ2 as a function of the force in U measured at λ1. Orange (purple)

data are for σ ¼ FðUÞ. In (d), we also show Iσ without feedback (empty symbols). Theoretical predictions from the Bell-Evans model
are shown as solid lines in (c),(d).
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ρ←ð−WÞ ¼ e−ϒM

XM
k¼1

ρ←ð−WjkÞp
U
←;kðrUÞ

pU
←;kðrFÞ

ψ̃k: ð10Þ

Here, ρ→ðWjkÞ and ρ←ð−WjkÞ are the partial work dis-
tributions along → and ← conditioned to those → paths
where U is observed for the first time at λk. ψk (ψ̃k) ð1 ≤
k ≤ MÞ is the probability along → (←) to observe U at λk
for the first (last) time at the single loading (unloading)
rate rF. Note that while ψk can be measured from → pulls
with the feedback on, the reverse quantities ψ̃k, pU

←;kðrFÞ,
and pU

←;kðrUÞ are measured from reverse pulls at either
the unloading rates rF or rU without feedback. Table I
summarizes these definitions. ϒM in Eq. (8) denotes the
thermodynamic information,

ϒM ¼ log

�XM
k¼1

ψk exp Jk

�

with Jk ¼ log

�
pU
←;kðrUÞψ̃k

pU
←;kðrFÞψk

�
; ð11Þ

where Jk is the partial thermodynamic information along
→, restricted to those paths where U is observed for the
first time at λk. Equation (11) expresses ϒM as a partition
sum or potential of mean force over the partial contribu-
tions Jk. Note that for rU ¼ rF, Jk ¼ log ðψ̃k=ψkÞ and
ϒM ¼ log ðPM

k¼1 ψ̃kÞ ¼ 0. In this case, feedback is without
effect and Crooks FT [56] is recovered. The FTF protocol
has DTF and CTF as particular cases: DTF corresponds to
M ¼ 2, whereas M → ∞ yields CTF.
Let us assume that the time between consecutive

measurements at λk is equal to τ, in which case M → ∞
corresponds to τ → 0. To implement CTF experimentally,
we take the lowest possible value of τ as dictated by the
maximum data acquisition frequency of the instrument
(τ ≈ 1 ms). Below we report feedback experiments in DTF
and CTF and measure ϒ, ηI , and ηM in the regime rU > rF.

B. Discrete-time feedback (M = 2)

In DTF, the pulling rate along → is changed from rF to
rU at a given trap position λ1 if σ ¼ U, otherwise, it remains

unchanged [Figs. 1(c) and 2(a)]. Therefore, if σ ¼ F at λ1,
the pulling rate is constant and equal to rF throughout the
pulling cycle, whereas if σ ¼ U at λ1, the pulling rate along
← starts at r ¼ rU and switches back to rF at λ1. A detailed-
feedback FT can be derived either from the detailed form of
Eq. (8) forM ¼ 2 or from the extended fluctuation relation
[50] (Table I and Appendix B)

ρ→ðWjσÞ
ρ←ð−Wjσ; rσÞ

¼ exp

�
W − ΔGFU þ kBTIσ

kBT

�

with Iσ ≡ log

�
pσ
←ðrσÞ

pσ
→ðrFÞ

�
; σ ¼ fF;Ug; ð12Þ

where σð¼ F;UÞ is the measurement outcome at λ1
along →. ρ→ðWjσÞ and ρ←ðWjσ; rσÞ are the (normalized)
work distributions conditioned to those trajectories passing
through σ at λ1 along → and ←, respectively. The pσ

→ðrFÞ,
pσ
←ðrσÞ are the probabilities to measure σ at λ1 along→ and

←, at the respective pulling rates. Finally, Iσ is the partial
thermodynamic information of measurement outcome σ.
Note that Iσ can take any sign depending on the ratio
pσ
←ðrσÞ=pσ

→ðrFÞ, which can be larger or smaller than 1.
Moreover, while all trajectories in→ are classified in one of
the two groups σ ¼ fF;Ug, only those that revisit again the
same σ contribute to ρ←ð−Wjσ; rσÞ. Therefore, the nor-
malization condition along →,

P
σ p

σ
→ðrFÞ ¼ 1 is not

applicable to ←, i.e.,
P

σ p
σ
←ðrσÞ ≠ 1. Equation (12) for

σ ¼ fF;Ug permits us to extract ΔGFU from DTF experi-
ments. First, we apply the protocol without feedback
(rU ¼ rF) as a consistency check [Fig. 1(b)]. We find that
Crooks FT [56] is satisfied with work distributions (→, ←)
crossing at a ΔGFU consistent with bulk predictions
(Sec. S1, Supplemental Material [57]). Next, we apply
DTF with rU > rF to extract partial work distributions
ρ→ðWjσÞ and ρ←ð−Wjσ; rσÞ by classifying trajectories
depending on the outcome σ at λ1 and the protocol under
which they are operated. Figure 2(b) (bottom) shows results
for σ ¼ F, U for rF ¼ 4 pN=s, rU ¼ 17 pN=s. For the F
(U) subset, we find that the work distributions are shifted
rightward (leftward) with respect to the nonfeedback
case with crossing points (W�

σ) such that W�
F > ΔGFU

(W�
U < ΔGFU). These shifts reflect the fact that hairpin

unfolding is on average more (less) energy costly for the F

TABLE I. Probabilities and densities in the different protocols, Probabilities (a)–(d) must be measured to calculate the corresponding
densities ρ→ðWjkÞ, ρ←ð−WjkÞ, verify the feedback FT, and extract partial and full thermodynamic information J, ϒ [columns (e),(f)].
All quantities are properly normalized in FTF:

P
σ p

σ
→;kðrÞ ¼

P
σ p

σ
←;kðrÞ ¼

R
dWρ→ðWjkÞ ¼ R

dWρ←ð−WjkÞ ¼ 1 for all k andP
M
k¼1 ψk ¼

P
M
k¼1 ψ̃k ¼ 1;

R
dWρ→ðWÞ ¼ R

dWρ←ð−WÞ ¼ 1. Distributions in CTF are also normalized:
R
pU
→;←ðλ; rÞdλ ¼

R
ψdλ ¼R

ψ̃dλ ¼ 1;
R
dWρ→;← ¼ 1.

Protocol (a) (b) (c) (d) (e) (f)

FTF pσ
→;kðrÞ pσ

←;kðrÞ ψk ψ̃k Jk ϒM

DTF pσ
→ðrFÞ pσ

←ðrUÞ ψ1 ¼ pU
→ðrFÞ ψ2 ¼ pF

→ðrFÞ ψ̃1 ¼ pU
←ðrFÞ ψ̃2 ¼ pF

←ðrFÞ J1 ¼ IU J2 ¼ IF ϒ2

CTF pU
→ðrFÞ pU

←ðλ; rUÞ pU
←ðλ; rFÞ ψðλÞ ψ̃ðλÞ JðλÞ ϒ∞
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(U) subset than without feedback at the pulling rate rF.
From Eq. (12), the measured shift defined as W�

σ − ΔGFU
equals −kBTIσ . The ρ→ðWjσÞ and ρ←ð−Wjσ; rσÞ fulfill
Eq. (12) crossing at valuesW�

σ ¼ ΔGFU − kBTIσ with IF ≈
−0.5 and IU ≈ 1.20 [Fig. 2(b), top]. In Figs. 2(c) and 2(d),
we show pσ

→ðrFÞ, pσ
←ðrσÞ, and IF;U versus the force in U at

λ1 together with predictions based on the Bell-Evans model
(Appendix C). We choose force as a reference value to
present the results. Force is more informative than the trap
position λ, which is a relative distance between the trap
position and an arbitrary initial position in the light-lever
detector.
Combining the detailed-feedback FT Eq. (12) for

σ ¼ F, U yields to the full-work FT Eq. (8) for M ¼ 2
(Appendix B),

ρ→ðWÞ
ρ←ð−WÞ ¼ exp

�
W − ΔGFU þ kBTϒ2

kBT

�
ð13aÞ

with ϒ2 ¼ log
� X

σ¼F;U

pσ
←ðrσÞ

�

¼ log

� X
σ¼F;U

pσ
→ðrFÞ exp Iσ

�
; ð13bÞ

ϒ2 being the thermodynamic information. The forward and
reverse work distributions are given by

ρ→ðWÞ ¼
X
σ

pσ
→ðrFÞρ→ðWjσÞ; ð14Þ

ρ←ð−WÞ ¼ e−ϒ2

X
σ

pσ
←ðrσÞρ←ð−Wjσ; rσÞ: ð15Þ

For rF ¼ rU, we have pF
←ðrÞ þ pU

←ðrÞ ¼ 1 yielding ϒ2 ¼
0 and Crooks FT [56] as expected. Figure 3(a) tests
Eq. (13a), and Fig. 3(b) shows ϒ2 and the efficiencies

ηI , ηM obtained in experiments. The results are com-
pared with numerical simulations of the DNA pulling
experiments (see details in Sec. S2 of the Supplemental
Material [57]) and a prediction by the Bell-Evans model
(Appendix C). For rU > rF, pF

