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I. WHAT ARE SMALL SYSTEMS?

Thermodynamics, a scientific discipline inherited from the 18th century, is

facing new challenges in the description of nonequilibrium small (sometimes

also called mesoscopic) systems. Thermodynamics is a discipline built in order

to explain and interpret energetic processes occurring in macroscopic systems

made out of a large number of molecules on the order of the Avogadro number.

Although thermodynamics makes general statements beyond reversible

processes, its full applicability is found in equilibrium systems where it can

make quantitative predictions just based on a few laws. The subsequent

development of statistical mechanics has provided a solid probabilistic basis

for thermodynamics and increased its predictive power at the same time. The

development of statistical mechanics goes together with the establishment of the

molecular hypothesis. Matter is made out of interacting molecules in motion.

Heat, energy, and work are measurable quantities that depend on the motion of

molecules. The laws of thermodynamics operate at all scales.

Let us now consider the case of heat conduction along polymer fibers.

Thermodynamics applies at the microscopic or molecular scale, where heat

conduction takes place along molecules linked along a single polymer fiber, up to

the macroscopic scale where heat is transmitted through all the fibers that make a

piece of rubber. The main difference between the two cases is the amount of heat

transmitted along the system per unit of time. In the first case the amount of heat

can be a few kBT per millisecond whereas in the second it can be on the order of

NfkBT , where Nf is the number of polymer fibers in the piece of rubber. The

relative amplitude of the heat fluctuations are on the order of 1 in the molecular

case and 1=
ffiffiffiffiffi
Nf

p
in the macroscopic case. Because Nf is usually very large, the

relative magnitude of heat fluctuations is negligible for the piece of rubber as

compared to the single polymer fiber. We then say that the single polymer fiber is a

small system whereas the piece of rubber is a macroscopic system made out of a

very large collection of small systems that are assembled together.

Small systems are those in which the energy exchanged with the

environment is a few times kBT and energy fluctuations are observable.
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A few can be 10 or 1000 depending on the system. A small system must not

necessarily be of molecular size or contain a few numbers of molecules. For

example, a single polymer chain may behave as a small system although it

contains millions of covalently linked monomer units. At the same time, a

molecular system may not be small if the transferred energy is measured over

long times compared to the characteristic heat diffusion time. In that case the

average energy exchanged with the environment during a time interval t can be

as large as desired by choosing t large enough. Conversely, a macroscopic

system operating at short time scales could deliver a tiny amount of energy to

the environment, small enough for fluctuations to be observable and the system

being effectively small.

Because macroscopic systems are collections of many molecules, we expect

that the same laws that have been found to be applicable in macroscopic systems

are also valid in small systems containing a few numbers of molecules [1, 2]. Yet,

the phenomena that we will observe in the two regimes will be different.

Fluctuations in large systems are mostly determined by the conditions of the

environment. Large deviations from the average behavior are hardly observable

and the structural properties of the system cannot be inferred from the spectrum of

fluctuations. In contrast, small systems will display large deviations from their

average behavior. These turn out to be quite independent of the conditions of the

surrounding environment (temperature, pressure, chemical potential) and carry

information about the structure of the system and its nonequilibrium behavior. We

may then say that information about the structure is carried in the tails of the

statistical distributions describing molecular properties.

The world surrounding us is mostly out of equilibrium, equilibrium being

just an idealization that requires specific conditions to be met in the laboratory.

Even today we do not have a general theory about nonequilibrium macroscopic

systems as we have for equilibrium ones. Onsager theory is probably the most

successful attempt, albeit its domain of validity is restricted to the linear

response regime. In small systems the situation seems to be the opposite. Over

the past years, a set of theoretical results that go under the name of fluctuation

theorems have been unveiled. These theorems make specific predictions about

energy processes in small systems that can be scrutinized in the laboratory.

The interest of the scientific community on small systems has been boosted

by the recent advent of micromanipulation techniques and nanotechnologies.

These provide adequate scientific instruments that can measure tiny energies in

physical systems under nonequilibrium conditions. Most of the excitement

comes also from the more or less recent observation that biological matter has

successfully exploited the smallness of biomolecular structures (such as

complexes made out of nucleic acids and proteins) and the fact that they are

embedded in a nonequilibrium environment to become wonderfully complex

and efficient at the same time [3, 4].
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The goal of this chapter is to discuss these ideas from a physicist’s

perspective by emphasizing the underlying common aspects in a broad category

of systems, from glasses to biomolecules. We aim to put together some concepts

in statistical mechanics that may become the building blocks underlying a future

theory of nonequilibrium small systems. This is not a review in the traditional

sense but rather a survey of a few selected topics in nonequilibrium statistical

mechanics concerning systems that range from physics to biology. The selection

is biased by my own particular taste and expertise. For this reason I have not

tried to cover most of the relevant references for each selected topic but rather

emphasize a few of them that make explicit connection with my discourse.

Interested readers are advised to look at other reviews that have recently been

written on related subjects [5–7].

Section II introduces two examples, one from physics and the other from

biology, that are paradigms of nonequilibrium behavior. Section III covers most

important aspects of fluctuation theorems, whereas Section IV presents

applications of fluctuation theorems to physics and biology. Section V presents

the discipline of path thermodynamics and briefly discusses large deviation

functions. Section VI discusses the topic of glassy dynamics from the

perspective of nonequilibrium fluctuations in small cooperatively rearranging

regions. We conclude with a brief discussion of future perspectives.

II. SMALL SYSTEMS IN PHYSICS AND BIOLOGY

A. Colloidal Systems

Condensed matter physics is full of examples where nonequilibrium fluctuations

of mesoscopic regions govern the nonequilibrium behavior that is observed at the

macroscopic level. A class of systems that have attracted a lot of attention for

many decades and that still remain poorly understood are glassy systems, such as

supercooled liquids and soft materials [8]. Glassy systems can be prepared in a

nonequilibrium state (e.g., by fast quenching the sample from high to low

temperatures) and subsequently following the time evolution of the system as a

function of time (also called age of the system). Glassy systems display

extremely slow relaxation and aging behavior, that is, an age-dependent response

to the action of an external perturbation. Aging systems respond slower as they

get older, keeping memory of their age for time scales that range from

picoseconds to years. The slow dynamics observed in glassy systems is

dominated by intermittent, large, and rare fluctuations, where mesoscopic

regions release some stress energy to the environment. Current experimental

evidence suggests that these events correspond to structural rearrangements of

clusters of molecules inside the glass, which release some energy through an

activated and cooperative process. These cooperatively rearranging regions are
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responsible for the heterogeneous dynamics observed in glassy systems, as these

lead to a great disparity of relaxation times. The fact that slow dynamics of glassy

systems virtually takes forever indicates that the average amount of energy

released in a rearrangement event must be small enough to account for an overall

net energy release of the whole sample that is not larger than the stress energy

contained in the system in the initial nonequilibrium state.

In some systems, such as colloids, the free volume (i.e., the volume of the

system that is available for motion to the colloidal particles) is the relevant

variable, and the volume fraction of colloidal particles f is the parameter

governing the relaxation rate. Relaxation in colloidal systems is determined by

the release of tensional stress energy and free volume in spatial regions that

contain a few particles. Colloidal systems offer great advantages to do

experiments for several reasons: (1) in colloids the control parameter is the

volume fraction, f, a quantity easy to control in experiments; (2) under

appropriate solvent conditions colloidal particles behave as hard spheres, a

system that is pretty well known and has been theoretically and numerically

studied for many years; and (3) the size of colloidal particles is typically a few

microns, making it possible to follow the motion of a small number of

particles using video microscopy and spectroscopic techniques. This allows

one to detect cooperatively rearranging clusters of particles and characterize

the heterogeneous dynamics. Experiments have been done with poly(methyl

methacrylate) (PMMA) particles of ’1 mm radius suspended in organic

solvents [9, 10]. Confocal microscopy then allows one to acquire images of

spatial regions of extension on the order of tens of microns that contain a few

thousand of particles, small enough to detect the collective motion of clusters.

In experiments carried out by Courtland and Weeks [11], a highly stressed

nonequilibrium state is produced by mechanically stirring a colloidal system

at volume fractions f � fg, where fg is the value of the volume fraction at the

glass transition where colloidal motion arrests. The subsequent motion is then

observed. A few experimental results are shown in Fig. 1. The mean square

displacement of the particles inside the confocal region shows aging behavior.

Importantly, the region observed is small enough to observe temporal

heterogeneity; that is, the aging behavior is not smooth with the age of the

system as usually observed in light scattering experiments. Finally, the mean

square displacement for a single trajectory shows abrupt events characteristic

of collective motions involving a few tens of particles. By analyzing the

average number of particles belonging to a single cluster, Courtland and

Weeks [11] found that no more than 40 particles participate in the

rearrangment of a single cluster, suggesting that cooperatively rearranging

regions are not larger than a few particle radii in extension. Large deviations,

intermittent events, and heterogeneous kinetics are the main features observed

in these experiments.
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B. Molecular Machines

Biochemistry and molecular biology are scientific disciplines aiming to describe

the structure, organization, and function of living matter [12, 13]. Both

disciplines seek an understanding of life processes in molecular terms. The

main objects of study are biological molecules and the function they play in the

biological process where they intervene. Biomolecules are small systems from

several points of view: first, from their size, where they span just a few

nanometers of extension; second, from the energies they require to function

properly, which is determined by the amount of energy that can be extracted by

hydrolyzing one molecule of ATP (approximately 12kBT at room temperature or

300 K); and third, from the typically short amount of time that it takes to

complete an intermediate step in a biological reaction. Inside the cell many

reactions that would take an enormous amount of time under nonbiological

conditions are speeded up by several orders of magnitude in the presence of

specific enzymes.

Molecular machines (also called molecular motors) are amazing complexes

made out of several parts or domains that coordinate their behavior to perform

specific biological functions by operating out of equilibrium. Molecular

machines hydrolyze energy carrier molecules such as ATP to transform the

chemical energy contained in the high energy bonds into mechanical motion

[14–17]. An example of a molecular machine that has been studied by

molecular biologists and biophysicists is the RNA polymerase [18,19]. This is

an enzyme that synthesizes an premessenger RNA molecule by translocating

along the DNA and reading, step by step, the sequence of bases along the DNA

backbone. The readout of the RNA polymerase is exported from the nucleus to

the cytoplasm of the cell to later be translated in the ribosome, a huge molecular

machine that synthesizes the protein coded into the messenger RNA [20]. By

using single molecule experiments, it is possible to grab one DNA molecule by

both ends using optical tweezers and follow the translocation motion of the

RNA polymerase [21, 22]. Current optical tweezer techniques have even

resolved the motion of the enzyme at the level of a single base pair [23, 24]. The

experiment requires the flow of enzymes and proteins into the fluidics chamber

that are necessary to initiate the transcription reaction. The subsequent motion

and transcription by the RNA polymerase is called elongation and can be

studied under applied force conditions that assist or oppose the motion of the

enzyme [25]. In Fig. 2 we show the results obtained in the Bustamante group for

the RNA polymerase of Escherichia coli, a bacteria found in the intestinal tracts

of animals. In Fig. 2a the polymerase apparently moves at a constant average

speed but is characterized by pauses (black arrows) where motion temporarily

arrests. In Fig. 2b we show the transcription rate (or speed of the enzyme) as a

function of time. Note the large intermittent fluctuations in the transcription

nonequilibrium fluctuations in small systems 37
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rate, a typical feature of small systems embedded in a noisy thermal

environment. In contrast to the slow dynamics observed in colloidal systems

(Section II.A), the kinetic motion of the polymerase is not progressively slower

but steady and fast. We then say that the polymerase is in a nonequilibrium

steady state. As in the previous case, large deviations, intermittent events, and

complex kinetics are the main features we observe in these experiments.

III. FLUCTUATION THEOREMS

Fluctuation theorems (FTs) make statements about energy exchanges that take

place between a system and its surroundings under general nonequilibrium

conditions. Since their discovery in the mid -1990s [26–28], there has been an

increasing interest to elucidate their importance and implications. FTs provide a

fresh new look at old questions such as the origin of irreversibility and the second

law in statistical mechanics [29, 30]. In addition, FTs provide statements about

energy fluctuations in small systems, which, under generic conditions, should be

experimentally observable. FTs have been discussed in the context of

deterministic, stochastic and thermostatted systems. Although the results

obtained differ depending on the particular model of the dynamics that is

used, in a nutshell they are pretty similar.

FTs are related to the so-called nonequilibrium work relations introduced by

Jarzynski [31]. This fundamental relation can be seen as a consequence of the

FTs [32, 33]. It represents a new result beyond classical thermodynamics that

shows the possibility to recover free energy differences using irreversible

processes. Several reviews have been written on the subject [3, 34–37] with

specific emphasis on theory and/or experiments. In the next sections we review

some of the main results. Throughout the text we will take kB ¼ 1.

A. Nonequilibrium States

An important concept in thermodynamics is the state variable. State variables are

those that, once determined, uniquely specify the thermodynamic state of the

system. Examples are the temperature, the pressure, the volume, and the mass of

the different components in a given system. To specify the state variables of a

system it is common to put the system in contact with a bath. The bath is any set of

sources (of energy, volume, mass, etc.) large enough to remain unaffected by the

interaction with the system under study. The bath ensures that a system can reach

a given temperature, pressure, volume, and mass concentration of the different

components when put in thermal contact with the bath (i.e., with all the relevant

sources). Equilibrium states are then generated by putting the system in contact

with a bath and waiting until the system properties relax to the equilibrium values.

Under such conditions the system properties do not change with time and the

average heat/work/mass exchanged between the system and the bath is zero.
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Nonequilibrium states can be produced under a great variety of conditions,

either by continuously changing the parameters of the bath or by preparing the

system in an initial nonequilibrium state that slowly relaxes toward equilibrium.

In general, a nonequilibrium state is produced whenever the system properties

change with time and/or the net heat/work/mass exchanged by the system and

the bath is nonzero. We can distinguish at least three different types of

nonequilibrium states:

� Nonequilibrium Transient State (NETS). The system is initially

prepared in an equilibrium state and later driven out of equilibrium by

switching on an external perturbation. The system returns to a new

equilibrium state after waiting long enough once the external perturbation

stops changing.

� Nonequilibrium Steady State (NESS). The system is driven by external

forces (either time dependent or nonconservative) in a stationary none-

quilibrium state, where its properties do not change with time. The steady

state is an irreversible nonequilibrium process that cannot be described by

the Boltzmann–Gibbs distribution, where the average heat that is dissipated

by the system (equal to the entropy production of the bath) is positive.

There are still other categories of NESS. For example, in nonequilibrium

transient steady states the system starts in a nonequilibrium steady state

but is driven out of that steady state by an external perturbation to finally

settle in a new steady state.

� Nonequilibrium Aging State (NEAS). The system is initially prepared in

a nonequilibrium state and put in contact with the sources. The system is

then allowed to evolve alone but fails to reach thermal equilibrium in

observable or laboratory time scales. In this case the system is in a

nonstationary slowly relaxing nonequilibrium state called aging state and

is characterized by a very small entropy production of the sources. In the

aging state two-times correlations decay slower as the system becomes

older. Two-time correlation functions depend on both times and not just

on their difference.

There are many examples of nonequilibrium states. A classic example of a

NESS is an electrical circuit made out of a battery and a resistance. The current

flows through the resistance and the chemical energy stored in the battery is

dissipated to the environment in the form of heat; the average dissipated power,

Pdiss ¼ VI, is identical to the power supplied by the battery. Another example is a

sheared fluid between two plates or coverslips and one of them is moved relative

to the other at a constant velocity v. To sustain such a state, a mechanical power

that is equal to P / Zv2 has to be exerted on the moving plate, where Z is the

viscosity of water. Themechanical work produced is then dissipated in the form of
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heat through the viscous friction between contiguous fluid layers. Other examples

of the NESS are chemical reactions in metabolic pathways that are sustained by

activated carrier molecules such as ATP. In this case, hydrolysis of ATP is strongly

coupled to specific oxidative reactions. For example, ionic channels use ATP

hydrolysis to transport protons against the electromotive force.

A classic example of a NETS is the case of a protein in its initial native state

that is mechanically pulled (e.g., using AFM) by exerting force on the ends of

the molecule. The protein is initially folded and in thermal equilibrium with the

surrounding aqueous solvent. By mechanically stretching the protein is pulled

away from equilibrium into a transient state until it finally settles into the

unfolded and extended new equilibrium state. Another example of a NETS is a

bead immersed in water and trapped in an optical well generated by a focused

laser beam. When the trap is moved to a new position (e.g., by moving the laser

beam) the bead is driven into a NETS. After some time the bead again reaches

equilibrium at the new position of the trap. In another experiment the trap is

suddenly put into motion at a speed v so the bead is transiently driven away

from its equilibrium average position until it settles into a NESS characterized

by the speed of the trap. This results in the average position of the bead lagging

behind the position of the center of the trap.

The classic example of a NEAS is a supercooled liquid cooled below its glass

transition temperature. The liquid solidifies into an amorphous, slowly relaxing

state characterized by huge relaxational times and anomalous low frequency

response. Other systems are colloids that can be prepared in a NEAS by the

sudden reduction/increase of the volume fraction of the colloidal particles or by

putting the system under a strain/stress.

The classes of nonequilibrium states previously described do not make

distinctions based on whether the system is macroscopic or small. In small

systems, however, it is common to speak about the control parameter to

emphasize the importance of the constraints imposed by the bath that are

externally controlled and do not fluctuate. The control parameter (l) represents
a value (in general, a set of values) that defines the state of the bath. Its value

determines the equilibrium properties of the system (e.g., the equation of state).

In macroscopic systems, it is unnecessary to discern which value is externally

controlled because fluctuations are small and all equilibrium ensembles give the

same equivalent thermodynamic description (i.e., the same equation of state).

Differences arise only when including fluctuations in the description. The

nonequilibrium behavior of small systems is then strongly dependent on the

protocol used to drive them out of equilibrium. The protocol is generally defined

by the time evolution of the control parameter lðtÞ. As a consequence, the

characterization of the protocol lðtÞ is an essential step to unambiguously

defining the nonequilibrium state. Figure 3 shows a representation of a few

examples of the NESS and control parameters.
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B. Fluctuation Theorems in Stochastic Dynamics

In this section we present a derivation of the FT based on stochastic dynamics. In

contrast to deterministic systems, stochastic dynamics naturally incorporates

crucial assumptions needed for the derivation, such as the ergodicity hypothesis.

The derivation we present here follows the approach introduced by Crooks–

Kurchan–Lebowitz–Spohn [38, 39] and includes some results recently obtained

by Seifert [40] using Langevin systems.

1. The Master Equation

Let us consider a stochastic system described by a generic variable C. This
variable may stand for the position of a bead in an optical trap, the velocity field

of a fluid, the current passing through a resistance, of the number of native

contacts in a protein. A trajectory or path � in configurational space is described

by a discrete sequence of configurations in phase space,

� � fC0; C1; C2; . . . ; CMg ð1Þ

where the system occupies configuration Ck at time tk ¼ k�t and �t is the

duration of the discretized elementary time step. In what follows, we consider

paths that start at C0 at time t ¼ 0 and end at the configuration CM at time

t ¼ M�t. The continuous time limit is recovered by takingM ! 1;�t ! 0 for

a fixed value of t.

A B

ATP ADP+P

v
I

R V

(a)

(c)

(b)

Figure 3. Examples of the NESS. (a) An electric current I flowing through a resistance R and

maintained by a voltage source or control parameter V. (b) A fluid sheared between two plates that

move at speed v (the control parameter) relative to each other. (c) A chemical reaction A ! B

coupled to ATP hydrolysis. The control parameters here are the concentrations of ATP and ADP.
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Let hð� � �Þi denote the average over all paths that start at t ¼ 0 at configurations

C0 initially chosen from a distribution P0ðCÞ. We also define PkðCÞ as the

probability, measured over all possible dynamical paths, that the system is in

configuration C at time tk ¼ k�t. Probabilities are normalized for all k,

X
C

PkðCÞ ¼ 1 ð2Þ

The system is assumed to be in contact with a thermal bath at temperature T.

We also assume that the microscopic dynamics of the system is of the

Markovian type: the probability that the system has a given configuration at a

given time only depends on its previous configuration. We then introduce the

transition probability WkðC ! C0Þ. This denotes the probability for the system

to change from C to C0 at time step k. According to the Bayes formula,

Pkþ1ðCÞ ¼
X
C0

WkðC0 ! CÞPkðC0Þ ð3Þ

where the W0 satisfy the normalization condition,X
C0

WkðC ! C0Þ ¼ 1 ð4Þ

Using Eqs. (2) and (3) we can write the following master equation for the

probability PkðCÞ:

�PkðCÞ¼Pkþ1ðCÞ�PkðCÞ¼
X
C0 6¼C

WkðC0!CÞPkðC0Þ�
X
C0 6¼C

WkðC!C0ÞPkðCÞ ð5Þ

where the terms C ¼ C0 have not been included as they cancel out in the first and

second sums on the right-hand side (rhs). The first term on the rhs accounts for all

transitions leading to the configuration C, whereas the second term counts all

processes leaving C. It is convenient to introduce the rates rtðC ! C0Þ in the

continuous time limit �t ! 0,

rtðC ! C0Þ ¼ lim
�t!0

WkðC ! C0Þ
�t

; 8C 6¼ C0 ð6Þ

Equation (5) becomes

qPtðCÞ
qt

¼
X
C0 6¼C

rtðC0 ! CÞPtðC0Þ �
X
C0 6¼C

rrðC ! C0ÞPtðCÞ ð7Þ
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2. Microscopic Reversibility

We now introduce the concept of the control parameter l (see Section III.A). In

the present scheme the discrete time sequence flk; 0 � k � Mg defines the

perturbation protocol. The transition probability WkðC ! C0Þ now depends

explicitly on time through the value of an external time-dependent parameter lk.
The parameter lk may indicate any sort of externally controlled variable that

determines the state of the system, for instance, the value of the external

magnetic field applied on a magnetic system, the value of the mechanical force

applied to the ends of a molecule, the position of a piston containing a gas, or the

concentrations of ATP and ADP in a molecular reaction coupled to hydrolysis

(see Fig. 3). The time variation of the control parameter, _l ¼ ðlkþ1 � lkÞ=�t, is

used as a tunable parameter, which determines how irreversible the none-

quilibrium process is. In order to emphasize the importance of the control

parameter, in what follows we will parameterize probabilities and transition

probabilities by the value of the control parameter at time step k, l (rather than by

the time t). Therefore, we will write PlðCÞ andWlðC ! C0Þ for the probabilities
and transition probabilities, respectively, at a given time t.

The transition probabilities WlðC ! C0Þ cannot be arbitrary but must

guarantee that the equilibrium state P
eq
l ðCÞ is a stationary solution of the master

equation (5). The simplest way to impose such a condition is to model the

microscopic dynamics as ergodic and reversible for a fixed value of l:

WlðC ! C0Þ
WlðC0 ! CÞ ¼

P
eq
l ðC0Þ
P
eq
l ðCÞ ð8Þ

The latter condition is commonly known as microscopic reversibility or local

detailed balance. This property is equivalent to time reversal invariance in

deterministic (e.g., thermostatted) dynamics. Although it can be relaxed by

requiring just global (rather than detailed) balance, it is physically natural to

think of equilibrium as a local property. Microscopic reversibility, a common

assumption in nonequilibrium statistical mechanics, is the crucial ingredient in

the present derivation.

Equation (8) has been criticized as a relation that is valid only very near to

equilibrium because the rates appearing in Eq. (8) are related to the equilibrium

distribution P
eq
l ðCÞ. However, we must observe that the equilibrium distribution

evaluated at a given configuration depends only on the Hamiltonian of the

system at that configuration. Therefore, Eq. (8) must be read as a relation that

only depends on the energy of configurations, valid close but also far from

equilibrium.

Let us now consider all possible dynamical paths � that are generated

starting from an ensemble of initial configurations at time 0 (described by the
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initial distribution Pl0ðCÞ) and that evolve according to Eq. (8) until time t

(t ¼ M�t, M being the total number of discrete time steps). Dynamical

evolution takes place according to a given protocol, flk; 0 � k � Mg, the

protocol defining the nonequilibrium experiment. Different dynamical paths

will be generated because of the different initial conditions (weighted with the

probability Pl0ðCÞ) and because of the stochastic nature of the transitions

between configurations at consecutive time steps.

3. The Nonequilibrium Equality

Let us consider a generic observable Að�Þ. The average value of A is given by

hAi ¼
X
�

Pð�ÞAð�Þ ð9Þ

where � denotes the path and Pð�Þ indicates the probability of that path. Using

the fact that the dynamics is Markovian together with the definition Eq. (1), we

can write

Pð�Þ ¼ Pl0ðC0Þ
YM�1

k¼0

WlkðCk ! Ckþ1Þ ð10Þ

By inserting Eq. (10) into Eq. (9), we obtain

hAi ¼
X
�

Að�ÞPl0ðC0Þ
YM�1

k¼0

WlkðCk ! Ckþ1Þ ð11Þ

Using the detailed balance condition Eq. (8), this expression reduces to

hAi ¼
X
�

Pl0ðC0ÞAð�Þ
YM�1

k¼0

WlkðCkþ1 ! CkÞ
P
eq
lk
ðCkþ1Þ

P
eq
lk
ðCkÞ

 !
ð12Þ

¼
X
�

Að�ÞPl0ðC0Þ exp
XM�1

k¼0

log
P
eq
lk
ðCkþ1Þ

P
eq
lk
ðCkÞ

 ! !YM�1

k¼0

WlkðCkþ1 ! CkÞ ð13Þ

This equation cannot be worked out further. However, let us consider the

following observable Sð�Þ, defined by

Að�Þ ¼ expð�Sð�ÞÞ ¼ bðCMÞ
Pl0ðC0Þ

YM�1

k¼0

P
eq
lk
ðCkÞ

P
eq
lk
ðCkþ1Þ

 !
ð14Þ
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where bðCÞ is any positive definite and normalizable function,X
C

bðCÞ ¼ 1 ð15Þ

and Pl0ðC0Þ > 0;8C0. By inserting Eq. (14) into Eq. (13) we get

hexpð�SÞi ¼
X
�

bðCMÞ
YM�1

k¼0

WlkðCkþ1 ! CkÞ ¼ 1 ð16Þ

where we have applied a telescopic sum (we first summed over CM�1 by using

Eq. (4), and used Eq. (15), and subsequently summed over the rest of variables and

used Eq. (4) again). We call Sð�Þ the total dissipation of the system. It is given by

Sð�Þ ¼
XM�1

k¼0

log
P
eq
lk
ðCkþ1Þ

P
eq
lk
ðCkÞ

 !
þ logðPl0ðC0ÞÞ � logðbðCMÞÞ ð17Þ

The equality in Eq. (16) immediately implies, by using Jensen’s inequality, the

following inequality,

hSi � 0 ð18Þ

which is reminiscent of the second law of thermodynamics for nonequilibrium

systems: the entropy of the universe (system plus the environment) always

increases. Yet, we have to identify the different terms appearing in Eq. (17). It is

important to stress that entropy production in nonequilibrium systems can be

defined just in terms of the work/heat/mass transferred by the system to the

external sources, which represent the bath. The definition of the total dissipation

in Eq. (17) is arbitrary because it depends on an undetermined function bðCÞ,
Eq. (15). Therefore, the total dissipation S may not necessarily have a general

physical meaning and could be interpreted in different ways depending on the

specific nonequilibrium context.