←ðrFÞ þ pU
←ðrUÞ> 1 and

ϒ2 > 0, whereas ϒ2 < 0 for rU < rF. In general, −∞ <
ϒ2 ≤ log 2½0 ≤ pσ

←ðrσÞ ≤ 1� showing that the Landauer
bound holds for two-state molecules pulled under DTF.
Saturating the bound ϒ2 ¼ log 2, requires full reversibility
[44], i.e., pσ

←ðrσÞ ¼ 1, which is obtained for arbitrary rF in
the limit rU → ∞ [pU

←ðrUÞ ¼ 1� and λ1 → λmin [i.e., max-
imally stable F or pF

←ðrFÞ ¼ 1]. We find ηM ≈ −0.05 <
ηI ≈ 0.04 showing that information-to-measurement con-
version is much less efficient than the information-to-work
conversion. Moreover, ηM < 0 throughout the whole
force range shows that DTF does not improve free-energy
prediction.
To better understand this result, we calculate the

efficiencies ηI and ηM for DTF in the two-states Bell-
Evans model using the single-hopping approximation
(Appendix C). Figure 3(b) shows that the analytical
results capture the trend of the experimental data but
systematically underestimate the measured efficiencies
ηI and ηM. As we explain in Appendix C, the single-
hopping approximation neglects multiple transitions after
the measurement position at λ1. Therefore, the analytical
results derived in Eqs. (C1)–(C3) in Appendix C are
lower bounds to the true efficiencies. The fact that ηM <
0 throughout the force range shows that although DTF
does reduce dissipation, it does not improve the free-
energy prediction. This conclusion is supported by the
results shown in Fig. 3(c). There we plot the experimental
free-energy bias Eq. (4) as a function of the number of
pulling experiments N at the conditions shown in
Fig. 3(b): Bias with feedback does not decrease with
respect to the nonfeedback case (downward-pointing red
triangles).

(a) (b) (c)

FIG. 3. DTF efficiencies ηI , ηM. (a) Top: test of the full-feedback FT Eq. (13a) with shiftϒ2 (blue) with respect to the no-feedback case
(gray). Bottom: work distributions. (b) Thermodynamic informationϒ2 (top), and efficiencies ηI and ηM (bottom) are shown at different
measurement positions (gray, simulations; blue, experiments). Solid lines are the Bell-Evans model in the single-hopping approximation
(Appendix C). In general, ϒ2 is bounded from above by the Landauer limit for binary measurements (log 2, dashed line). (c) Bias for
three different DTF conditions compared to the nonfeedback case. There is no improvement in free-energy prediction.
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C. Continuous-time feedback (M → ∞)

CTF [Figs. 1(c) and 4(a)] is obtained from Eqs. (8) and
(11) in the limit of Δλð¼ λkþ1 − λkÞ, τ → 0. The detailed-
feedback FT reads (Table I and Appendix A)

ρ→ðWjλÞ
ρ←ð−WjλÞ ¼ exp

�
W − ΔGFU þ kBTJðλÞ

kBT

�
; ð16aÞ

JðλÞ ¼ log

�
pU
←ðλ; rUÞψ̃ðλÞ

pU
←ðλ; rFÞψðλÞ

�
; ð16bÞ

while the full-feedback FT reads

ρ→ðWÞ
ρ←ð−WÞ ¼ exp

�
W − ΔGFU þ kBTϒ∞

kBT

�
; ð17aÞ

ϒ∞ ¼ log

�Z
λmax

λmin

pU
←ðλ; rUÞ

pU
←ðλ; rFÞ

ψ̃ðλÞdλ
�

¼ log

�Z
λmax

λmin

ψðλÞ exp JðλÞdλ
�

ð17bÞ

with the forward and reverse work distributions given by

ρ→ðWÞ ¼
Z

λmax

λmin

ρ→ðWjλÞψðλÞdλ; ð18Þ

ρ←ð−WÞ ¼ e−ϒ∞

Z
λmax

λmin

ρ←ð−WjλÞ

×
pU
←ðλ; rUÞ

pU
←ðλ; rFÞ

ψ̃ðλÞdλ; ð19Þ

where ψðλÞ [ψ̃ðλÞ] is the probability density to observe
the first (last) unfolding (folding) event F → U (F ← U)
along → (←); pU

←ðλ; rÞ is the probability density of
the molecule being in U at λ along ← at the unloading
rate r. Similar to Iσ in Eq. (12), if we define Irr0σ ðλÞ ¼
log ½pσ

←ðλ; r0Þ=pσ
→ðλ; rÞ�, we have JðλÞ ¼ IrFrUU ðλÞ −

IrFrFU ðλÞ þ Iψ ðλÞ with IψðλÞ ¼ log ½ψ̃ðλÞ=ψðλÞ�. Notice that
for rU ¼ rF (no feedback), ρ←ð−WjλÞ ¼ ρ←ð−WÞ and
ϒ∞ ¼ 0, but JðλÞ ¼ IψðλÞ ≠ 0. Equations (16b) and
(17b) can be further simplified by neglecting multiple
hopping transitions between F and U. In this mean-field
approximation (MFA), JðλÞ interpolates the Iσ in Eq. (12)
and ϒ∞ depends only on the p←ðλ; rÞ (Sec. II C).

(a) (b)

(c) (d)

FIG. 4. Continuous-time feedback. (a) Experimental unfolding curves. The molecule is pulled at rF ¼ 5 pN=s along →. Upon
detection of the first unfolding event, the pulling rate is changed to rU ¼ 23 pN=s. (b) Experimental test of the detailed-feedback FT
Eq. (16a) and measurement of JðλÞ. FDCs are classified according to the value of λ at which the earliest unfolding event is detected.
FDCs are grouped in bins of equal widthΔλ ∼ 6 nm and Eq. (16a) applied to each interval. We show work histograms for three different
bins. The value of JðλÞ for the bin corresponding to f ¼ 16 pN is highlighted. We use force due to its one-to-one correspondence along
the folded branch with λ. (c) pU

←ðλ; rUÞ, pU
←ðλ; rFÞ, and last-folding density ψ̃ðλÞ. Solid lines correspond to fits to the Bell-Evans model.

(d) The JðλÞ from the detailed-feedback FT Eq. (16a) (squares) obtained from the data in panel (b) compared to the theoretical prediction
by the Bell-Evans model (c) applying Eq. (16b) (dashed line). Also, the MFA approximation Eq. (7a) with logðc0=cÞ ∼ 0 is shown as a
solid line. IFðλÞ (orange) and IUðλÞ (purple) are from Eq. (12) using the Bell-Evans model. The values of pU

←ðrUÞ, pU
←ðrFÞ, ψ̃ , J, IF, IU

in (c),(d) are plotted versus fðλÞ.
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We test CTF in DNA hairpin pulling experiments
[Fig. 4(a)]. The molecule initially in F is pulled from
fmin ¼ 8 pN at rF ¼ 5 pN=s and the state monitored by
recording the force every τ ¼ 1 ms until the first force
jump is observed at a given trap position λ�. The force rip
corresponds to the unzipping of the 44 nucleotides of the
DNA hairpin and indicates that state U has been visited for
the first time at λ�. Then the pulling rate is increased to
rU ¼ 23 pN=s until the maximum force is reached, fmax ¼
22 pN. For the reverse process, the optical trap moves
backward at rU ¼ 23 pN=s until λ� is reached and the
pulling rate switched back to rF ¼ 5 pN=s. By repeatedly
pulling, we collect enough statistics to test Eqs. (16a) and
(17a) and measure JðλÞ and ϒ∞. In Fig. 4(b) (bottom), we
plot ρ→ðWjλÞ, ρ←ð−WjλÞ for three selected λ�, while in the
top panel we test Eq. (16a). By determining the cross-
ing work values between ρ→ and ρ←, W�ðλÞ ¼ ΔGFU −
kBTJðλÞ, we extract JðλÞ.
Figure 4(c) shows the values of ψ̃ and pU

← directly
determined from experimental FDCs for the two loading
rates, rF ¼ 5 pN=s and rU ¼ 23 pN=s (symbols) as a
function of the force. The pU

← values are fitted to the
Bell-Evans model (solid lines) to extract the kinetic
parameters of hairpin L4, useful to compare with the
simulations. Figure 4(d) shows the experimental values
of JðλÞ determined from the detailed-feedback FT Eq. (16a)
(filled squares) together with the predictions by the fits to
the Bell-Evans model using Eq. (16b) (dashed line) and the
MFA Eq. (7a) assuming that logðc0=cÞ ¼ 0 (solid line).
In Fig. 5(a), we test the full-feedback FT Eq. (17a).

For comparison, we also show the nonfeedback case. We
emphasize the importance of properly weighing ρ←ð−WjλÞ
to build ρ←ð−WÞ. An unweighted reverse work distribution
[
R
ρ←ð−WjλÞdλ, blue] does not fulfill the FT (inset, blue

points), and the slope of the fitting line (approximately
0.08) is far below 1. Figure 5(b) (top) shows ϒ∞ for

different experimental conditions (black circles) and results
obtained in simulations (gray squares) of a hairpin model
(Sec. S2, Supplemental Material [57]) compared to the
theoretical values determined from Eq. (17b) using the
Bell-Evans model fits of Fig. 4(c). Also, the MFA using
Eq. (7b) is shown as a dashed line. In Fig. 5(b) (bottom), we
show the efficiencies ηI and ηM versus rU=rF. As shown in
Fig. 5(b), dissipation reduction is larger for CTF as
compared to DTF (for CTF, ΔhWdi is not bounded by
the Landauer limit kBT log 2). However, ηM ∼ −0.1 is
slightly negative as in DTF, showing that dissipation
reduction does not necessarily improve free-energy deter-
mination. In Fig. 5(c), we plot the experimental free-energy
bias Eq. (4) as a function of the number of pulling
experiments N at the conditions shown in Fig. 5(b): As
for DTF, we observe that the bias with feedback does not
decrease relative to the nonfeedback case (purple triangles).