Equation (16) has appeared in the past in the literature [41, 42] and is

mathematically identical to the Jarzynski equality [31]. We analyze this

connection in Section III.C.1.

4. The Fluctuation Theorem

A physical insight on the meaning of the total dissipation S can be obtained by

deriving the fluctuation theorem. We start by defining the reverse path �� of a

given path �. Let us consider the path � � C0 ! C1 ! � � � ! CM corresponding

to the forward (F) protocol, which is described by the sequence of values of l at
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different time steps k, lk. Every transition occurring at time step k , Ck ! Ckþ1, is

governed by the transition probability WlkðCk ! Ckþ1Þ. The reverse path of � is

defined as the time reverse sequence of configurations, �� � CM ! CM�1

! � � � ! C0 corresponding to the reverse (R) protocol described by the time-

reversed sequence of values of l, lRk ¼ lM�k�1.

The probabilities of a given path and its reverse are given by

PFð�Þ ¼
YM�1

k¼0

WlkðCk ! Ckþ1Þ ð19Þ

PRð��Þ ¼
YM�1

k¼0

WlRk
ðCM�k ! CM�k�1Þ ¼

YM�1

k¼0

WlkðCkþ1 ! CkÞ ð20Þ

where in the last line we shifted variables k ! M � 1� k. We use the notation P
for the path probabilities rather than the usual letter P. This difference in notation

is introduced to stress the fact that path probabilities (Eqs. (19) and (20)) are

nonnormalized conditional probabilities; that is,
P

� PFðRÞð�Þ 6¼ 1. By using

Eq. (8) we get

PFð�Þ
PRð��Þ ¼

YM�1

k¼0

P
eq
lk
ðCkþ1Þ

P
eq
lk
ðCkÞ

¼ expðSpð�ÞÞ ð21Þ

where we defined the entropy production of the system,

Spð�Þ ¼
XM�1

k¼0

log
P
eq
lk
ðCkþ1Þ

P
eq
lk
ðCkÞ

 !
ð22Þ

Note that Spð�Þ is just a part of the total dissipation introduced in Eq. (17),

Sð�Þ ¼ Spð�Þ þ Bð�Þ ð23Þ

where Bð�Þ is the boundary term,

Bð�Þ ¼ logðPl0ðC0ÞÞ � logðbðCMÞÞ ð24Þ

We tend to identify Spð�Þ as the entropy production in a nonequilibrium system,

whereas Bð�Þ is a term that contributes just at the beginning and end of the

nonequilibrium process. Note that the entropy production Spð�Þ is antisymmetric

under time reversal, Spð��Þ ¼ �Spð�Þ, expressing the fact that the entropy

production is a quantity related to irreversible motion. According to Eq. (21)

paths that produce a given amount of entropy are much more probable than those
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that consume the same amount of entropy. How improbable entropy consump-

tion is depends exponentially on the amount of entropy consumed. The larger the

system is, the larger the probability to produce (rather than consume) a given

amount of entropy Sp.

Equation (21) already has the form of a fluctuation theorem. However, in

order to get a proper fluctuation theorem we need to specify relations between

probabilities for physically measurable observables rather than paths. From

Eq. (21) it is straightforward to derive a fluctuation theorem for the total

dissipation S. Let us take bðCÞ ¼ PlM ðCÞ. With this choice we get

Sð�Þ ¼ Spð�Þ þ Bð�Þ ¼
XM�1

k¼0

log
P
eq
lk
ðCkþ1Þ

P
eq
lk
ðCkÞ

 !

þ logðPl0ðC0ÞÞ � logðPlM ðCMÞÞ
ð25Þ

The physical motivation behind this choice is that S now becomes an

antisymmetric observable under time reversal. Albeit Spð�Þ is always antisym-

metric, the choice of Eq. (25) is the only one that guarantees that the total

dissipation S changes sign upon reversal of the path, Sð��Þ ¼ �Sð�Þ. The
symmetry property of observables under time reversal and the possibility of

considering boundary terms where S is symmetric (rather than antisymmetric)

under time reversal has been discussed in Ref. 43.

The probability of producing a total dissipation S along the forward protocol

is given by

PFðSÞ ¼
X
�

Pl0ðC0ÞPFð�ÞdðSð�Þ � SÞ

¼
X
�

Pl0ðC0ÞPRð��Þ expðSpð�ÞÞdðSð�Þ � SÞ

¼
X
�

PlM ðCMÞPRð��Þ expðSð�ÞÞdðSð�Þ � SÞ

¼ expðSÞ
X
��

PlM ðCMÞPRð��ÞdðSð��Þ þ SÞ ¼ expðSÞPRð�SÞ ð26Þ

In the first line of the derivation we used Eq. (21), in the second we used Eq. (25),

and in the last line we took into account the antisymmetric property of Sð�Þ and
the unicity of the assignment � ! ��. This result is known under the generic

name of fluctuation theorem,

PFðSÞ
PRð�SÞ ¼ expðSÞ ð27Þ
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It is interesting to observe that this relation is not satisfied by the entropy

production because the inclusion of a boundary term, Eq. (24), in the total

dissipation is required to respect the fluctuation symmetry. In what follows we

discuss some of its consequences in some specific situations.

� Jarzynski Equality. The nonequilibrium equality, Eq. (16), is just a

consequence of Eq. (27) that is obtained by rewriting it as PRð�SÞ ¼
PFðSÞ expð�SÞ and integrating both sides of the equation from S ¼ �1
to S ¼ 1.

� Linear Response Regime. Equation (27) is trivially satisfied for S ¼ 0 if

PFð0Þ ¼ PRð0Þ. The process where PFðRÞðSÞ ¼ dðSÞ is called quasistatic

or reversible. When S is different from zero but small (S < 1), we can

expand Eq. (27) around S ¼ 0 to obtain

SPFðSÞ ¼ S expðSÞPRð�SÞ
hSiF ¼ hð�S þ S2ÞiR þOðS3Þ

hðS2ÞiFðRÞ ¼ 2hSiFðRÞ

ð28Þ

where we used hSiF ¼ hSiR, valid up to second order in S. Note the

presence of the subindex F(R) for the expectation values in the last line of

Eq. (28), which emphasizes the equality of these averages along the

forward and reverse processes. Equation (28) is a version of the

fluctuation-dissipation theorem (FDT) valid in the linear response region

and equivalent to the Onsager reciprocity relations [44].

C. Applications of the FT to Nonequilibrium States

The FT in Eq. (27) finds application in several nonequilibrium contexts. Here we

describe specific results for transient and steady states.

1. Nonequilibrium Transient States (NETSs)

We will assume a system initially in thermal equilibrium that is transiently

brought to a nonequilibrium state. We are going to show that, under such

conditions, the entropy production in Eq. (22) is equal to the heat delivered by the

system to the sources. We rewrite Eq. (22) by introducing the potential energy

function GlðCÞ,

P
eq
l ðCÞ ¼

expð�GlðCÞÞ
Zl

¼ expð�GlðCÞ þ GlÞ ð29Þ

where Zl ¼
P

C expð�GlðCÞÞ ¼ expð�GlÞ is the partition function and Gl is

the thermodynamic potential. The existence of the potential GlðCÞ and the

thermodynamic potential Gl is guaranteed by the Boltzmann–Gibbs ensemble

theory. For simplicity we will consider here the canonical ensemble, where the
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volume V, the number of particles N, and the temperature T are fixed. Needless to

say, the following results can be generalized to arbitrary ensembles. In the

canonical case GlðCÞ is equal to ElðCÞ=T , where ElðCÞ is the total energy

function (that includes the kinetic plus the potential terms). Gl is equal to

FlðV ; T;NÞ=T , where Fl stands for the Helmholtz free energy.

With these definitions the entropy production in Eq. (22) is given by

Spð�Þ ¼
XM�1

k¼0

ðGlkðCkÞ � GlkðCkþ1ÞÞ ¼
1

T

XM�1

k¼0

ðElkðCkÞ � ElkðCkþ1ÞÞ ð30Þ

For the boundary term, Eq. (24), let us take bðCÞ ¼ P
eq
lM
ðCÞ:

Bð�Þ ¼ logðPeq
l0
ðC0ÞÞ � logðPeq

lM
ðCMÞÞ

¼ GlM ðCMÞ � Gl0ðC0Þ � GlM þ Gl0

¼ 1

T
ðElM ðCMÞ � El0ðC0Þ � FlM þ Fl0Þ

ð31Þ

The total dissipation, Eq. (25), is then equal to

Sð�Þ ¼ Spð�Þ þ
1

T
ðElM ðCMÞ � El0ðC0Þ � FlM þ Fl0Þ ð32Þ

which can be rewritten as a balance equation for the variation of the energy ElðCÞ
along a given path,

�Eð�Þ ¼ ElM ðCMÞ � El0ðC0Þ ¼ TSð�Þ þ�F � TSpð�Þ ð33Þ

where�F ¼ FlM � Fl0 . This is the first law of thermodynamics, where we have

identified the term on the left-hand side (lhs) with the total variation of the

internal energy�Eð�Þ. Whereas TSð�Þ þ�F and TSpð�Þ are identified with the
mechanical work exerted on the system and the heat delivered to the bath,

respectively,

�Eð�Þ ¼ Wð�Þ � Qð�Þ ð34Þ
Wð�Þ ¼ TSð�Þ þ�F ð35Þ
Qð�Þ ¼ TSpð�Þ ð36Þ

By using Eq. (30) we obtain the following expressions for work and heat:

Wð�Þ ¼
XM�1

k¼0

ðElkþ1
ðCkþ1Þ � ElkðCkþ1ÞÞ ð37Þ

Qð�Þ ¼
XM�1

k¼0

ðElkðCkÞ � ElkðCkþ1ÞÞ ð38Þ
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The physical meaning of both entropies is now clear. Whereas Sp stands for the

heat transferred by the system to the sources (Eq. (36)), the total dissipation term

TS (Eq. (35)) is just the difference between the total mechanical work exerted on

the system,Wð�Þ, and the reversible work,Wrev ¼ �F. It is customary to define

this quantity as the dissipated work, Wdiss:

Wdissð�Þ ¼ TSð�Þ ¼ Wð�Þ ��F ¼ Wð�Þ �Wrev ð39Þ

The nonequilibrium equality in Eq. (16) becomes the nonequilibrium work

relation originally derived by Jarzynski using Hamiltonian dynamics [31],

hexpð�Wdiss=TÞi ¼ 1 or hexpð�W=TÞi ¼ expð��F=TÞ ð40Þ

This relation is called the Jarzynski equality (hereafter referred to as JE) and can

be used to recover free energies from nonequilibrium simulations or experiments

(see Section IV.B.2). The FT in Eq. (27) becomes the Crooks fluctuation theorem

(hereafter referred to as CFT) [45, 46]:

PFðWdissÞ
PRð�WdissÞ

¼ exp
Wdiss

T

� �
or

PFðWÞ
PRð�WÞ ¼ exp

W ��F

T

� �
ð41Þ

The second law of thermodynamics W � �F also follows naturally as a

particular case of Eq. (18) by using Eqs. (39) and (40). Note that for the heat Q a

relation equivalent to Eq. (41) does not exist. We mention three aspects of the JE

and the CFT.

� The Fluctuation-Dissipation Parameter R. In the limit of small

dissipation Wdiss ! 0, the linear response result, Eq. (28), holds. It is

then possible to introduce a parameter R that measures deviations from

the linear response behavior.1 It is defined as

R ¼ s2
W

2TWdiss

ð42Þ

where s2
W ¼ hW2i � hWi2 is the variance of the work distribution. In the

limit Wdiss ! 0, a second-order cumulant expansion in Eq. (40) gives that

R is equal to 1 and Eq. (28) holds. Deviations from R ¼ 1 are often

interpreted as deviations of the work distribution from a Gaussian. When

1Sometimes R is called the fluctuation-dissipation ratio, not to be confused with the identically

called but different quantity introduced in glassy systems (see Section VI.B) that quantifies

deviations from the fluctuation-dissipation theorem that is valid in equilibrium.
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the work distribution is nonGaussian, the system is far from the linear

response regime and Eq. (28) is not satisfied anymore.

� The Kirkwood Formula. A particular case of the JE, Eq. (40), is the

Kirkwood formula [47, 48]. It corresponds to the case where the control

parameter only takes two values l0 and l1. The system is initially in

equilibrium at the value l0 and, at an arbitrary later time t, the value of l
instantaneously switches to l1. In this case Eq. (37) reads

Wð�Þ ¼ �ElðCÞ ¼ El1ðCÞ � El0ðCÞ ð43Þ

In this case a path corresponds to a single configuration, � � C, and
Eq. (40) becomes

exp ��ElðCÞ
T

� �
¼ exp ��F

T

� �
ð44Þ

the average ð� � �Þ is taken over all configurations C sampled according to

the equilibrium distribution taken at l0, P
eq
l0
ðCÞ.

� Heat Exchange Between Two Bodies. Suppose that we take two bodies

initially at equilibrium at temperatures TH and TC, where TH and TC stand

for a hot and a cold temperature, respectively. At time t ¼ 0 we put them

in contact and ask about the probability distribution of heat flow between

them. In this case, no work is done between the two bodies and the heat

transferred is equal to the energy variation of each of the bodies. Let Q be

equal to the heat transferred from the hot to the cold body in one

experiment. It can be shown [49] that in this case the total dissipation S is

given by

S ¼ Q
1

TC
� 1

TH

� �
ð45Þ

and the equality in Eq. (40) reads

exp �Q
1

TC
� 1

TH

� �� �
¼ 1

� �
ð46Þ

showing that, on average, net heat is always transferred from the hot to the

cold body. Yet, sometimes, we also expect some heat to flow from the cold

to the hot body. Again, the probability of such events will be

exponentially small with the size of the system.

2. Nonequilibrium Steady States (NESSs)

Most investigations on nonequilibrium systems were initially carried out in the

NESS. It is widely believed that NESSs are among the best candidate

nonequilibrium systems to possibly extend the Boltzmann–Gibbs ensemble

theory beyond equilibrium [50, 51].
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We can distinguish two types of NESS: time-dependent conservative (C)

systems and nonconservative (NC) systems. In the C case the system is acted by a

time-dependent force that derives from an external potential. In the NC case the

system is driven by (time dependent or not) nonconservative forces. In C systems

the control parameter l has the usual meaning: it specifies the set of external

parameters that, once fixed, determine an equilibrium state. Examples are a

magnetic dipole in an oscillating field (l is the value of the time-dependent

magnetic field), a bead confined on a moving optical trap and dragged through

water (l is the position of the center of the moving trap), and a fluid sheared

between two plates (l is the time-dependent relative position of the upper and

lower plates). In C systems we assume local detailed balance so Eq. (8) still holds.

In contrast to the C case, in NC systems the local detailed balance property, in

the form of Eq. (8), does not hold because the system reaches not thermal

equilibrium but a stationary or steady state. It is then customary to characterize the

NESS by the parameter l and the stationary distribution by Pss
l ðCÞ. NESS systems

in the linear regime (i.e., not driven arbitrarily far from equilibrium) satisfy the

Onsager reciprocity relations, where the fluxes are proportional to the forces. The

NESS can be maintained by keeping constant either the forces or the fluxes.

Examples of NC systems are the flow of a current in an electric circuit (e.g.,

l ¼ I;�V is either the constant current flowing through the circuit or the constant

voltage difference), a Poiseuille fluid flow inside a cylinder (l could be either the

constant fluid flux, �, or the pressure difference, �P), heat flowing between two

sources kept at two different temperatures (l could be either the heat flux, JQ, or

the temperature difference,�T), and the particle exclusion process (l ¼ mþ;� are

the rates of inserting and removing particles at both ends of the chain). In the

NESS of NC type, the local detailed balance property of Eq. (8) holds but we

replace P
eq
l ðCÞ by the corresponding stationary distribution, Pss

l ðCÞ:

WlðC ! C0Þ
WlðC0 ! CÞ ¼

Pss
l ðC0Þ

Pss
l ðCÞ

ð47Þ

In a steady state in an NC system l is maintained constant. Because the local

form of detailed balance, Eq. (47), holds, the main results of Section III follow. In

particular, the nonequilibrium equality in Eq. (16) and the FT in Eq. (27) are still

true. However, there is an important difference. In steady states the reverse

process is identical to the forward process, PFðSÞ ¼ PRðSÞ, because l is

maintained constant. Therefore, Eq. (16) and Eq. (27) become

hexpð�SÞi ¼ 1 ð48Þ
PðSÞ
Pð�SÞ ¼ expðSÞ ð49Þ

We can now extract a general FT for the entropy production Sp in the NESS. Let

us assume that, on average, Sp grows linearly with time, that is, Sp 	 B for large t.
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Because S ¼ Sp þ B (Eq. (23)), in the large t limit fluctuations in S are

asymptotically dominated by fluctuations in Sp. On average, fluctuations in Sp
grow like

ffiffi
t

p
, whereas fluctuations in the boundary term are finite.

Therefore, Eq. (23) should be asymptotically valid in the large t limit. By

taking the logarithm of the right expression we obtain

S¼ logðPðSÞÞ� logðPð�SÞÞ!SpþB¼ logðPðSpþBÞÞ� logðPðSp�BÞÞ ð50Þ

In the NESS, the entropy produced, Spð�Þ, along paths of duration t is a

fluctuating quantity. By expanding Eq. (50) around Sp, we get

Sp ¼ log
PðSpÞ
Pð�SpÞ

� �
þ B

P0ðSpÞ
PðSpÞ

þ P0ð�SpÞ
Pð�SpÞ

� 1

� �
ð51Þ

The average entropy production hSpi is defined by averaging Sp along an infinite

number of paths. Dividing Eq. (51) by hSpi we get

Sp

hSpi
¼ 1

hSpi
log

PðSpÞ
Pð�SpÞ

� �
þ B

hSpi
P0ðSpÞ
PðSpÞ

þ P0ð�SpÞ
Pð�SpÞ

� 1

� �
ð52Þ

We introduce a quantity a that is equal to the ratio between the entropy

production and its average value, a ¼ Sp=hSpi. We can define the function

ftðaÞ ¼
1

hSpi
log

PðaÞ
Pð�aÞ

� �
ð53Þ

Equation (52) can be rewritten as

ftðaÞ ¼ a� B

hSpi
P0ðSpÞ
PðSpÞ

þ P0ð�SpÞ
Pð�SpÞ

� 1

� �
ð54Þ

In the large time limit, assuming that logðPðSpÞÞ 
 t, and because B is finite, the

second term vanishes relative to the first and ftðaÞ ¼ aþOð1=tÞ. Substituting
this result into Eq. (53) we find that an FT holds in the large t limit. However, this

is not necessarily, always true. Even for very large t there can be strong

deviations in the initial and final states that can make the boundary term B large

enough to be comparable to hSpi. In other words, for certain initial and/or final

conditions, the second term on the rhs of Eq. (54) can be on the same order and

comparable to the first term, a. The boundary term can be neglected only if we

restrict the size of such large deviations; that is, if we require jaj � a�, where a�

is a maximum given value. With this proviso, the FT in a NESS reads

lim
t!1

1

hSpi
log

PðaÞ
Pð�aÞ

� �
¼ a; jaj � a� ð55Þ
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In general, it can be very difficult to determine the nature of the boundary terms.

A specific result in an exactly solvable case is discussed in Section IV.A.2.

Equation (55) is the Gallavotti–Cohen FT derived in the context of deterministic

Anosov systems [28]. In that case, Sp stands for the so-called phase space

compression factor. It has been experimentally tested by Ciliberto and

co-workers in Rayleigh–Bernard convection [52] and turbulent flows [53].

Similar relations have also been tested in athermal systems, for example, in

fluidized granular media [54] or the case of two-level systems in fluorescent

diamond defects excited by light [55].

The FT in Eq. (27) also describes fluctuations in the total dissipation for

transitions between steady states, where l varies according to a given protocol.

In that case, the system starts at time 0 in a given steady state, Pss
l0ðCÞ, and

evolves away from that steady state at subsequent times. The boundary term for

steady-state transitions is then given by

Bð�Þ ¼ logðPss
l0ðC0ÞÞ � logðPss

lM ðCMÞÞ ð56Þ

where we have chosen the boundary function bðCÞ ¼ Pss
lM ðCÞ. In that case, the

total dissipation is antisymmetric under the time-reversal operation and Eq. (27)

holds. Only in cases where the reverse process is equivalent to the forward

process is Eq. (49) an exact result. Transitions between nonequilibrium steady

states and definitions of the function S have been considered by Hatano and Sasa

[56] in the context of Langevin systems.

IV. EXAMPLES AND APPLICATIONS

In this section we analyze in detail two cases where analytical calculations are

available and FTs have been experimentally tested: one extracted from physics,

the other from biology. We first analyze the bead in a trap and later consider

single molecule pulling experiments. These examples show that there are lots of

interesting observations that can be made by comparing theory and none-

quilibrium experiments in simple systems.

A. A Physical System: A Bead in an Optical Trap

It is very instructive to work out in detail the fluctuations of a bead trapped in a

moving potential. This case is of great interest for at least two reasons. First, it

provides a simple example of both a NETS and a NESS that can be analytically

solved in detail. Second, it can be experimentally realized by trapping micron-

sized beads using optical tweezers. The first experiments studying

nonequilibrium fluctuations in a bead in a trap were carried out by Evans and

collaborators [57] and later on extended in a series of works [58, 59]. Mazonka

and Jarzynski [60] and later Van Zon and Cohen [61–63] have carried out
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detailed theoretical calculations of heat and work fluctuations. Recent experi-

ments have also analyzed the case of a particle in a nonharmonic optical potential

[64]. These results have greatly clarified the general validity of the FT and the

role of the boundary terms appearing in the total dissipation S.
The case of a bead in a trap is also equivalent to the power fluctuations in a

resistance in an RC electrical circuit [65] (see Fig. 4). The experimental setup is

shown in Fig. 5. A micron-sized bead is immersed in water and trapped in an

optical well. In the simplest case the trapping potential is harmonic. Here we

will assume that the potential well can have an arbitrary shape and carry out

specific analytical computations for the harmonic case.

Let x be the position of the bead in the laboratory frame and Uðx� x�Þ be the
trapping potential of a laser focus that is centered at a reference position x�. For
harmonic potentials we will take UðxÞ ¼ 1

2
kx2. By changing the value of x� the

trap is shifted along the x coordinate. A nonequilibrium state can be generated

by changing the value of x� according to a protocol x�ðtÞ. In the notation of the

previous sections, l � x� is the control parameter and C � x is the

configuration. A path � starts at xð0Þ at time 0 and ends at xðtÞ at time t,

� � fxðsÞ; 0 � s � tg.
At low Reynolds number the motion of the bead can be described by a one-

dimensional Langevin equation that contains only the overdamping term,

g _x ¼ fx� ðxÞ þ Z; hZðtÞZðsÞi ¼ 2Tgdðt � sÞ ð57Þ

where x is the position of the bead in the laboratory frame, g is the friction

coefficient, fx� ðxÞ is a conservative force deriving from the trap potential

Uðx� x�Þ,

fx� ðxÞ ¼ �ðUðx� x�ÞÞ0 ¼ � qUðx� x�Þ
qx

� �
ð58Þ

and Z is a stochastic white noise.

In equilibrium x�ðtÞ ¼ x� is constant in time. In this case, the stationary

solution of the master equation is the equilibrium solution

P
eq
x� ðxÞ ¼

exp � Uðx�x�Þ
T

� �
R
dx expð�bUðx� x�ÞÞ ¼

exp � Uðx�x�Þ
T

� �
Z ð59Þ

where Z ¼
R
dx expð�UðxÞ=TÞ is the partition function that is independent of

the reference position x�. Because the free energy F ¼ �T logðZÞ does not

depend on the control parameter x�, the free energy change is always zero for

arbitrary translations of the trap.
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Let us now consider a NESS where the trap is moved at constant velocity,

x�ðtÞ ¼ vt. It is not possible to solve the Fokker–Planck equation to find the

probability distribution in the steady state for arbitrary potentials. Only for

harmonic potentials, UðxÞ ¼ kx2=2, can the Fokker–Planck equation be solved

exactly. The result is

Pss
x� ðxÞ ¼

2pT
k

� ��1=2

exp � kðx� x�ðtÞ þ gv=kÞ2

2T

 !
ð60Þ

Note that the steady-state solution, Eq. (60), depends explicitly on time through

x�ðtÞ. To obtain a time-independent solution we must change variables x ! x�
x�ðtÞ and describe the motion of the bead in the reference frame that is solid and

moves with the trap. We will come back to this problem in Section IV.A.3.