D. Inefficient information-to-measurement
conversion

By reducing dissipation, feedback might be used to
improve free-energy prediction. Second laws inequality
Eq. (2) permits us to reduce hWdiwith respect to the bound
without feedback hWdi0 ≥ 0. However, this is not true if the
reduction in work is lower than the thermodynamic
information: hWdi þ kBTϒ ≥ hWdi0 and ηM ≤ 0. Then,
the Jarzynski bias for Eq. (6) increases with feedback
undermining free-energy determination [53]. This is the
case of the DTF and CTF experiments previously shown.
Hairpin L4 exhibits low dissipation without feedback.

Here we ask whether feedback efficiency increases upon
increasing the irreversibility of the process (hWdi0 larger).
For this, we carry out numerical simulations of the
phenomenological model for a new DNA hairpin (L8).
L8 has the same stem as the previous hairpin [L4, Fig. 1(a)]
but with an eight-bases loop. L8 shows larger dissipation

(a) (b) (c)

FIG. 5. CTF efficiencies ηI , ηM. (a) Top: test of the full-feedback FT Eq. (17a) (red circles) with shift ϒ∞ with respect to the
nonfeedback case (black squares). Blue circles show a negative test with an unweighed reverse work distribution (see text). Bottom:
work distributions. (b) Top: thermodynamic information ϒ∞ and (bottom) efficiencies ηI and ηM from the experimental data (circles)
and simulations (squares) versus rU=rF. We also show the theoretical predictions for ϒ∞, Eq. (17b), using pU

←ðrUÞ, pU
←ðrFÞ, ψ̃ from

Fig. 4(c) (continuous lines) and the MFA Eq. (7b) (dashed line). Notice that ϒ∞ is unbounded from above and ηM < 0. (c) Bias for the
studied molecules with CTF (squares, circle) compared with the nonfeedback case. There is no improvement in free-energy prediction.
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compared to L4 when pulled under the same experimental
CTF protocol [Fig. 4(a)]. The results for the pulling curves
ψ̃ , pU

←, and the test of the full-feedback FT Eq. (17a) are
shown in Sec. S3 in the Supplemental Material [57] for
hairpins L4 and L8. Figure 6 summarizes the main results
obtained from the simulations for L4 and L8 under CTF
(Sec. S3, Supplemental Material [57]) by varying rU for a
fixed rF. We show the values of W� ¼ ΔGFU − kBTϒ∞
[Fig. 6(a), top] derived from the crossing point of forward
and reverse work distributions from the full-feedback FT;
the folding free energy of the hairpin predicted by the full-
feedback FT Eq. (17a) [Fig. 6(a), middle], and the average
dissipated work [Fig. 6(a), bottom]. From these values, we
derive the thermodynamic information ϒ∞ and the effi-
ciencies ηI , ηM [Fig. 6(b)]. It is worth noticing that bothW�
and hWdi mildly decrease with rU=rF [Fig. 6(a), top and
bottom]. However, the values ofW� andϒ∞ [Fig. 6(b), top]
compensate each other yielding fairly constant estimates
for ΔGFU ¼ W� þ kBTϒ∞ that are compatible with the
values of ΔGFU used in the simulations [Fig. 6(b), middle].
Despite the larger irreversibility of L8, dissipation reduc-
tion defined by ΔhWdi ¼ hWdi0 − hWdi is similar for L4
and L8 [Fig. 6(a), bottom]. Moreover, also ϒ∞ [Fig. 6(b),
top] remains similar for both hairpins. This shows that
increased irreversibility (quantified by hWdi0) does not
necessarily imply largerΔhWdi andϒ∞. In general, despite
the fact that hWdi decreases with positive feedback, the
values of W� and ϒ∞ decrease and increase at the same
rate, respectively. Therefore, hWdi þ kBTϒ ≅ hWdi0 ≥ 0:
Feedback does not make the inequality imposed by the
second law any weaker. Accordingly, ηM remains ≅ 0
for all rU=rF values [Fig. 6(b), bottom] indicating

inefficient information-to-measurement conversion. Over-
all, these results demonstrate that, although CTF reduces
dissipation, this is compensated by an equal decrease of
W� ¼ ΔGFU − kBTϒ∞, leading to ηM ≅ 0 and unimprove-
ment in free-energy determination.

E. Efficient information-to-measurement conversion:
From protocols to strategies

Here we ask under which conditions does feedback
improve free-energy determination increasing ηM? As
previously shown for hairpin L8, the irreversibility of
the nonfeedback process barely changes ηM. In CTF,
dissipation reduction is larger than for DTF; however, this
comes at the price of a larger kBTϒ, leading to ηM ≅ 0.
Here we explore the possibility of modifying the feed-

back protocols in such a way that the dissipation reduction
ΔhWdi is maximized relative to kBTϒ. In nonfeedback
pulling experiments, dissipation reduction can be achieved
by simply decreasing the loading rate (i.e., making the
process less irreversible). However, this comes at the price
of an increase in the average time per pulling cycle and a
decrease of the total number of pulls in a day of experi-
ments, rendering free-energy determination inefficient. The
interesting problem is to reduce dissipation with feedback,
keeping the average time per pulling cycle equal or lower to
the average time per pulling cycle without feedback.
In the DTF protocol, we increase the pulling rate only

when the molecule is found to be inU at λ1, while no action
is taken if the molecule is in F. As shown in Appendix C
[Eq. (C3)], dissipation reduction is the product of the
fraction of trajectories that are in U at λ1, pU

→ðrFÞ and
the dissipated work reduction conditioned to the U-type
trajectories. At high forces, pU

→ðrFÞ is large, whereas
dissipation reduction is low [Figs. 10(c) and 11(c)].
Conversely, pU

→ðrFÞ is small at low forces where dissipa-
tion reduction is the largest. Maximal ΔhWdi is found
close to the coexistence force where the terms pU

→ðrFÞ and
½hWdiU→F→UðrUÞ − hWdiU→F→UðrFÞ� balance. To further
reduce dissipation, one might consider applying feedback
also to the large set of F-type trajectories at λ1, e.g., by
reducing the pulling rate after λ1.
To show that ηM can be positive and large, we implement

a feedback strategy combining DTF and CTF. In this
DTFþ CTF strategy, the molecule is initially pulled at
rF with DTF until λ1 where a observation is made. If the
outcome is U, then the pulling rate is switched to rU > rF
between λ1 and λmax. Instead, if the outcome is F, the
pulling rate is reduced to r0F < rF and the CTF protocol
turned on. In this case, at the first unfolding event after λ1,
the pulling rate is switched to rU > rF > r0F until λmax.
In the DTFþ CTF protocol, both U and F trajectories
contribute to reduce the dissipated work. Moreover, the
values of r0F can be chosen such that the average time per
pulling trajectory is lower compared to the nonfeedback
case. In Figs. 7(a) and 7(b), we show the results obtained

(a) (b)

FIG. 6. Free-energy prediction with CTF. (a) Values for W�
(top), ΔGFU (middle), and hWdi (bottom) for hairpins L4 and L8.
ΔGFU values are obtained by adding ϒ∞ [panel (b)] and the
crossing work values W�, ΔGFU ¼ W� þ kBTϒ∞, and are
compared to the correct free-energy values (dashed lines in
ΔGFU). (b) Values for ϒ∞ Eq. (17c), ηI and ηM Eqs. (3) and (6)
versus rU=rF. The values of W�, hWdi ¼ hWi − ΔGFU, and ϒ∞
equally decrease and increase with rU=rF. All energy values are
in kBT units.
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for hairpin L4 in the DTFþ CTF strategy where
rF ¼ 4> r0F ¼ 1 pN=s, rU ¼ 17 pN=s. In the coexistence
force region (f1 ≃ 14.5 pN) dissipated work is reduced by
roughly 50%, while ϒ remains unchanged with respect to
the standard CTF protocol, leading to ηI ∼ 0.6, ηM ∼ 0.4
[Fig. 7(b)]. Similar results are obtained for L8 with the
same rates at one specific condition. We find that B1

decreases by approximately 1kBT and approximately 6kBT
for L4 and L8, respectively (Sec. S4 in the Supplemental
Material [57]). In addition, we compare the bias as a
function of the total experimental time for the four studied
protocols (nonfeedback, DTF, CTF, and DTFþ CTF) from
numerical simulations using molecules L4 and L8 for the
same pulling rates. In Figs. 7(c) and 7(d), we show the time
dependence of the bias, while in inset of Figs. 7(c) and 7(d),
we present the time dependence of the number N of
simulated trajectories. Although CTF generates the largest
number of trajectories, the DTFþ CTF strategy is the most
efficient one.

F. Efficiency plot

To show all results in perspective, we introduce the
efficiency plot (Fig. 8). We plot the dissipation reduction
ΔhWdi ¼ hWdi0 − hWdi versus kBTϒ, both normalized by
the nonfeedback dissipation value hWdi0 (∼2kBT). The
results are shown for hairpin L4 from experiments and
simulations (yellow and green symbols) for DTF and CTF
(squares and circles) and DTFþ CTF (red triangles), and
for L8 at the specific DTFþ CTF condition shown in
Fig. 7(b). The black dashed line ΔhWdi ¼ kBTϒ separates

two regions: ηM > 0 (second laws weakening, yellow
region) and ηM < 0 (second laws strengthening, white
region). Remarkably, despite the dissipation reduction
ΔhWdi > 0, all results for DTF and CTF fall on the
region ηM ≅ 0 (squares and circles, dashed line), indi-
cating that the second law is strengthened with feedback.
Therefore, a large dissipation reduction (rightmost green
and yellow circles) does not necessarily imply free-energy

(a)

(b)

(c) (d)

FIG. 7. DTFþ CTF strategy and bias versus total experimental time. (a) Force versus time for the DTFþ CTF strategy. The pulls start
with DTF at rF ¼ 4 pN=s and the measurement position is at λ1. If the molecule is observed to be in U at λ1, the loading rate is changed
to rU ¼ 17 pN=s (orange trajectories). If the molecule is observed to be in F at λ1, the CTF is turned on with a loading rate r0F ¼
1 pN=s < rF (purple trajectories). At the first unfolding event, the loading rate is changed from r0F to rU. (b) Efficiencies ηI and ηM for
DTFþ CTF. Solid symbols correspond to molecule L4, and empty symbols correspond to molecule L8. The values of ϒ for this
protocol are directly determined from the bias as we do not have an analytical expression for the thermodynamic information in this case.
(c) and (d) Bias versus the experimental times measured from numerical simulations of molecule L4 (c) and L8 (d) with nonfeedback
(purple), DTF (red), CTF (green), and DTFþ CTF (yellow) protocols using rF ¼ 4 pN=s, rU ¼ 17 pN=s, and r0F ¼ 1 pN=s. Inset:
simulated trajectories (N) for a given total experimental time. The same plots versus N (for DTFþ CTF) are shown in Fig. S3 in the
Supplemental Material [57].

FIG. 8. Efficiency plot. Dissipation reduction ΔhWdi versus
thermodynamic information kBTϒ normalized by the nonfeed-
back dissipation value hWdi0 for all explored cases in L4: CTF
(empty circles, experimental data; full circles, simulated data),
DTF (empty squares, experimental data; full square, simulated
data), and the DTFþ CTF strategy (red triangles). Dotted and
dashed lines correspond to Eqs. (21a) and (21b) and intersect the
y axis at ηI , ηM. Red empty triangles correspond to the ΔhWdi
versus kBTϒ for the L8 molecule under DTFþ CTF protocol.
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determination improvement (Sec. III D). To evaluate this,
we use the definitions of ηI and ηM [Eqs. (3) and (6)] to
express ΔhWdi=hWdi0 and kBTϒ=hWdi0 as sole functions
of ðηI; ηMÞ,

ΔhWdi
hWdi0

¼ ηI − ηM
1 − ηI

; ð20aÞ

kBTϒ
hWdi0

¼ ηIðηI − ηMÞ
1 − ηI

; ð20bÞ

which for ηM ¼ 0 givesΔhWdi ¼ kBTϒ (black dashed line
in Fig. 8). Efficiencies ηI , ηM separately define two linear
relations between ΔhWdi=hWdi0 and kBTϒ=hWdi0,

ΔhWdi
hWdi0

¼ ηI þ ηI
kBTϒ
hWdi0

; ð21aÞ

ΔhWdi
hWdi0

¼ ηM þ kBTϒ
hWdi0

: ð21bÞ

These are shown as dotted [Eq. (21a)] and dashed
[Eq. (21b)] lines in Fig. 8 of slopes equal to ηI and 1,
and intersections with the y axis equal to ηI, ηM, respec-
tively. For a given point in the efficiency plot, we can read
the values of ηI , ηM by drawing lines of slopes ηI and 1 to
match the values ηI , ηM on the y axis. As we can see, the
DTFþ CTF strategy yields the largest efficiencies for the
largest kBTϒ=hWdi0 values measured in CTF (circled
region). The efficiency plot shows there is room for an
improved free-energy prediction, opening the question of
finding strategies that maximize ηM.

IV. CONCLUSIONS

We investigate dissipation reduction and information-
to-measurement conversion in DNA pulling experiments
with feedback. We carry out irreversible pulling experi-
ments on DNA hairpins that are mechanically folded
and unfolded, finding conditions in which feedback does
reduce dissipation. In the absence of feedback, there is
net dissipated work and the Jarzynski free-energy esti-
mator is biased. We ask whether dissipation reduction can
be used to improve free-energy determination by weak-
ening the second law inequality (i.e., by a reduction of
the Jarzynski bias). We find that DTF and CTF protocols
mildly reduce dissipation being highly inefficient for free-
energy determination. In contrast, a combination of the
two protocols (denoted as a strategy) is much more
efficient.
We introduce cycle efficiencies ηI , ηM for information-

to-work (dissipation reduction, ΔhWdi > 0) and informa-
tion-to-measurement (second law inequality weakening,
hWdi þ kBTϒ < hWdi0) in irreversible pulling experi-
ments with DTF and CTF. These protocols are particular
cases of the FTF protocol where the pulling rate rF

switches to rU the first time the molecule unfolds along
a predetermined sequence of M measurement trap posi-
tions. A detailed- and full-feedback FT is derived for
such a protocol that is expressed in terms of the free-
energy difference ΔGFU between the unfolded and folded
states [Eqs. (8) and (11)] and in terms of two new
quantities, namely, the partial information Jk and the full
thermodynamic information ϒM. For M ¼ 2, FTF
maps onto DTF [Eqs. (13a) and (13b)], the case
originally considered in Refs. [11,33]. Applied to two-
state molecules, DTF reduces dissipation by at most
kBTϒ2 ¼ kBT log 2 (Landauer limit). In the opposite
case, M → ∞, we obtain a novel-work FT for CTF
Eqs. (16a) and (17a) for the partial [JðλÞ] and full
thermodynamic information (ϒ∞), which is amenable
to experimental test. Note that ϒ∞ is finite and
unbounded, a consequence of the fact that the informa-
tion content of the stored sequences diverges. The
relation of ϒM in Eq. (11) to other information-based
related quantities [58–62] is an open question.
Interestingly, ϒM is reminiscent of an equilibrium free-
energy potential, G ¼ −kBT log

P
σ exp ð−Gσ=kBTÞ with

Gσ the partial free energy of state σ. By defining
gk ¼ Jk þ logψk, Eq. (11) can be recast as a free energy,
ϒM ¼ log

P
k exp gk indicating that thermodynamic infor-

mation stands for a free-energy difference.
We carry out experiments for DTF and CTF on hairpin

L4 for pulling rates in the same range rF ∼ 4–5 pN=s,
rU ∼ 17–23 pN=s. The experiments are complemented
with numerical simulations of a phenomenological model
for hairpins L4 and L8, and theoretical estimates of the
Bell-Evans two-state model in the MFA (Sec. II C) and
single-hopping (Appendix C) approximation. We find
that CTF leads to higher ϒ and ηI compared to DTF
[Figs. 3(b) and 5(b)]. Indeed, CTF profits on early
and rare unfolding events during the pulling protocol,
making ϒ and ηI larger, a feature also observed in a
recent experimental realization of the continuous equi-
librium MD [20,49]. In contrast, both DTF and CTF are
inefficient regarding ηM: hWdi decreases by roughly
kBTϒ leaving the second law inequality unweakened
and the Jarzynski bias almost unchanged with feedback.
In fact, by strategically combining DTF and CTF we can
make information-to-measurement conversion efficient
[Fig. 7(a)]. The DTFþ CTF strategy maximizes dissi-
pated work reduction without increasing kBTϒ leading
to high ηI , ηM values [Fig. 7(b)]. The results are
summarized in the efficiency plot (Fig. 8), which dem-
onstrates that efficient information-to-measurement con-
version is obtained by maximizing ΔhWdi=hWdi0 while
minimizing kBTϒ=hWdi0 (ideally becoming negative).
Our results show that feedback strategies (defined as a
set of multiple-correlated feedback protocols) enhance
the information-to-measurement efficiency, opening the
door to find optimal strategies for improved free-energy
determination.