1. Microscopic Reversibility

In this section we show that the Langevin dynamics, Eq. (57), satisfies the

microscopic reversibility assumption or local detailed balance, Eq. (8). We recall

that x is the position of the bead in the laboratory frame. The transition rates

Figure 5. (Left) Bead confined in a moving optical trap. (Right) Total entropy S distributions

(b–d) for the velocity protocols shown in (a). (From Ref. 69.) (See color insert.)
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Wx� ðx ! x0Þ for the configuration x at time t to change to x0 at a later time t þ�t

can be computed from Eq. (57). We discretize the Langevin equation [66] by

writing

x0 ¼ xþ f ðx� x�Þ
g

�t þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2T �t

g

s
r þOðð�tÞ2Þ ð61Þ

where r is a random Gaussian number of zero mean and unit variance. For a

given value of x, the distribution of values x0 is also a Gaussian with average and

variance given by

x0 ¼ xþ f ðx� x�ðtÞÞ
g

�t þO ð�tÞ2
� �

ð62Þ

s2
x0 ¼ ðx0Þ2 � ððx0ÞÞ2 ¼ 2T �t

g
þO ð�tÞ2

� �
ð63Þ

and therefore,

Wx� ðx ! x0Þ ¼ ð2ps2
x0 Þ

�1=2
exp �

x0 � xþ f ðx� x�Þ�t

g

� �2
2s2

x0

0
BBB@

1
CCCA ð64Þ

From Eq. (64) we compute the ratio between the transition probabilities to first

order in �t:

Wx� ðx ! x0Þ
Wx� ðx0 ! xÞ ¼ exp �ðx0 � xÞð f ðx� x�Þ þ f ðx0 � x�ÞÞ

2T

� �
ð65Þ

We can now use the Taylor expansions,

Uðx0 � x�Þ ¼ Uðx� x�Þ � f ðx� x�Þðx0 � xÞ þ O ðx0 � xÞ2
� �

ð66Þ

Uðx� x�Þ ¼ Uðx0 � x�Þ � f ðx0 � x�Þðx� x0Þ þ O ðx0 � xÞ2
� �

ð67Þ

and subtract both equations to finally obtain

ðx0 � xÞðf ðx� x�Þ þ f ðx0 � x�ÞÞ ¼ 2ðUðx0 � x�Þ � Uðx� x�ÞÞ ð68Þ

which yields

Wx� ðx ! x0Þ
Wx� ðx0 ! xÞ ¼ exp �Uðx0 � x�Þ � Uðx� x�Þ

T

� �
¼ P

eq
x� ðx0Þ

P
eq
x� ðxÞ

ð69Þ

which is the local detailed balance assumption, Eq. (8).
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2. Entropy Production, Work, and Total Dissipation

Let us consider an arbitrary nonequilibrium protocol x�ðtÞ, where vðtÞ ¼ _x�ðtÞ is
the velocity of the moving trap. The entropy production for a given path,

� � fxðsÞ; 0 � s � tg, can be computed using Eq. (22),

Spð�Þ ¼
Z t

0

ds _xðsÞ
qlogPeq

x�ðsÞðxÞ
qx

 !
x¼xðsÞ

ð70Þ

We now define the variable yðtÞ ¼ xðtÞ � x�ðtÞ. From Eq. (59) we get2

Spð�Þ ¼
1

T

Z t

0

ds _xðsÞf ðxðsÞ � x�ðsÞÞ ¼ 1

T

Z t

0

dsð _yðsÞ þ vðsÞÞf ðyðsÞÞ ð71Þ

¼ 1

T

Z yðtÞ

yð0Þ
dy f ðyÞ þ

Z t

0

ds vðsÞf ðsÞ
 !

¼ ��U þWð�Þ
T

ð72Þ

with

�U ¼ UðxðtÞ � x�ðtÞÞ � Uðxð0Þ � x�ð0ÞÞ; Wð�Þ ¼
Z t

0

ds vðsÞf ðsÞ ð73Þ

where we used Eq. (58) in the last equality of Eq. (72). �U is the variation of

internal energy between the initial and final positions of the bead andWð�Þ is the
mechanical work done by the moving trap on the bead. Using the first law,

�U ¼ W � Q, we get

Spð�Þ ¼
Qð�Þ
T

ð74Þ

and the entropy production is just the heat transferred from the bead to the bath

divided by the temperature of the bath.

The total dissipation S, Eq. (23), can be evaluated by adding the boundary

term, Eq. (24), to the entropy production. For the boundary term we have some

freedom as to which function f we use on the rhs of Eq. (24):

Bð�Þ ¼ log Px�ð0Þðxð0ÞÞ
� 	

� log f ðxðtÞÞð Þ ð75Þ

2Note that _x, the velocity of the bead, is not well defined in Eqs. (70) and (72). However, ds _xðsÞ ¼ dx is.

Yet, we prefer to use the notation in terms of velocities just to make clear the identification between the

time integrals in Eqs. (70) and (72) and the discrete time-step sum in Eq. (22).
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Because we want S to be antisymmetric against time reversal, there are two

possible choices for the function f depending on the initial state.

� Nonequilibrium Transient State (NETS). Initially the bead is in

equilibrium and the trap is at rest in a given position x�ð0Þ. Suddenly
the trap is set in motion. In this case bðxÞ ¼ P

eq

x�ðtÞðxÞ and the boundary

term in Eq. (24) reads

Bð�Þ ¼ log P
eq

x�ð0Þðxð0ÞÞ
� �

� log P
eq

x�ðtÞðxðtÞÞ
� �

ð76Þ

By inserting Eq. (59) we obtain

Bð�Þ ¼ 1

T
UðxðtÞ � x�ðtÞÞ � Uðxð0Þ � x�ð0ÞÞð Þ ¼ �U

T
ð77Þ

and S ¼ Sp þ B ¼ ðQþ�UÞ=T ¼ W=T so the work satisfies the none-

quilibrium equality, Eq. (16), and the FT, Eq. (27):

PFðWÞ
PRð�WÞ ¼ exp

W

T

� �
ð78Þ

Note that in the reverse process the bead starts in equilibrium at the final

position x�ðtÞ and the motion of the trap is reversed ðx�ÞRðsÞ ¼ x�ðt � sÞ.
The result Eq. (78), is valid for arbitrary potentials UðxÞ. In general, the

reverse work distribution PRðWÞ will differ from the forward distribution

PFðWÞ. Only for symmetric potentials UðxÞ ¼ Uð�xÞ are both work

distributions identical [67]. Under this additional assumption, Eq. (78) reads

PðWÞ
Pð�WÞ ¼ exp

W

T

� �
ð79Þ

Note that this is a particular case of the CFT (Eq. (41)) with �F ¼ 0.

� Nonequilibrium Steady State (NESS). If the initial state is a steady state,
Pl0ðC0Þ � Pss

x�ð0ÞðxÞ, then we choose bðxÞ ¼ Pss
x�ðtÞðxÞ. The boundary term

reads

Bð�Þ ¼ log Pss
x�ð0Þðxð0ÞÞ

� �
� log Pss

x�ðtÞðxðtÞÞ
� �

ð80Þ

Only for harmonic potentials do we exactly know the steady-state

solution, Eq. (60), so we can write down an explicit expression for B:

Bð�Þ ¼ �U

T
� vg�f

kT
ð81Þ
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where �U is defined in Eq. (73) and ¼ fx�ðtÞðxðtÞÞ � fx�ð0Þðxð0ÞÞ. The total
dissipation is given by

S ¼ Sp þ B ¼ Qþ�U

T
� vg�f

kT
¼ W

T
� vg�f

kT
ð82Þ

It is important to stress that Eq. (82) does not satisfy Eqs. (48) and (49)

because the last boundary term on the rhs of Eq. (82) (vg�f=kT) is not
antisymmetric against time reversal. Van Zon and Cohen [61–63] have

analyzed in much detail work and heat fluctuations in the NESS. They

find that work fluctuations satisfy the exact relation

PðWÞ
Pð�WÞ ¼ exp

W

T

1

1þ ðt=tÞðexpð�t=tÞ � 1Þ

� �
ð83Þ

where t is the time window over which work is measured and t is the

relaxation time of the bead in the trap, t ¼ g=k. Note that the FT (Eq.

(79)) is satisfied in the limit t=t ! 0. Corrections to the FT are on the

order of t=t as expected (see discussion in the last part of Section III.C.2).

Computations can also be carried out for heat fluctuations. The results are

expressed in terms of the relative fluctuations of the heat, a ¼ Sp=hSpi.
The large deviation function ftðaÞ (Eq. (53)) is given by

lim
t!1

ftðaÞ ¼ a ð0 � a � 1Þ

lim
t!1

ftðaÞ ¼ a� ða� 1Þ2=4 ð1 � a < 3Þ

lim
t!1

ftðaÞ ¼ 2 ð3 � aÞ
ð84Þ

and ftð�aÞ ¼ �ftðaÞ. Very accurate experiments to test Eqs. (83) and (84)

have been carried out by Garnier and Ciliberto, who measured the Nyquist

noise in an electric resistance [68]. Their results are in very good

agreement with the theoretical predictions, which include corrections in

the convergence of Eq. (84) on the order of 1=t as expected. A few results

are shown in Fig. 4.

3. Transitions Between Steady States

Hatano and Sasa [56] have derived an interesting result for nonequilibrium

transitions between steady states. Despite the generality of the Hatano–Sasa

approach, explicit computations can be worked out only for harmonic traps. In the

present example the system starts in a steady state described by the stationary

distribution of Eq. (60) and is driven away from that steady state by varying the

speed of the trap, v. The stationary distribution can be written in the frame system

thatmoves solidlywith the trap. Ifwedefine yðtÞ ¼ x� x�ðtÞ thenEq. (60)becomes

Pss
v ðyÞ ¼

2pT
k

� ��1=2

exp � kðyþ gv=kÞ2

2T

 !
ð85Þ

62 felix ritort



Note that, when expressed in terms of the reference moving frame, the distribution

in the steady state becomes stationary or time independent. The transition rates in

Eq. (64) can also be expressed in the reference system of the trap:

Wvðy ! y0Þ ¼ 4pT�t

g

� ��1=2

exp � gðy0 � yþ ðvþ k=gyÞ�tÞ2

4T �t

 !
ð86Þ

where we have used f ðx� x�Þ ¼ f ðyÞ ¼ �ky. The transition rates Wvðy ! y0Þ
now depend on the velocity of the trap. This shows that, for transitions between

steady states, l � v plays the role of the control parameter, rather than the value

of x�. A path is then defined by the evolution � � fyðsÞ; 0 � s � tg, whereas the
perturbation protocol is specified by the time evolution of the speed of the trap

fvðsÞ; 0 � s � tg.
The rates Wvðy ! y0Þ satisfy the local detailed balance property (Eq. (47)).

From Eqs. (86) and (85), we get (in the limit �t ! 0)

Wvðy!y0Þ
Wvðy0!yÞ¼

Pss
v ðy0Þ
Pss
v ðyÞ

ð87Þ

¼exp � k
2T

ðy02� y2Þ� gv
T
ðy0 � yÞ

� �
¼exp � �U

T
� vg�f

kT

� �� �
ð88Þ

Note that the exponent on the rhs of Eq. (88) is equal to the boundary term,

Eq. (81). In the reference system of the trap, we can then compute the entropy

production Sp and the total dissipation S. From either Eq. (22) or (88) and using

Eq. (85), we get

Spð�Þ ¼
Z t

0

ds _yðsÞ logðPss
v ðyÞ

qy

� �
y¼yðsÞ

¼ ��U

T
þ g
kT

Z t

0

ds vðsÞ _FðsÞ ð89Þ

¼ � 1

T
�U � g

k
ð�ðvFÞÞ þ g

k

Z t

0

ds _vðsÞFðsÞ
� �

ð90Þ

where we integrated by parts in the last step of the derivation. For the boundary

term, Eq. (56), we get

Bð�Þ ¼ log Pss
vð0Þðyð0ÞÞ

� �
� log Pss

vðtÞðyðtÞÞ
� �

ð91Þ

¼ 1

T
�U � g

k
ð�ðvFÞÞ þ g2�ðv2Þ

2k

� �
ð92Þ
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where we used Eq. (85). By adding Eqs. (90) and (92) we obtain the total

dissipation,

S ¼ Sp þ B ¼ 1

T
�

g2v2

2k

�� �
� g
k

Z t

0

ds _vðsÞFðsÞ
�

ð93Þ

¼ � g
k

Z t

0

ds _vðsÞðFðsÞ � gvðsÞÞ ð94Þ

The quantity S (called Y by Hatano and Sasa) satisfies the nonequilibrium

equality, Eq. (16), and the FT, Eq. (27). Only for time-reversal invariant

protocols, vRðsÞ ¼ vðt � sÞ, do we have PFðSÞ ¼ PRðSÞ, and the FT, Eq. (49), is

also valid. We emphasize two aspects of Eq. (94).

� Generalized Second Law for Steady-State Transitions. From the

inequality in Eqs. (18) and (94), we obtain

g
k

Z t

0

ds _vðsÞFðsÞ � �
g2v2

2k

� �
ð95Þ

which is reminiscent of the Clausius inequality Q � �T�S, where the

average dissipation rate Pdiss ¼ gv2 plays the role of a state function

similar to the equilibrium entropy. In contrast to the Clausius inequality,

the transition now occurs between steady states rather than equilibrium

states [69].

� Noninvariance of Entropy Production Under Galilean Transforma-
tions. In steady states where _v ¼ 0, Sp (Eq. (90)) becomes a boundary

term and S ¼ 0 (Eq. (94)). We saw in Eq. (74) that Sp is equal to the heat

delivered to the environment (and therefore proportional to the time

elapsed t), whereas now Sp is a boundary term that does not grow with t.

This important difference arises from the fact that the entropy production

is not invariant under Galilean transformations. In the reference of the

moving trap, the bath is moving at a given speed, which impedes one from

defining heat in a proper way. To evaluate the entropy production for

transitions between steady states, one has to resort to the description

where x� is the control parameter and x�ðtÞ ¼
R t
0
ds vðsÞ is the perturbation

protocol. In such a description, Eqs. (73) and (74) are still valid.