M. RICO-PASTO et al. PHYS. REV. X 11, 031052 (2021)

031052-12



Information-to-measurement conversion might be inter-
preted as a two-step process, with work reduction as an
intermediate step of information-to-measurement conver-
sion: Informationis firstusedtoreducework(information-to-
workconversion,ΔhWdi> 0, efficiencyηI), followedbyΔG
determination (work-to-measurement conversion, kBTϒ
small, efficiency η0). Therefore, ηM ¼ ηIη

0 ≤ ηI; η0 ≤ 1.
These two steps must be correlated to maximize the overall
efficiency, requiringmultiple-correlated feedback protocols.
It would be interesting to search other nonequilibrium

protocols or physical settings where ηMð≲ηIÞ is maxi-
mized. The vast majority of previous theoretical and experi-
mental studies operate on systems that, in the absence of
feedback, are in equilibrium. A handful of papers have
studied dissipation reduction in nonequilibrium settings
[35,63], but none of them have considered the information-
to-measurement conversion. Dissipation reduction by feed-
back control has also been studied in macroscopic systems,
e.g., feedback cooling [64], electronic and logic circuits
[65], and climate change [66]. In general, feedback control
corrects deviations from a reference state by monitoring the
time evolution of a macroscopic observable, leading to
higher dissipation. In contrast, dissipation reduction in
small systems requires rectifying thermal fluctuations. It
is in this context where feedback FTs are applicable.
Future studies should also address information-to-meas-

urement conversion in systems with measurement error
[67,68], non-Markovian dynamics [69,70], and biologi-
cally inspired [71–74] and mutually interacting or autono-
mous systems [14,16,75,76]. These examples might be
tested designing single-molecule constructs containing
multiple DNA structures. These studies will increase our
understanding of transfer energy and information flow in
nonequilibrium systems.
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APPENDIX A: DERIVATION OF THE FTF FT
AND THE CTF LIMIT

In this section, we present the derivation of the detailed
and full work FT for the FTF protocol. As a corollary, we
derive the CTF limit. The derivation of the first-time FT is

an application of the extended version of Crooks FT [56]
introduced in Ref. [50] to reconstruct free-energy branches
and applied to derive free energies of kinetic states [51] and
ligand binding [52].
In pulling experiments, the force is ramped with a

constant loading rate rF. Measurements are made as a
function of time or λ (natural control parameter in our
optical tweezers setup). In the FTF protocol, measurements
are taken at a predetermined set of trap positions along the
pulling curve fλk; 0 ≤ k ≤ Mg at given times ftk; 0 ≤ k ≤
Mg starting from an initial time t0 ¼ 0 up to a final time tM.
Therefore, there is a total number of M − 1 observations
made for each trajectory (the initial and final times are
excluded) implying that M ≥ 2.
The force and λ limits in pulling experiments are such

that the molecule is always folded (F) at λ0 and unfolded
(U) at λM. This condition can be relaxed to include cases
where the system starts either in equilibrium or in U at λ0.
However, for simplicity we stick to the scenario applicable
to the experiments where the molecule always starts in F at
λ0 and always ends in U at λM. A measurement of the force
is made at each λk and the state of the molecule, F or U, is
determined depending on whether it falls in the folded or
unfolded branch [fFðλÞ; fUðλÞ]. Therefore, each stochastic
trajectory Γ is defined by a sequence of F and U symbols,
Γ≡ fF0;…; Fk�−1; Uk� ;…; UMg (1 ≤ k� ≤ M). The FTF
protocol changes the loading rate from the initial value rF
to a second value rU the first time tk� an unfolding event is
observed at λk� . It is important to stress the notion of first-
time event. In the above trajectory Γ, the first part of the
sequence of measurements until position λk, fF0;…; Fk�−1g
contains only F symbols, whereas the second part between
λk� and the limit λM, fUk� ;…; UMg always starts inU at λk�
and ends in U at λM with either none or multiple (even)
hopping transitions (F ↔ U) in between. For example, for
M ¼ 2, there are two possible types of trajectories,
fF0; F1; U2g and fF0; U1; U2g, depending on the measure-
ment outcome (F,U) at λ1. M ¼ 2 corresponds to the
discrete-time feedback case studied in the main text. Note
that the number of different measurement sequences Γ in the
FTF protocol equals 2M−1.
To derive the detailed-work FT, first we define the total

forward work probability ρ→ðWjk�Þ conditioned to the first
unfolding event taking place at λk� (1 ≤ k� ≤ M):

ρ→ðWjk�Þ ¼
Z Yk�−1

k¼0

½ρλk→λkþ1
ðWkþ1ÞdWkþ1�

× dW0ρλk�→λMðW0Þδ
�
W −

Xk�−1
k¼0

Wkþ1 −W0
�
:

ðA1Þ

In Eq. (A1), ρλk→λkþ1
ðWkþ1Þ is the forward work distribu-

tion for the section λk → λkþ1 in the first part of the
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trajectory 0 ≤ k ≤ k� − 1, and ρλk�→λMðW0Þ is the forward
work distribution for the second part of the trajectory
λk� → λM. Following the notation in the main text, λ0 ≡
λmin and λM ≡ λmax.
Next, we apply the detailed-work FT [50] to the work

distributions measured along the two parts of trajectory Γ
(before and after the first unfolding event at λk�) and define
the corresponding reverse work distributions. Notice that
the reverse process is the time reverse of the forward one,
meaning that the unloading rate in the reverse process
equals rU between λM and λk� switching back to rF between
λk� and λ0. Notice there is no condition on the molecular
state σk� along the reverse process λk� . We have

(i) Case 0 ≤ k ≤ k� − 1 (first part of Γ):

ρλk→λkþ1
ðWkþ1Þ ¼ ρλk←λkþ1

ð−Wkþ1Þ

× exp

2
64Wkþ1 − ΔGσk;σkþ1

þ kBT log
�

ϕ←
σk

ϕ→
σkþ1

�
kBT

3
75:

ðA2Þ

Here, ϕ→
σkþ1

is the fraction of forward trajectories
that end in state σkþ1 at λkþ1 conditioned to start in
state σk at λk. ϕ←

σk is the fraction of reverse trajecto-
ries that end in state σk at λk conditioned to start in
state σkþ1 at λkþ1. All these quantities (forward and
reverse) are measured at pulling rate rF. ΔGσk;σkþ1

¼
Gσkþ1

ðλkþ1Þ −GσkðλkÞ is the partial free-energy dif-
ference between states σkþ1 at λkþ1 and σk at λk. The
partial free energyGσðλÞ of any state (σ ¼ F,U) at a
given λ equals GσðλÞ ¼ −kBT logZσðλÞ where
ZσðλÞ is the partition function restricted to the set
of configurations of state σ at the trap position λ.
Notice that in this first part of Γ, σk ¼ F for 0 ≤
k ≤ k� − 1 and σk� ¼ U.

(ii) Case k� ≤ k ≤ M (second part of Γ):

ρλk�→λMðW0Þ ¼ ρλk�←λMð−W0Þ

× exp

2
64W

0 − ΔGσk� ;σM þ kBT log
�
ϕ←
σk�

ϕ→
σM

�
kBT

3
75: ðA3Þ

Here, ϕ→
σM is the fraction of forward trajectories

that end in σM at λM conditioned to start in σk� at
λk� . ϕ←

σk� is the fraction of reverse trajectories that end
in σk� at λk� conditioned to start in σM at λM. All these
quantities (forward and reverse) are measured at
pulling rate rU. Note that the molecule is always in
U at λk� so σk� ¼ U. Moreover all pulls along
the forward process end in the unfolded state at λM
so σM ¼ U and ϕ→

σM ¼ 1 in Eq. (11). Analogously,
ΔGσk� ;σM ¼ ΔGU;U ¼ GUðλMÞ − GUðλk�Þ is the

partial free-energy difference between state U at λM
and λk� .

In Eqs. (A2) and (A3), kB is the Boltzmann constant and T
is the temperature. In what follows, to lighten notation we
keep σk; σk� ; σM as free variables, only at the end we replace
them with σk ¼ F for 0 ≤ k ≤ k� − 1 and σk� ; σM ¼ U.
Inserting Eqs. (A2) and (A3) into Eq. (A1) leads to

ρ→ðWjk�Þ ¼
Z �Yk�−1

k¼0

dWkþ1

�

× dW0δ
�
W −

Xk�−1
k¼0

Wkþ1 −W0
�
AB; ðA4Þ

where β ¼ 1=kBT and

B ¼
Yk�−1
k¼0

ρλk←λkþ1
ð−Wkþ1Þρλk�←λMð−W0Þ; ðA5Þ

A ¼
Yk�−1
k¼0

e
β

h
Wkþ1−ΔGσk;σkþ1

þkBT log

�
ϕ←σk

ϕ→σkþ1

�i

× e
β

h
W0−ΔGσk� ;σMþkBT log

�
ϕ←σk�
ϕ→σM

�i

¼ A0A00A000 ðA6Þ

with

A0 ¼
Yk�−1
k¼0

eβWkþ1eβW
0 ¼ e

β

�P
k�−1
k¼0

Wkþ1þW0
�
¼ eβW; ðA7Þ

A00 ¼
Yk�−1
k¼0

e−βΔGσk;σkþ1e−βΔGσk� ;σM

¼ e−β
P

k�−1
k¼0

ΔGσk;σkþ1
−βΔGσk� ;σM ¼ e−βΔGF;U ; ðA8Þ

A000 ¼
Yk�−1
k¼0

e
βkBT log

�
ϕ←σk

ϕ→σkþ1

�
e
βkBT log

�
ϕ←σk�
ϕ→σM

�

¼
Yk�−1
k¼0

ϕ←
σk

ϕ→
σkþ1

×
ϕ←
σk�

ϕ→
σM

¼
Q

k�−1
k¼0 ϕ←

σkϕ
←
σk�Q

k�−1
k¼0 ϕ→

σkþ1
ϕ→
σM

¼
Q

k�−2
k¼0 ϕF;F

λk←λkþ1Q
k�−2
k¼0 ϕF;F

λk→λkþ1

×
ϕU;U;rF
λk�←λM

ϕU;U;rF
λk�←λM

×
ϕF;U
λk�−1←λk�

ϕU;U
λk�←λM

ϕF;U
λk�−1→λk�

ϕU;U
λk�→λM

¼ ψ̃k�

ψk�
×
pU
←;k� ðrUÞ

pU
←;k�ðrFÞ

; ðA9Þ

where in Eqs. (A8) and (A9), we use σ0 ¼ F, σM ¼ U, and
where we introduce in the last line of Eq. (A9) a multi-
plicative factor equal to 1 (ϕU;U;rF

λk�←λM
=ϕU;U;rF

λk�←λM
). Moreover, in
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the last line of Eq. (A9), we adopt a specific notation for the
conditional probabilities or fractions ϕ←

σk , ϕ
→
σkþ1

, ϕ←
σk� , and

ϕ→
σM previously introduced in Eqs. (A2) and (A3), Table II.

The conditional probabilities are as follows:
(i) ϕF;F

λk←λkþ1
is the fraction of reverse trajectories where

σk ¼ F at λk conditioned to σkþ1 ¼ F at λkþ1. This
fraction is measured with the unloading rate rF.

(ii) ϕF;F
λk→λkþ1

is the fraction of forward trajectories where
σkþ1 ¼ F at λkþ1 conditioned to σk ¼ F at λk. This
fraction is measured with the loading rate rF.

(iii) ϕU;U;rF
λk�←λM

is the fraction of reverse trajectories where
σk� ¼ U at λk� starting at σM ≡U at λM. As
explicitly indicated in the notation, this fraction is
measured at the unloading rate rF.

(iv) ϕF;U
λk�−1←λk�

is the fraction of reverse trajectories where
σk�−1 ¼ F at λk conditioned to σk� ¼ U at λk� . This
fraction is measured with the unloading rate rF.

(v) ϕF;U
λk�−1→λk�

is the fraction of forward trajectories
where σk� ¼ U at λk� conditioned to σk�−1 ¼ F at
λk�−1. This fraction is measured with the unloading
rate rF.

(vi) ϕU;U
λk�←λM

is the fraction of reverse trajectories where
σk� ¼ U at λk� starting at σM ≡U at λM. This
fraction is measured with the unloading rate rU.

(vii) ϕU;U
λk�→λM

is the fraction of forward trajectories where
σM ¼ U at λM conditioned to σk� ¼ U at λk� . This
fraction is measured with the loading rate rU. Note
that because all trajectories end in U at λM, the
fraction ϕU;U

λk�→λM
equals 1.

Note that in items 4 and 5 we introduce the quantities
ϕF;U
λk�−1←λk�

and ϕF;U
λk�−1→λk�

, both measured with the loading

rate rF.
To demonstrate the last equality in the last line of

Eq. (A9), we group into a single product all fractions of
reverse transitions at the unloading rate rF in the numerator
(ϕF;F

λk←λkþ1
, ϕF;U

λk�−1←λk�
, ϕU;U;rF

λk�←λM
), and all fractions of forward

transitions at the unloading rate rF in the denominator
(ϕF;F

λk→λkþ1
, ϕF;U

λk�−1→λk�
). We define

Yk�−2
k¼0

ϕF;F
λk→λkþ1

× ϕF;U
λk�−1→λk�

ϕU;U
λk�→λM

¼ ψk� ;

Yk�−2
k¼0

ϕF;F
λk←λkþ1

× ϕF;U
λk�−1←λk�

ϕU;U;rF
λk�←λM

¼ ψ̃k� : ðA10Þ

ψk� ð1 ≤ k� ≤ MÞ is the fraction of forward trajectories
that start in F at λ0 and are observed to be in U for
the first time at λk� with loading rate rF. ψ̃k� ð1 ≤ k� ≤
MÞ is the fraction of reverse trajectories that start in
U at λM and are observed to be in U for the last time
at λk� with unloading rate rF. Note that in Eq. (A10)
we introduce the innocuous term for ψk�, ϕ

U;U
λk�→λM

¼ 1 in

such a way that ψk� is the probability of full sequences
Γ (from k ¼ 0 to M) fulfilling the first-time condition.
For k� ¼ 1, the products

Q
k�−2
k¼0 in Eq. (A10) are equal

to 1. We stress two facts: (i) both ψk� ; ψ̃k� are fractions
measured at the single pulling rate rF without feedback,
and (ii) the notion of first and last time is bound to
trajectories Γ defined as sequences of observations at the
predetermination measurement positions λk as they are
defined in the FTF protocol, irrespective of what is the
state of the molecule at other intermediate (unobserved)
positions.
Finally, inEq. (A9),ϕU;U

λk�←λM
¼ pU

←;k� ðrUÞ is the fraction of
reverse trajectories that start inU at λM and are observed to be
in U at λk� at the unloading rate rU. According to this
definition, we also have ϕU;U;rF

λk�←λM
¼ pU

←;k�ðrFÞ, a term which
also appears in the denominator of the last fraction
in Eq. (A9).
Inserting Eqs. (A7)–(A9) in Eq. (A6) and then in

Eq. (A4), we notice that A can be taken out of the integral
Eq. (A4). The remaining integral in Eq. (A4) contains only
the term B from Eq. (A5), which yields the reverse work
distribution ρ←ð−Wjk�Þ. We stress that the reverse work
distribution is conditioned to forward process through the
first unfolding event observed at λk� along that process.
Putting everything together, we get the detailed-work FT
for the FTF protocol,

TABLE II. Notations.

Element Notation in Eq. (A9) Notation in Eqs. (A2) and (A3) Quantity measured at

1 ϕF;F
λk←λkþ1

ϕ←
σk with σk ¼ σkþ1 ¼ F rF

2 ϕF;F
λk→λkþ1

ϕ→
σkþ1

with σk ¼ σkþ1 ¼ F rF
3 ϕU;U;rF

λk�←λM
ϕ←
σk� with σk� ¼ σM ¼ U rF

4 ϕF;U
λk�−1←λk�

ϕ←
σk�−1 with σk�−1 ¼ F; σk� ¼ U rF

5 ϕF;U
λk�−1→λk�

ϕ→
σk� with σk�−1 ¼ F; σk� ¼ U rF

6 ϕU;U
λk�←λM

ϕ←
σk� with σk� ¼ σM ¼ U rU

7 ϕU;U
λk�→λM

ð¼ 1Þ ϕ→
σM with σ�k ¼ σM ¼ U rU

DISSIPATION REDUCTION AND … PHYS. REV. X 11, 031052 (2021)

031052-15



ρ→ðWjk�Þ
ρ←ð−Wjk�Þ ¼ exp ½βðW − ΔGF;U þ kBTJk� Þ�;

Jk� ¼ log

�
ψ̃k�

ψk�
×
pU
←;k� ðrUÞ

pU
←;k� ðrFÞ

�
ð1 ≤ k� ≤ MÞ: ðA11Þ

Equation (A11) is the main theoretical result in this paper.
Jk� is denoted as partial thermodynamic information and
depends on four basic quantities [ψk� ; ψ̃k� , pU

←;k� ðrFÞ,
pU
←;k� ðrUÞ]. These quantities can be measured in protocols

without feedback at the pulling rate rF along the forward
process (ψk�) and the reverse process [ψ̃k� , pU

←;k�ðrFÞ], and
at the pulling rate rU along the reverse process [pU

←;k� ðrUÞ].
From Eq. (A11), we derive the full-work FT for the FTF

protocol. The full-work distribution in the forward process
is given by

ρ→ðWÞ ¼
XM
k¼1

ρ→ðWjkÞψk

¼
XM
k¼1

ρ←ð−WjkÞeβðW−ΔGFUþkBTJkÞψk

¼ eβðW−ΔGFUÞ
XM
k¼1

ρ←ð−WjkÞeJkψk

¼ eβðW−ΔGFUÞ
P

M
k¼1 ρ←ð−WjkÞeJkψkP

M
k¼1 e

Jkψk

XM
k¼1

eJkψk;

ðA12Þ

where in the last line we multiply and divide by the termP
M
k¼1 e

Jkψk. This fact allows us to define the reverse full-
work distribution for the FTF protocol,

ρ←ð−WÞ ¼
P

M
k¼1 ρ←ð−WjkÞeJkþlogψkP

M
k¼1 e

Jkþlogψk
: ðA13Þ

Notice that ρ←ðWÞ is properly normalized. Finally, we get

ρ→ðWÞ
ρ←ð−WÞ ¼ eβðW−ΔGFUþkBTϒMÞ; ðA14Þ

which is Eq. (8) in the main text. The term ϒM is the
thermodynamic information and equals

ϒM ¼ log

�XM
k¼1

ψkeJk
�
¼ log

�XM
k¼1

ψk
pU
←;kðrUÞ

pU
←;kðrFÞ

×
ψ̃k

ψk

�
;

ϒM ¼ log

�XM
k¼1

pU
←;kðrUÞ

pU
←;kðrFÞ

ψ̃k

�
; ðA15Þ

which gives Eq. (11) in the main text.