These results have been experimentally tested for trapped beads accelerated

with different velocity protocols [69]. The results are shown in Fig. 5.

B. A Biological System: Pulling Biomolecules

The development of accurate instruments capable of measuring forces in the

piconewton range and extensions on the order of the nanometer give access to a
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wide range of phenomena in molecular biology and biochemistry, where

nonequilibrium processes that involve small energies on the order of a few kBT

are measurable (see Section II). From this perspective the study of biomolecules

is an excellent playground to explore nonequilibrium fluctuations. The most

successful investigations in this area have been achieved in single molecule

experiments using optical tweezers [70]. In these experiments biomolecules can

be manipulated one at a time by applying mechanical force at their ends. This

allows us to measure small energies under varied conditions, opening new

perspectives in the understanding of fundamental problems in biophysics (e.g.,

the folding of biomolecules) [71–73]. The field of single molecule research is

steadily growing with new molecular systems being explored that show

nonequilibrium behavior characteristic of small systems. The reader interested

in a broader view of the area of single molecule research should have a look at

Ref. 74.

1. Single Molecule Force Experiments

In single molecule force experiments, it is possible to apply force on individual

molecules by grabbing the ends and pulling them apart [75–78]. Examples of

different ways in which mechanical force is applied to single molecules are

shown in Fig. 6. In what follows we will consider single molecule force

experiments using optical tweezers, although everything we say extends to other

Figure 6. Pulling single molecules. (a) Stretching DNA; (b) unzipping DNA; (c) mechanical

unfolding of RNA, and (d) mechanical unfolding of proteins. (See color insert.)
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force techniques (AFM, magnetic tweezers, or biomembrane force probe; see

Ref. 74) In these experiments, the ends of the molecule (e.g., DNA [79]) are

labeled with chemical groups (e.g., biotin or digoxigenin) that can bind

specifically to their complementary molecular partners (e.g., streptavidin or

antidigoxigenin, respectively). Beads are then coated with the complementary

molecules and mixed with the DNA in such a way that a tether connection can be

made between the two beads through specific attachments. One bead is in the

optical trap and used as a force sensor. The other bead is immobilized on the tip

of a micropipette that can be moved by using a piezo-controlled stage to which

the pipette is attached. The experiment consists of measuring force-extension

curves (FECs) by moving the micropipette with respect to the trap position [80].

In this way it is possible to investigate the mechanical and elastic properties of

the DNA molecule [81, 82].

Many experiments have been carried out by using this setup: the stretching of

single DNA molecules, the unfolding of RNA molecules or proteins, and the

translocation of molecular motors (Fig. 2). Here we focus our attention on force

experiments where mechanical work can be exerted on the molecule and

nonequilibrium fluctuations are measured. The most successful studies along

this line of research are the stretching of small domain molecules such as RNA

[83] or protein motifs [84]. Small RNA domains consist of a few tens of

nucleotides folded into a secondary structure that is further stabilized by tertiary

interactions. Because an RNA molecule is too small to be manipulated with

micron-sized beads, it has to be inserted between molecular handles. These act

as polymer spacers that avoid nonspecific interactions between the bead and the

molecule as well as the contact between the two beads.

The basic experimental setting is shown in Fig. 7. We also show a typical

FEC for an RNA hairpin and a protein. Initially, the FEC shows an elastic

response due to the stretching of the molecular handles. Then, at a given value

of the force, the molecule under study unfolds and a rip is observed in both force

and extension. The rip corresponds to the unfolding of the small RNA/protein

molecule. The molecule is then repeatedly stretched and relaxed, starting from

the equilibrated native/extended state in the pulling/relaxing process. In the

pulling experiment the molecule is driven out of equilibrium to a NETS by the

action of a time-dependent force. The unfolding/refolding reaction is stochastic,

the dissociation/formation of the molecular bonds that maintain the native

structure of the molecule being determined by the Brownian motion of the

surrounding water molecules [85]. Each time the molecule is pulled, different

unfolding and refolding values of the force are observed (inset of Fig. 7b). The

average value of the force at which the molecule unfolds during the pulling

process increases with the loading rate (roughly proportional to the pulling

speed) in a logarithmic way as expected for a two-state process (see discussion

at the end of Section V.B.1 and Eq. (143)).
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Single molecule pulling experiments can be described with the formalism

developed in Section III.C.1. In the simplest setting the configurational variable

C corresponds to the molecular extension of the complex (handles plus inserted

molecule) and the control parameter l is either the force f measured in the bead

or the molecular extension of the system, x. For small enough systems the

thermodynamic equation of state is dependent on what is the variable that is

externally controlled [87]. In the actual experiments, the assumption that either

the force or the extension is controlled is just an approximation. Neither the

molecular extension nor the force can be really controlled in optical tweezers

[88]. For example, in order to control the force a feedback mechanism must

operate at all times. This feedback mechanism has a time delay response so the

force is never really constant [89, 90]. By assuming that the force is constant,

Figure 7. Mechanical unfolding of RNA molecules (a, b) and proteins (c, d) using optical

tweezers. (a) Experimental setup in RNA pulling experiments. (b) Pulling cycles in the homologous

hairpin and force rip distributions during the unfolding and refolding at three pulling speeds.

(c) Equivalent setup in proteins. (d) Force extension curve when pulling the protein RNAseH. Panel

(b) is from Ref. 86. Panels (a) and (d) are a courtesy from C. Cecconi [84]. (See color insert.)
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we are neglecting some corrections in the analysis.3 Under some conditions

these corrections are shown to be unimportant (see below). Let us now consider

that the force acting on the inserted molecule is controlled (the so-called

isotensional ensemble). For a molecule that is repeatedly pulled from a

minimum force value, fmin, up to a maximum force, fmax, the work (Eq. (37))

along a given path is given by

Wf ð�Þ ¼
Z fmax

fmin

df
qEðx; f Þ

qf
¼ �

Z fmax

fmin

xðf Þ df ð96Þ

where the energy function is given by Eðx; f Þ ¼ Eðx; 0Þ � fx, Eðx; 0Þ being the

energy function of the molecule at zero force. The subindex f inWf is written to

underline the fact that we are considering the isotensional case where f is the

control parameter. The Jarzynski equality, Eq. (40), and the FT, Eq. (41), hold

with �F equal to the free energy difference between the initial and final

equilibrium states. We assume that the molecule is immersed in water at

constant temperature T and pressure p and acted on by a force f. The

thermodynamic free energy FðT; p; f Þ in this description is the Legendre

transform of the Gibbs free energy at zero force, ambient temperature T, and

pressure p, GðT; pÞ [92, 93]:

FðT ; p; f Þ ¼ GðT ; pÞ � fxðT ; p; f Þ ! xðT;P; f Þ ¼ � qFðT ; p; f Þ
qf

ð97Þ

We are interested in knowing the Gibbs free energy difference at zero force,�G,

rather than the free energy difference�F between the folded state at fmin and the

unfolded extended state at fmax. We can express Eqs. (40) and (41) in terms of G

(rather than F) and define the corrected work Wc
f ð�Þ along a path,

Wc
f ð�Þ ¼ Wf ð�Þ þ�ðxf Þ ¼ Wf ð�Þ þ ðxmaxfmax � xminfminÞ ð98Þ

where the extensions xmin; xmax are now fluctuating quantities evaluated at the

initial and final times along each pulling. The corrected workWc
f ð�Þ includes an

additional boundary term and therefore does not satisfy either the JE or the CFT.

If we now consider that x is the control parameter then we can define the

equivalent of Eq. (96) (the so-called isometric ensemble):

Wxð�Þ ¼ Wf ð�Þ þ�ðxf Þ ¼
Z xmax

xmin

f ðxÞ dx ð99Þ

3By using two traps, it is possible to maintain a constant force [91]. This is also possible with

magnetic tweezers. However, because of the low stiffness of the magnetic trap, the spatial resolution

due to thermal fluctuations is limited to a few tens of nanometers.
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where now x is controlled and xmin; xmax are fixed by the pulling protocol.

Equations (98) and (99) look identical; however, they refer to different

experimental protocols. Note that the term Wf ð�Þ appearing in Eq. (99) is now

evaluated between the initial and final forces at fixed initial and final times. Both

works Wx and Wf satisfy the relations (40) and (41). For a reversible process

where f is controlled we have W rev
f ¼ �F, whereas if x is controlled we have

W rev
x ¼ �G. In experiments it is customary to use Eq. (99) for the work: first,

because that quantity is more easily recognized as the mechanical work; and

second, because it gives the free energy difference between the folded and the

unfolded states at zero force, a quantity that can be compared with thermal

denaturation experiments.

In general, neither the force nor the molecular extension can be controlled in

the experiments so definitions in Eqs. (96), (98), and (99) result in

approximations to the true mechanical work that satisfy Eqs. (40) and (41).

The control parameter in single molecule experiments using optical tweezers

is the distance between the center of the trap and the immobilized bead [88].

Both the position of the bead in the trap and the extension of the handles are

fluctuating quantities. It has been observed [94–96] that in pulling experiments

the proper work that satisfies the FT includes some corrections to Eqs. (97) and

(99) mainly due to the effect of the trapped bead. There are two considerations

to take into account when analyzing experimental data.

� Wx or Wf? Let us suppose that f is the control parameter. In this case the

JE and CFT, Eqs. (40) and (41), are valid for the work, Eq. (96). How

large is the error that we make when we apply the JE using Wx instead?

This question has been experimentally addressed by Ciliberto and

co-workers [97, 98], who measured the work in an oscillator system with

high precision (within tenths of kBT). As shown in Eq. (99), the difference

between both works is mainly a boundary term, �ðxf Þ. Fluctuations of

this term can be a problem if they are on the same order as fluctuations of

Wx itself. For a harmonic oscillator of stiffness constant equal to k, the
variance of fluctuations in fx are equal to kdðx2Þ, that is, approximately on

the order of kBT due to the fluctuation-dissipation relation. Therefore, for

experimental measurements that do not reach such precision, Wx or Wf is

equally good.

� The Effect of the Bead or Cantilever. Hummer and Szabo [94] have

analyzed the effect of a force sensor attached to the system (i.e., the bead

in the optical trap or the cantilever in the AFM) in the work

measurements. To this end, we consider a simplified model of the

experimental setup (Fig. 8). In such a model, the molecular system (that

includes the molecule of interest—RNA or protein— and the handles) is

connected to a spring (that models the trapped bead or the AFM
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cantilever) and the whole system is embedded in a thermal bath. The total

extension of the molecular system is x but the control parameter is

z ¼ xþ xb where xb is the position of the bead with respect to the center

of the trap. The total free energy of the system is given by FðxÞ þ 1
2
kx2b,

where FðxÞ is the free energy of the molecular system alone and k is the

stiffness of the trap. The molecular extension x and the distance xb are

related by the force balance equation,

f ¼ kxb ¼
qFðxÞ
qx

ð100Þ

where we assume that the bead is locally equilibrated at all values of the

nonequilibrium molecular extension x (this is a good approximation as the

bead relaxes fast enough compared to the typical time for the unfolding/

refolding of the molecule). The mechanical work, Eq. (37), is then given by

Wð�Þ ¼
Z zmax

zmin

f dz ¼ Wxð�Þ þ�
f 2

2k

� �
ð101Þ

where we used dz ¼ dxb þ dx and Eq. (100). The difference between the

proper work W and Wx is again a boundary term. Because z is the control

parameter, the JE and the CFT are valid for the work W but not for Wx.

Again, the FT will not hold if fluctuations in the boundary term are

important. The variance of these fluctuations is given by

d
f 2

2k

� �� �

 kBTk

kx þ k
� kBT ð102Þ

xxb

z

Figure 8. A molecular system of extension x is connected at its leftmost end to a bead trapped

in an optical well (or to the tip of an AFM cantilever) and at its rightmost end to an immobilized

surface (or a bead fixed to the tip of a micropipette). The position of the bead relative to the center of

the trap, xb, gives a readout of the acting force f ¼ kxb. The control parameter in this setup is

z ¼ xb þ x, whereas both xb and x are fluctuating quantities.
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where kx is the stiffness of the molecular system [88, 99]. Usually, kx 	 k
so fluctuations in the boundary term are again smaller than kBT . In

general, as a rule of thumb, we can say that it does not matter much which

mechanical work we measure if we do not seek free energy estimates with

an accuracy less than kBT . This is true unless the bead (cantilever) does

not equilibrate within the time scales of the experiments. This may be the

case when k is too low and Eq. (100) is not applicable.

2. Free Energy Recovery

As we already emphasized, the JE (Eq. (40)) and the FT (Eq. (41)) can be used to

predict free energy differences. In single molecule experiments it is usually

difficult to pull molecules in a reversible way due to drift effects in the

instrument. It is therefore convenient to devise nonequilibrium methods (such as

the JE or the CFT) to extract equilibrium free energy differences from data

obtained in irreversible processes. The first experimental test of the JE was

carried out by pulling RNA hairpins that are derivatives of the L21 Tetrahymena

ribozyme [100]. In these experiments RNA molecules were pulled at moderate

speed: the average dissipated work in such experiments was less than 6kBT and

the work distributions turned out to be approximately Gaussian. Recent

experiments have studied RNA molecules that are driven farther away from

equilibrium in the nonlinear regime. In the nonlinear regime the average

dissipated work is nonlinear with the pulling speed [101] and the work

distribution strongly deviates from Gaussian [102]. In addition, these experi-

ments have provided the first experimental test of the CFT (Eq. (41)). These

measurements have also shown the possibility of recovering free energy

differences by using the CFT with larger accuracy than that obtained by using

the JE alone. There are two main predictions of the CFT (Eq. (41)) that have been

scrutinized in these experiments.