To conclude this section, we consider the CTF case
corresponding to the limit M → ∞ and determine the
partial and full thermodynamic information JðλÞ and ϒ∞
in such a case.
In this limit, Eqs. (A1)–(A15) hold but with the

continuous variable λ replacing the discrete variable k.
The partial thermodynamic information Jk becomes the
continuous function JðλÞ defined as

JðλÞ ¼ log

�
pU
←ðλ; rUÞ

pU
←ðλ; rFÞ

ψ̃ðλÞ
ψðλÞ

�
ðA16Þ

with equivalent definitions for the continuous fractions
[ψðλÞ; ψ̃ðλÞ; pU

←ðλ; rUÞ; pU
←ðλ; rFÞ]. The full thermody-

namic information ϒ∞ is determined by taking the con-
tinuous limit λkþ1 ¼ λk þ Δλ, where Δλ → 0, and writing
the sum in Eq. (A15) as an integral:

ϒ∞ ¼ log

�Z
λmax

λmin

pU
←ðλ; rUÞ

pU
←ðλ; rFÞ

ψ̃ðλÞdλ
�
: ðA17Þ

Equations (A11), (A14), (A16), and (A17) for the con-
tinuous-time limit of CTF yield Eqs. (17a) and (17b) in the
main text.

APPENDIX B: FT FOR DISCRETE-TIME
FEEDBACK (M = 2)

In this section, we derive the FT for DTF, i.e., Eqs. (12)
and (13a) in the main text. The derivation is done with two
methods, either as the FTF FT for M ¼ 2 or by directly
applying the extended FT [50] by classifying trajectories
according to the measurement outcome at the intermediate
position λ1.
We start by considering the FTF FT for M ¼ 2. In this

case, state measurement sequences are of the type Γ ¼
fσ0 ¼ F; σ1; σ2 ¼ Ug corresponding to the three different
measurements trap positions (λk): λ0, λ1, and λ2. The
relevant quantities in Eqs. (A11), (A14), and (A15) are
ψk, ψ̃k, pU

←;kðrFÞ, pU
←;kðrUÞ for k ¼ 1, 2.

(i) Case k ¼ 1 (λ1): In this case, pU
←;1ðrFÞ ≠ 0 and

pU
←;1ðrUÞ ≠ 0. Moreover, the fact that the molecule

always starts in F (U) and ends in U (F) during
the forward (reverse) process implies that the
probability to observe the first (last) unfolding
(refolding) event at λ1 equals the probability that
the molecule is in U at λ1 during the forward
(reverse) process. This argument holds for all pulling
rate values ψ1 ¼ pU

→;1ðrFÞ, ψ̃1 ¼ pU
←;1ðrFÞ.

(ii) Case k ¼ 2 (λ2 ≡ λmax). By definition the pro-
bability to be in U at λ2 equals 1 because all
forward (reverse) trajectories end (start) in U, i.e.,
pU
←;2ðrFÞ ¼ pU

←;2ðrUÞ ¼ 1. Moreover, the fact that
the molecule always starts in F (U) and ends in U
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(F) during the forward (reverse) process implies that
the probability to observe the first (last) unfolding
(refolding) event at λ2 equals the probability that the
molecule is in F at λ1 during the forward (reverse)
process. This argument holds for all pulling rate
values ψ2 ¼ pF

→;1ðrFÞ, ψ̃2 ¼ pF
←;1ðrFÞ.

The different values of pU
←;k, ψk, ψ̃k (k ¼ 1, 2) are

presented in Table III.
From the results presented in Table III, we calculate the

partial and full thermodynamic information J1 ≡ IU; J2 ≡
IF [Eq. (A11)] and ϒ2 [Eq. (A15)]:

IU ¼ J1 ¼ log

�
pU
←;1ðrUÞ

pU
→;1ðrFÞ

�
;

IF ¼ J2 ¼ log

�
pF
←;1ðrFÞ

pF
→;1ðrFÞ

�
:

ϒ2 ¼ log ½pU
←;1ðrUÞ þ pF

←;1ðrFÞ�: ðB1Þ
Notice that ρ→ðWjk�Þ in Eq. (A11) with k� ¼ 1, 2
corresponds to ρ→ðWjσÞ in Eq. (12) in the main text with
σ ¼ U, F, respectively. Therefore, Eq. (A11) for k ¼ 1, 2
gives Eq. (12) in the main text for σ ¼ U, F, respectively.
This completes the proof that the FTF FT forM ¼ 2 equals
DTF, Eqs. (12) and (13a) in the main text.

1. Alternative derivation of DTF

Alternatively, we can derive the detailed- and full-work
FT in DTF by classifying the trajectories in two classes
depending on the observation made at λ1: (i) the system is
in F at λ1 or (ii) the system is in U at λ1. We use the
extended FT [50] to calculate the detailed-work FT for each
class of trajectories, first between λ0 ¼ λmin and λ1, next
between λ1 and λ2 ¼ λmax. These results are then combined
to extract the detailed-work FT for each class of trajectories
for the full pulling cycle between λ0 ¼ λmin and λ2 ¼ λmax.
The detailed-work FT in the range λ0 → λ1 is given

by [50]

pF
→ðλ1Þ

pF
←ðλ1Þ

ρλ0;λ1ðWjFÞ
ρλ0;λ1ð−WjFÞ ¼ exp ½βðW − ΔGλ0;λ1

F;F Þ�; ðB2aÞ

pU
→ðλ1Þ

pU
←ðλ1Þ

ρλ0;λ1ðWjUÞ
ρλ0;λ1ð−WjUÞ ¼ exp ½βðW − ΔGλ0;λ1

F;U Þ�; ðB2bÞ

where ΔGλ0;λ1
F;FðUÞ is the free-energy difference between state

FðUÞ at λ1 and state F at λ0. ρλ0;λ1(WjFðUÞ) is the work
distribution for the class of forward trajectories that start in
F at λ0 and end in FðUÞ at λ1. ρλ0;λ1( −WjFðUÞ) is the

corresponding reverse work distribution. pFðUÞ
→ ðλ1Þ are the

probabilities in the forward process to be in FðUÞ at λ1
conditioned to start in F at λ0. p

FðUÞ
← ðλ1Þ are the proba-

bilities in the reverse process to be in F at λ0 conditioned to

start in FðUÞ at λ1. By definition, pFðUÞ
← ðλ1Þ ¼ 1 because

the system always ends in F at λ0. All quantities in
Eqs. (B2a) and (B2b) are measured at the pulling rate rF.
Analogously, the detailed-work FT in the range λ1 → λ2

is given by [50]

pF
→ðλ1Þ

pF
←ðλ1jrFÞ

ρλ1;λ2ðWjFÞ
ρλ1;λ2ð−WjF; rFÞ

¼ exp ½βðW − ΔGλ1;λ2
F;U Þ�;

ðB3aÞ

pU
→ðλ1Þ

pU
←ðλ1; rUÞ

ρλ1;λ2ðWjUÞ
ρλ1;λ2ð−WjU; rUÞ

¼ exp ½βðW − ΔGλ1;λ2
U;U Þ�;

ðB3bÞ

where ΔGλ1;λ2
FðUÞ;U is the free-energy difference between state

U at λ2 and state FðUÞ at λ1, ρλ1;λ2(WjFðUÞ) is the work
distribution for the class of forward trajectories that start in
FðUÞ at λ1 and end in U at λ2. ρλ1;λ2( −WjFðUÞ; rFðUÞ) is
the corresponding reverse work distribution at the corre-
sponding unloading rate rF [Eq. (B3a)] and rU [Eq. (B3b)].

pFðUÞ
→ ðλ1Þ are the probabilities in the forward process to be

in U at λ2 conditioned to start at FðUÞ in λ1. By definition,

pFðUÞ
→ ðλ1Þ ¼ 1 because the system always ends in U at λ2.

pFðUÞ
← ðλ1jrFðUÞÞ are the probabilities in the reverse process

to be in FðUÞ at λ1 conditioned to start in U at λ2 with
unloading rate rF (rU). The unloading rate value for
quantities in the reverse process are explicitly indicated
in Eqs. (B2a) and (B2b).
From Eqs. (B2a), (B2b), (B3a), and (B3b), we calculate

the partial forward work distributions across the whole
range λmin → λmax for the two classes of trajectories:

ρ→ðWjFÞ ¼
Z

ρλ0;λ1ðW1jFÞρλ1;λ2ðW2jFÞ

× δðW −W1 −W2ÞdW1dW2; ðB4aÞ

ρ→ðWjUÞ ¼
Z

ρλ0;λ1ðW1jUÞρλ1;λ2ðW2jUÞ

× δðW −W1 −W2ÞdW1dW2: ðB4bÞ

Putting everything together, we obtain the detailed-work
FTs for DTF,

TABLE III. Fractions for DTF.

λ1 λ2

pU
←;1ðrFÞ ≠ 0 pU

←;2ðrFÞ ¼ 1

pU
←;1ðrUÞ ≠ 0 pU

←;2ðrUÞ ¼ 1

ψ1 ¼ pU
→;1ðrFÞ ψ2 ¼ pF

→;1ðrFÞ
ψ̃1 ¼ pU

←;1ðrFÞ ψ̃2 ¼ pF
←;1ðrFÞ
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ρ→ðWjFÞ
ρ←ð−WjF; rFÞ

¼ exp ½βðW − ΔGFU þ kBTIFÞ�

with IF ¼ log

�
pF
←ðrFÞ
pF
→

�
; ðB5aÞ

ρ→ðWjUÞ
ρ←ð−WjU; rUÞ

¼ exp ½βðW − ΔGFU þ kBTIUÞ�

with IU ¼ log

�
pU
←ðrUÞ
pU
→

�
; ðB5bÞ

where ΔGFU ¼ ΔGλ0;λ1
F;UðFÞ þ ΔGλ1;λ2

UðFÞ;U ¼ GUðλmaxÞ −
GFðλminÞ is the full free-energy difference and where the

argument λ1 has dropped from the fractions pFðUÞ
→ð←Þðλ1Þ.

Equations (B5a) and (B5b) are the detailed-feedback FTs
reported in Eq. (12) of the main text.
From Eqs. (B5a) and (B5b), we compute the full-work

FT as follows:

ρ→ðWÞ ¼ ρ→ðWjFÞpF
→ þ ρ→ðWjUÞpU

→

¼ ρ←ð−WÞefβ(W−ΔGFUþkBT log ½pF
←ðrFÞþpU

←ðrUÞ�)g;

where

ρ←ð−WÞ

¼ ½pF
←ðrFÞρ←ð−WjF; rFÞ þ pU

←ðrUÞρ←ð−WjU; rUÞ�
½pF

←ðrFÞ þ pU
←ðrUÞ�

:

ðB6Þ

Therefore, we obtain the full-work FT for DTF Eqs. (13a)
and (13b) in the main text:

ρ→ðWÞ
ρ←ð−WÞ ¼ exp ½βðW − ΔGFU þ kBTϒ2Þ�

with ϒ2 ¼ log ½pF
←ðrFÞ þ pU

←ðrUÞ�: ðB7Þ

APPENDIX C: THE BELL-EVANS MODEL IN
SINGLE-HOPPING APPROXIMATION

To better understand under which conditions ηI and
ηM are optimal, we carry out an analysis of DTF in the
two-states Bell-Evans model where force is the control
parameter. To analyze dissipation reduction, we define
ΔhWdi ¼ hWdi0 − hWdi> 0, the change in the average
dissipated work upon implementing feedback. The Bell-
Evans approximation where the force is controlled has
been shown to be qualitatively identical and quantitatively

comparable to the experimental condition where the trap
position is controlled [77]. In Fig. 9, we show a typical
trajectory (state versus force) in the DTF protocol in the
model where the initially folded (F) molecule is pulled at
_f ¼ rF and the pulling rate changes to _f ¼ rU at a given
force value (f1) if the molecule is observed to be unfolded
(U). ΔhWdi is determined only by the contribution of those
trajectories that are in U at f1: Trajectories that are at F at
f1 do not change the pulling rate and therefore do not
contribute to ΔhWdi. To determine ΔhWdi, we restrict the
analysis to single-hopping trajectories of the type U →
F → U after f1. The average dissipated work in the range
(f1; fmax) for the U-type trajectories is given by

hWdiU→F→U ¼ PU→F→Uðf1Þhf00 − f0ixm; ðC1Þ

where xm stands for the difference in molecular extension
between U and F, f0 and f00 are the folding and unfolding
forces of steps U → F and F → U for the trajectory U →
F → U (Fig. 9), PU→F→Uðf1Þ is the fraction of trajectories
of the type U → F → U, which in the current single-
hopping approximation equals 1 − PU

s ðf1; fmaxÞ where
PU
s ðf1; fÞ is the survival probability of U between f1

and f. hf00 − f0ixm is given by

hf00 − f0i ¼ −
Z

fmax

f1

df0
∂PU

s ðf1; f0Þ
∂f0

Z
fmax

f0
df00PF

s ðf0; f00Þ;

ðC2Þ

where PF
s ðf0; f00Þ is the survival probability of F between f0

and f00. ΔhWdi is proportional to the difference of the
average dissipated work between f1 and fmax calculated at
the pulling rates rU and rF. Equations (C1) and (C2) must

FIG. 9. Single-hopping approximation. In the model, the
molecule is initially folded (F) and pulled at _f ¼ rF and the
pulling rate is changed to _f ¼ rU at a given force value (f1) if the
molecule is observed to be unfolded (U). In the single-hopping
approximation, the molecule refolds and unfolds again before
fmax. The forces that determine the trajectories U → F → U
between f1 and fmax are f0 and f00, which are the folding and
unfolding forces, respectively.
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be calculated at the pulling rates rF and rU to obtain the
dissipation reduction in the single-hopping approximation,

ΔhWdi ¼ pU
→ðrFÞ½hWdiU→F→UðrUÞ − hWdiU→F→UðrFÞ�;

ðC3Þ

where pU
→ðrFÞ is the fraction of trajectories observed at U

in f1 starting at F in fmin, and the dissipated work is
restricted to the range (f1; fmax). For practical purposes, we
can take fmax → ∞ as the molecule always ends in U at
fmax. Equations (C1)–(C3) can be numerically calculated
for generic Bell-Evans rates where survival probabilities
have simple analytical expressions. For the specific case
relevant to the experiments (L4 molecule) of a transition
state located at half-distance between F and U, x† ¼ xm=2,
we have

kF→UðfÞ ¼ k0 exp ðβfx†Þ; ðC4aÞ

kF←UðfÞ ¼ k0 exp ½βðΔG − fx†Þ�; ðC4bÞ

where k0 is the kinetic rate at zero force, andΔG is the free-
energy difference between F and U (β ¼ 1=kBT). Finally,
for sufficiently high forces where kF←Uðf1Þ=ðβx†rÞ ≪ 1,
the average dissipation reduction is obtained to first order
in 1=r:

ΔhWdi ¼ pU
→ðrFÞ

�
xmkF←Uðf1Þ2

2kF→Uðf1Þðβx†Þ2
��

1

rF
−

1

rU

�
; ðC5Þ

which is positive for rU > rF as expected, and negative
otherwise. For practical purposes, we take fmin → −∞ as the
molecule always starts in F at fmin. pU

→ðrFÞ is expressed as

pU
→ðrFÞ ¼ 1 − exp

�
−
kF→Uðf1Þ
βx†rF

�
: ðC6Þ

To calculate the efficiencies, we also need the values of
hWdi0 and kBTϒ2 for DTF, the latter being given by
Eq. (13b). hWdi0 is estimated from the mean first unfolding
force hfF→Ui in the Bell-Evans approximation,

hWdi0 ¼ xmðhfF→Ui − fcÞ

¼ xm

�
1

βx†
log

�
βx†r
k0

�
− fc

�
; ðC7Þ

where fc ¼ ΔG=xm is the coexistence force and
kF→UðfcÞ ¼ kF←UðfcÞ ¼ kc is the rate at coexistence. We
also have

kBTϒ2 ¼ log½pF
←ðrFÞ þ pU

←ðrUÞ�; ðC8aÞ

pU
←ðrÞ ¼ exp

�
−
kF←UðfÞ
βx†r

�
; ðC8bÞ

(a) (b) (c)

FIG. 10. The Bell-Evans model in the single-hopping approximation. (a) Dissipation-reduction efficiency ηI. (b) Information-to-
measurement efficiency ηM and (c) dissipation reduction versus force from the experiments (yellow circles), simulations (green squares),
the exact single-hopping approximation solution Eq. (C3) (purple line), and the 1=r approximation Eq. (C5) (dashed purple line).

(a) (b) (c)

FIG. 11. Bell-Evans model prediction upon varying rU=rF. (a) Dissipation-reduction efficiency ηI. (b) Information-to-measurement
efficiency ηM. (c) Dissipation reduction versus force using the single-hopping approximation solution.
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and pF
←ðrÞ ¼ 1 − pU

←ðrÞ. We calculate these quantities for
the parameters that fit the experimental pulling curves forL4
without feedback (k0 ¼ 2 × 10−14 s−1, xm ¼ 18 nm, x† ¼
9 nm, kBT ¼ 4.114 pNnm, β ¼ 1=kBT ∼ 0.24 pN−1 nm−1,
ΔG¼ 264.0 pNnm, fc ¼ΔGxm ¼ 14.66 pN, kc ¼ 1.7 s−1.
From these values, we calculate the efficiencies defined in
Eqs. (3) and (6),

ηI ¼
ΔhWdi

hWdi0 þ kBTϒ2

; ðC9aÞ

ηM ¼ ΔhWdi − kBTϒ2

hWdi0
: ðC9bÞ

In Fig. 10, we show ηI and ηM versus force for rF ¼ 4 pN=s
and rU ¼ 17 pN=s. The purple continuous line shows the
results obtained from Eqs. (C9a) and (C9b) by numerical
calculation of ΔhWdi in the single-hopping approximation
Eqs. (C1)–(C3). The dashed line shows the 1=r leading
term Eq. (C5), which holds for sufficiently high forces
[f > 14.45 pN where kF←UðfÞ=ðβx†rFÞ ≤ 0.3]. As we
can see from the figure, while ηI is small and positive
(approximately 10−2), ηM is small and negative (approx-
imately −10−2) in the experimentally measured range of
forces. The points are the experimental results shown in
Fig. 3(b).
In Fig. 11, we show the analytical Bell-Evans predictions

for ηI and ηM in the single-hopping approximation for a
fixed rF and varying rU. Interestingly, while ΔhWdi and ηI
increase with rU, the behavior of ηM is the opposite,
becoming more negative as rU increases.
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