� Forward and Reverse Work Distributions Cross at W ¼ DG. In order

to obtain �G we can measure the forward and reverse work distributions,

PFðWÞ and PRð�WÞ, and look at the work value W� where they cross,

PFðW�Þ ¼ PRð�W�Þ. According to Eq. (41), both distributions should

cross at W� ¼ �G independently of how far the system is driven out of

equilibrium (i.e., independently of the pulling speed). Figure 9 shows

experiments on a short canonical RNA hairpin CD4 (i.e., just containing

Watson–Crick complementary base pairs) at three different pulling

speeds, which agree very well with the FT prediction.

� Verification of the CFT. The CFT (Eq. (41)) can be tested by plotting

logðPFðWÞ=PRð�WÞÞ as a function of W. The resulting points should fall

in a straight line of slope 1 (in kBT units) that intersects the work axis at
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W ¼ �G. Of course, this relation can be tested only in the region of work

values along the work axis where both distributions (forward and reverse)

overlap. An overlap between the forward and reverse distributions is

hardly observed if the molecules are pulled too fast or if the number of

pulls is too small. In such cases, other statistical methods (Bennet’s

acceptance ratio or maximum likelihood methods, Section IV.B.3) can be

applied to get reliable estimates of �G. The validity of the CFT has been

tested in the case of the RNA hairpin CD4 previously mentioned and the

three-way junction RNA molecule as well. Figure 9c,d and Fig. 10c show

results for these two molecules.

In general, both the JE and the CFT are only valid in the limit of an infinite

number of pulls. For a finite number of pulls, N, the estimated value for �G that

Figure 9. (a) Structure of the homologous CD4 hairpin. (b) FECs at a loading rate of 1.7 pN/s.

(c) Unfolding and refolding work distributions at three loading rates (see inset). The unfolding and

refolding work distributions cross at a value�G independent of the pulling speed as predicted by the

CFT. Data correspond to 100,400 and 700 pulls for the lowest, medium, and highest pulling speeds,

respectively. (d) Test of the CFT at the intermediate loading rate 7.5 pN/s for four different tethers.

The trend of the data is reproducible from tether to tether and consistent with the CFT prediction.

(From Ref. 102.) (See color insert.)
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is obtained by applying the JE is biased [103]. The free energy estimate FJE
k for

a given set, k, of N work values Wk
1 ;W

k
2 ; . . . ;W

k
N is defined as

FJE
k ¼ �Tlog

1

N

XN
i¼1

exp �Wk
i

T

� � !
ð103Þ

The free energy bias is defined by averaging the estimator FJE
k over an infinite

number of sets,

BðNÞ ¼ lim
M!1

1

M

XM
k¼1

FJE
k

 !
��F ð104Þ

Figure 10. (a) Secondary structure of the three-way junction S15. (b) A few FECs for the wild

type. (c) Unfolding/refolding work distributions for the wild type and the mutant. (Inset)

Experimental verification of the validity of the CFT for the mutant, where unfolding and refolding

distributions overlap each other over a limited range of work values. Data correspond to 900 pulls for

the wild type and 1200 pulls for the mutant. (From Ref. 102.) (See color insert.)
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where �F is the true free energy difference. The bias BðNÞ converges to 0 for

N ! 1. However, it is of practical importance to devise methods to estimate

how many pulls are required to obtain the Jarzynski free energy estimate FJE

within a reasonable error far from the true value [101, 104]. The bias is a

complicated mathematical object because the Jarzynski average catches

important contributions from large deviations of the work. As we will see in

Section V.C.2, the bias is a large deviation function that requires specific

mathematical methods to analyze its finite N behavior and large N convergence.

There we prove that, for large N, the bias decreases as 1=N, a result known as the
Woods formula [104]. In the intermediate N regime, the behavior of the bias is

more complicated [105]. Free energy recovery techniques are also used in

numerical simulations to evaluate free energy differences [106–109] and

reconstruct free energy profiles or potentials of mean-field force [110, 111].

3. Efficient Strategies and Numerical Methods

An important question is to understand the optimum nonequilibrium protocol to

recover free energies using the JE given specific constraints in experiments and

simulations. There are several considerations to take into account.

� Faster or Slower Pulls? In single molecule experiments, tethers break

often so it is not possible to repeatedly pull the same tether an arbitrary

number of times. Analogously, in numerical simulations only a finite

amount of computer time is available and only a limited number of paths

can be simulated. Given these limitations, is it better to perform many fast

pulls or a few slower pulls to recover the free energy difference using the

JE? In experiments, drift effects in the instrument always put severe

limitations on the minimum speed at which molecules can be pulled. To

obtain good quality data, it is advisable to carry out pulls as fast as

possible. In numerical simulations, the question about the best strategy for

free energy recovery has been considered in several papers [103,

112–114]. The general conclusion that emerges from these studies is

that, in systems that are driven far away from equilibrium, it is preferable

to carry out many pulls at high speed than a few pulls at slower speeds.

The reason can be intuitively understood. Convergence in the JE is

dominated by the so-called outliers, that is, work values that deviate a lot

from the average work and are smaller than �F. The outliers contribute a

lot to the exponential average, Eq. (40). For higher pulling speeds, we can

perform more pulls so there are more chances to catch a large deviation

event, that is to catch an outlier. At the same time, because at higher

speeds the pulling is more irreversible, the average dissipated work

becomes larger, making the free energy estimate less reliable. However,

the contribution of the outliers required to recover the correct free energy
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is more important than the opposite effect due to the increase of the

average dissipated work. We should mention that periodically oscillating

pulls have also been considered; however, it is unclear whether they lead

to improved free energy estimates [115, 116].

� Forward or Reverse Process? Suppose we want to evaluate the free

energy difference between two states, A and B, by using the JE. Is it better

to estimate �F by carrying out irreversible experiments from A to B, or is

it better to do them from B to A? Intuitively, it seems natural that the less

irreversible process among the two (forward and reverse), which is the

one with smaller dissipated work Wdiss, is also the most convenient to

consider in order to extract the free energy difference. However, this is not

true. In general, a larger average dissipated work implies a larger work

variance (Eq. (42))—that is, larger fluctuations. The larger the fluctua-

tions, the larger is the probability to catch a large deviation that

contributes to the exponential average. It seems reasonable that if outliers

contribute much more to finding the right free energy than proper tuning

of the average value of the work, then the process that fluctuates more

(i.e., the more dissipative one) is the process that must be sampled to

efficiently recover �F. This result was anticipated in Ref. 117 and

analyzed in more detail in Ref. 118. For Gaussian work distributions, the

minimum number of pulls, N�, required to efficiently recover free energy

differences within 1kBT by using the JE grows exponentially with the

dissipated work along the nonequilibrium process [101]. However, for

general work distributions, the value of N�
FðRÞ along the forward (reversed)

process depends on the average dissipated work along the reverse

(forward) process [118]. This implies that

N�
FðRÞ � exp

W
RðFÞ
diss

T

 !
ð105Þ

and the process that dissipates most between the forward and the reverse

is the best to efficiently recover �F.

Until now we discussed strategies for recovering free energy differences

using the JE. We might be interested in free energy recovery by combining the

forward and reverse distributions at the same time that we use the CFT. This is

important in both experiments [102] and simulations [119, 120] where it is

convenient and natural to use data from the forward and reverse processes. The

best strategy to efficiently recover free energies using the forward and reverse

processes was proposed by C. Bennett in the context of equilibrium sampling

[121]. The method was later extended by Crooks to the nonequilibrium case

[46] and is known as Bennett’s acceptance ratio method. The basis of the
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method is as follows. Let us multiply both sides of Eq. (41) by the function

gmðWÞ,

gmðWÞ exp �W

T

� �
PFðWÞ ¼ gmðWÞPRð�WÞ exp ��F

T

� �
ð106Þ

where gmðWÞ is an arbitrary real function that depends on the parameter m.
Integrating both sides between W ¼ �1 and W ¼ 1 gives

gmðWÞ exp �W

T

� �� �
F

¼ hgmðWÞiR exp ��F

T

� �
ð107Þ

where h� � �iðF;RÞ denote averages over the forward and reverse process,

respectively. Taking the logarithm of both sides, we have

zRðmÞ � zFðmÞ ¼
�F

T
ð108Þ

where we have defined

zRðmÞ ¼ log hgmðWÞiR
� 	

ð109Þ

zFðmÞ ¼ gmðWÞ exp �W

T

� �� �
F

ð110Þ

Equation (108) implies that the difference between functions zF and zR must be a

constant over all m values. The question we would like to answer is the following.

Given a finite number of forward and reverse pulls, what is the optimum choice

for gmðWÞ that gives the best estimate of Eq. (108) for�F? For a finite number of

experiments NF;NR along the forward and reverse process we can write

hAðWÞiFðRÞ ¼
1

NFðRÞ

XNFðRÞ

i¼1

AðWiÞ ð111Þ

for any observable A. Equation (107) yields an estimate for �F,

ð�FÞest ¼ T log hgmðWÞiR
� 	

� log gmðWÞ exp �W

T

� �� �
F

� �� �
ð112Þ

Minimization of the variance,

s2
�F ¼ ð�FÞest ��F

� 	2D E
ð113Þ
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ðh� � �i denotes the average over the distributions PF;PRÞ with respect to all

possible functions gmðWÞ shows [46, 121] that the optimal solution is given by

gmðWÞ ¼ 1

1þ ðNF=NRÞ exp ðW � mÞ=Tð Þ ð114Þ

and m ¼ �F. The same result has been obtained by Pande and co-workers by

using maximum likelihood methods [122]. In this case, one starts from a whole

set of work data encompassing NF forward and NR reversed values. One then

defines the likelihood function of distributing all work values between the

forward and reverse sets. Maximization of the likelihood leads to Bennett’s

acceptance ratio formula. To extract �F it is then customary to plot the

difference on the lhs of Eq. (108), zRðmÞ � zFðmÞ, as a function of m by using Eqs.

(109) and (110). The intersection with the line zRðmÞ � zFðmÞ ¼ m gives the best

estimate for �F. An example of this method is shown in Fig. 11. Recently, the

maximum likelihood method has been generalized to predict free energy

estimates between more than two states [123].

V. PATH THERMODYNAMICS

A. The General Approach

The JE (Eq. (40)) indicates a way to recover free energy differences by

measuring the work along all possible paths that start from an equilibrium state.

Its mathematical form reminds one of the partition function in the canonical

ensemble used to compute free energies in statistical mechanics. The formulas

for the two cases areX
C

exp �EðCÞ
T

� �
¼ exp �F

T

� �
ðpartition functionÞ ð115Þ

X
�

exp �Wð�Þ
T

� �
¼ exp ��F

T

� �
ðJarzynski equalityÞ ð116Þ

where F is the equilibrium free energy of the system at temperature T. Throughout

this section we take kB ¼ 1. In the canonical ensemble the entropy SðEÞ is equal
to the logarithm of the density of states with a given energy E. That density is

proportional to the number of configurations with energy equal to E. Therefore,

Eq. (115) becomes

exp �F

T

� �
¼
X
C

exp �EðCÞ
T

� �

¼
X
E

exp SðEÞ � E

T

� �
¼
X
E

exp ��ðEÞ
T

� � ð117Þ
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where�ðEÞ ¼ E � TS is the free energy functional. In the large volume limit, the

sum in Eq. (117) is dominated by the value E ¼ Eeq, where FðEÞ is minimum.

The value Eeq corresponds to the equilibrium energy of the system and �ðEeqÞ is
the equilibrium free energy. The following relations hold:

F ¼ �ðEeqÞ; q�ðEÞ
qE

� �
E¼Eeq

¼ 0 ! qSðEÞ
qE

� �
E¼Eeq

¼ 1

T
ð118Þ

The equilibrium energy Eeq is different from the most probable energy, Emp,

defined by S0ðE ¼ EmpÞ ¼ 0. Emp is the average energy we would find if we were
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Figure 11. (a) Bias as a function of the number of pulls N for a two-states model. The inset

shows the number of pulls as a function of the dissipated work required to recover the free energy

with an error within 1kBT . (b) Function zR � zF for the data shown in Fig. 9c at the two largest

pulling speeds. Panel (a) from (Refs. 3 and 101; panel (b) from the supplementary material in

Ref. 102.) (See color insert.)
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to randomly select configurations all with identical a priori probability. The

equilibrium energy, rather than the most probable energy, is the thermodynamic

energy for a system in thermal equilibrium.

Proceeding in a similar way for the JE, we can define the path entropy S(W)

as the logarithm of the density of paths with work equal to W , PðWÞ:

PðWÞ ¼ expðSðWÞÞ ð119Þ

We can rewrite Eq. (116) in the following way:

exp ��F

T

� �
¼
X
�

exp �Wð�Þ
T

� �
¼
Z

dW PðWÞ exp �W

T

� �

¼
Z

dW exp SðWÞ �W

T

� �
¼
Z

dW exp ��ðWÞ
T

� � ð120Þ

where �ðWÞ ¼ W � TSðWÞ is the path free energy. In the large volume limit, the

sum in Eq. (120) is dominated by the work value,Wy, where �ðWÞ is minimum.

Note that the value Wy plays the role of the equilibrium energy in the canonical

case, Eq. (118). From Eq. (120) the path free energy �ðWyÞ is equal to the free

energy difference �F. The following relations hold:

�F ¼ �ðWyÞ ¼ Wy � TSðWyÞ ð121Þ
q�ðWÞ
qW

� �
W¼Wy

¼ 0 ! qSðWÞ
qW

� �
W¼Wy

¼ 1

T
ð122Þ

At the same time, Wy is different from the most probable work, Wmp, defined as

the work value at which SðWÞ is maximum:

qSðWÞ
qW

� �
W¼Wmp

¼ 0 ! q�ðWÞ
qW

� �
W¼Wmp

¼ 1 ð123Þ

The role ofWmp andWy in the case of the JE (Eq. (115)) and Emp and Eeq in the

partition function case (Eq. (116)) appear exchanged. Wmp is the work value

typically observed upon repetition of the same experiment a large number of

times. In contrast, in the partition function case (Eq. (115)), Emp is not the typical

energy, the typical energy being Eeq. In addition, Wy is not the typical work but
the work that must be sampled along paths in order to be able to extract the free

energy difference using the JE. As we have already emphasized, as the system

size increases, less and less paths can sample the region of work values around

Wy. Therefore, although both formalisms (partition function and JE) are

mathematically similar, the physical meaning of the quantities Wy and Eeq is
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different. In the large volume limit, Eeq is almost always observed whereasWy is
almost never observed.

In general, from the path entropy we can also define a path temperature,

T̂ðWÞ,

qSðWÞ
qW

¼ lðWÞ ¼ 1

T̂ðWÞ
! T̂ðWyÞ ¼ T ð124Þ

where lðWÞ is a Lagrange multiplier that transforms the path entropy SðWÞ into
the path free energy �ðWÞ, Eq. (121). The mathematical relations between

the new quantities Wy and Wmp can be graphically represented for a given path

entropy SðWÞ. This is shown in Fig. 12.

The path thermodynamics formalism allows us to extract some general

conclusions on the relation between Wy and Wmp. Let us consider the CFT

s(w)

  (w)

  (w) =1/T(w)

w w w

w

mp+

Ts(w+)

+

Φ

rev

rev

s(w+)

slope=1/k  T
0

slope=1

0
1/T

B

λ

w

wdis

w wrev mpw

^

Figure 12. (Upper panel) Path entropy sðwÞ; (Middle panel) path free-energy

�ðwÞ ¼ w� TsðwÞ; and (lower panel) Lagrange multiplier lðwÞ equal to the inverse of the path

temperature 1=T̂ðwÞ. wmp is the most probable work value given by s0ðwmpÞ ¼ lðwmpÞ ¼ 0 or

�0ðwmpÞ ¼ 1; wy is the value of the work that has to be sampled to recover free energies from

nonequilibrium work values using the JE. This is given by s0ðwyÞ ¼ 1=T or �0ðwyÞ ¼ 0; wrev and

wdis are the reversible and average dissipated work, respectively. (From Ref. 117.)
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(Eq. (41)). In terms of the path entropies for the forward and reverse processes,

SFðWÞ and SRðWÞ, (Eq. (41)) can be written as

SFðWÞ � SRð�WÞ ¼ W ��F

T
! ðSFÞ0ðWÞ þ ðSRÞ0ð�WÞ ¼ 1

T
ð125Þ

where we used Eq. (119) and later derived it with respect to W. By inserting

W ¼ W
y
F and �WR

y on the rhs of Eq. (125) and using Eqs. (122) and (123), we

obtain the following chain of relations:

ðSFÞ0ðWy
F Þ þ ðSRÞ0ð�W

y
F Þ ¼

1

T
! ðSRÞ0ð�W

y
F Þ ¼ 0 ! W

y
F ¼ �W

mp
R ð126Þ

ðSFÞ0ð�W
y
RÞ þ ðSRÞ0ðWy

RÞ ¼
1

T
! ðSFÞ0ð�W

y
RÞ ¼ 0 ! W

y
R ¼ �W

mp
F ð127Þ

The rightmost equalities in Eqs. (126) and (127) imply that the most probable

work along the forward (reverse) process is equal to the work value (Wy) that
must be sampled, in a finite number of experiments, along the reverse (forward)

process for the JE to be satisfied. This result has already been discussed in

Section IV.B.3: the process that dissipates most between the forward and the

reverse is the one that samples more efficiently the region of values close toWy.
This conclusion, which may appear counterintuitive, can be rationalized by

noting that larger dissipation implies larger fluctuations and therefore more

chances to get rare paths that sample the vicinity ofWy. The symmetries in Eqs.

(126) and (127) were originally discussed in Ref. 117 and analyzed in detail for

the case of the gas contained in a piston [118].

We close this section by analyzing the case where the work distribution is

Gaussian. The Gaussian case describes the linear response regime usually (but

not necessarily) characterized by small deviations from equilibrium. Let us

consider the following distribution:

PðWÞ ¼ ð2ps2
WÞ

�1=2
exp �ðW �WmpÞ2

2s2
W

 !
ð128Þ

where the average value of the work, hWi, is just equal to the most probable value

Wmp. The path entropy is given by SðWÞ ¼ �ðW �WmpÞ2=ð2s2
WÞ þ constant, so

Eq. (123) is satisfied. From Eq. (124) we get

T̂ðWÞ ¼ � s2
W

W �Wmp
! Wy ¼ Wmp � s2

W

T
ð129Þ
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From Eqs. (122) and (129) we get Wy ¼ �F � ðs2
W=2TÞ. Therefore,

W
y
diss ¼ Wy �Wrev ¼ Wy ��F ¼ �s2

W

2T
ð130Þ

W
mp
diss ¼ Wmp �Wrev ¼ Wmp ��F ¼ s2

W

2T
ð131Þ

leading to the final result W
y
diss ¼ �W

mp
diss ¼ �hWdissi. Therefore, in order to

recover the free energy using the JE, paths with negative dissipated work and of

magnitude equal to the average dissipated work must be sampled. Sometimes the

paths with negative dissipated work are referred to as transient violations of the

second law. This name has raised strong objections among some physicists. Of

course, the second law remains inviolate. The name just stresses the fact that

paths with negative dissipated work must be experimentally accessible to

efficiently recover free energy differences. Note that, for the specific Gaussian

case, we get hWdissi ¼ s2
W=2T therefore the fluctuation-dissipation parameter R

(Eq. (42)) is equal to 1 as expected for systems close to equilibrium. The result

R ¼ 1 has been shown to be equivalent to the validity of the fluctuation-

dissipation theorem [96].

B. Computation of the Work/Heat Distribution

The JE and the CFT describe relations between work distributions measured in

the NETS. However, they do not imply a specific form of the work distribution.

In small systems, fluctuations of the work relative to the average work are large

so work distributions can strongly deviate from Gaussian distributions and be

highly nontrivial. In contrast, as the system size increases, deviations of the work

respect to the average value start to become rare and exponentially suppressed

with the system size. To better characterize the pattern of nonequilibrium

fluctuations, it seems important to explore analytical methods that allow us to

compute, at least approximately, the shape of the energy distributions (e.g., heat

or work) along nonequilibrium processes. Of course, there is always the

possibility of carrying out exact calculations in specific solvable cases. In

general, however, the exact computation of the work distribution can be a

difficult mathematical problem (solvable examples are given in Refs. 124–128)

that is related to the evaluation of large deviation functions (Section V.C). This

problem has traditionally received a lot of attention by mathematicians and we

foresee it may become a central area of research in statistical physics in the next

few years.

1. An Instructive Example

To put the problem in proper perspective, let us consider an instructive example:

an individual magnetic dipole of moment m subject to a magnetic field H and

embedded in a thermal bath. The dipole can switch between the up and down
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configurations, �m. The transition rates between the up and down orientations

are of the Kramers type [129, 130],

k�m!mðHÞ ¼ kupðHÞ ¼ k0
expðmH=TÞ

2 coshðmH=TÞ ð132Þ

km!�mðHÞ ¼ kdownðHÞ ¼ k0
expð�mH=TÞ
2 coshðmH=TÞ ð133Þ

with k0 ¼ kupðHÞ þ kdownðHÞ independent of H. The rates in Eqs. (132) and

(133) satisfy detailed balance (Eq. (8)):

kupðHÞ
kdownðHÞ ¼

PeqðmÞ
Peqð�mÞ ¼ exp

2mH
T

� �
ð134Þ

with Peqð�ðþÞmÞ¼ expð�ðþÞmH=TÞ=Z, where Z¼ 2coshðmH=TÞ is the equili-
brium partition function. In this system there are just two possible configurations:

C¼�m;m. We consider a nonequilibrium protocol where the control parameter H

is varied as a function of time, HðtÞ. The dynamics of the dipole is a continuous

time Markov process, and a path is specified by the time sequence ��fmðtÞg.
Let us consider the following protocol: the dipole starts in the down state �m

at H ¼ �H0. The field is then ramped from �H0 to þH0 at a constant speed

r ¼ _H, so HðtÞ ¼ rt (Fig. 13a). The protocol lasts for a time tmax ¼ 2H0=r and
the field stops changing when it has reached the value H0. The free energy

difference between the initial and final states is 0 because the free energy is an

even function of H. To ensure that the dipole initially points down and that this

is an equilibrium state, we take the limit H0 ! 1 but we keep the ramping

speed r finite. In this way we generate paths that start at H ¼ �1 at t ¼ �1
and end up at H ¼ 1 at t ¼ 1. We can now envision all possible paths

followed by the dipole. The up configuration is statistically preferred for H > 0,

H0

−H0

H

timet

M

μ

−μ

H*

(a) (b)

Figure 13. (a) Ramping protocol. The ramping speed is defined by r ¼ 2H0=t where t is the

duration of the ramp. (b) Three examples of paths where the down dipole reverses orientation at

different values of the field, H�. (See color insert.)
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whereas the down configuration is preferred for H < 0. Therefore, in a typical

path the dipole will stay in the down state until the field is reversed. At some

point, after the field changes sign, the dipole will switch from the down to the up

state and remain in the up state for the rest of the protocol. On average, there

will always be a time lag between the time at which the field changes sign and

the time at which the dipole reverses orientation. In other paths the dipole will

reverse orientation before the field changes sign, that is, when H < 0. These

sorts of paths become more and more rare as the ramping speed increases.

Finally, in the most general case, the dipole can reverse orientation more than

once. The dipole will always start in the down orientation and end in the up

orientation with multiple transitions occurring along the path.

The work along a given path is given by Eq. (37),

Wð�Þ ¼ �
Z 1

�1
dt _HðtÞmðtÞ ¼ �r

Z 1

�1
dt mðtÞ ð135Þ

Note that because EHðmÞ ¼ E�Hð�mÞ, then �E ¼ 0 and Qð�Þ ¼ Wð�Þ so heat

and work distributions are identical in this example. Moreover, due to the time-

reversal symmetry of the ramping protocol, the work distribution PðWÞ is

identical along the forward and reverse processes. Therefore, we expect that the

JE (Eq. (40)) and the CFT (Eq. (41)) are both satisfied with �F ¼ 0:

PðWÞ
Pð�WÞ ¼ exp

W

T

� �
; exp �W

T

� �� �
¼ 1 ð136Þ

The exact computation of PðWÞ in this simple one-dipole model is already a very

arduous task that, to my knowledge, has not yet been exactly solved.* We can,

however, consider a limiting case and try to elucidate the properties of the work

(heat) distribution. Here we consider the limit of large ramping speed r, where

the dipole executes just one transition from the down to the up orientation. A few

of these paths are depicted in Fig. 13b. This is also called a first-order Markov

process because it only includes transitions that occur in just one direction (from

down to up). In this reduced and oversimplified description, a path is fully

specified by the value of the fieldH� at which the dipole reverses orientation. The
work along one of these paths is given by

Wð��H�Þ¼� lim
H0!1

Z H0

�H0

dH mðHÞ¼ððH�þH0Þ�ðH0�H�ÞÞm¼2mH� ð137Þ

*An exact solution to this problem has been recently accomplished by E. Subrt and P. Chvosta
[E. Subrt and P. Chvosta, Exact analysis of work fluctuations in two-level systems, J. Stat. Mech.
(2007) P09019].
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According to the second law, hWi ¼ hQi � 0, which implies that the average

switching field is positive, hH�i � 0 (as expected due to the time lag between the

reversal of the field and the reversal of the dipole). The work distribution is just

given by the switching field distribution pðH�Þ. This is a quantity easy to

compute. The probability that the dipole is in the down state at field H satisfies a

master equation that only includes the death process,

qpdownðHÞ
qH

¼ �kupðHÞ
r

pdownðHÞ ð138Þ

This equation can be solved exactly:

pdownðHÞ ¼ exp � 1

r

Z H

�1
dH kupðHÞ

� �
ð139Þ

where we have inserted the initial condition pdownð�1Þ ¼ 1. The integral in the

exponent can easily be evaluated using (Eqs. (132) and (133). We get

pdownðHÞ ¼ 1þ exp
2mH
T

� �� ��Tk0=2mr

ð140Þ

The switching field probability distribution pðH�Þ is given by pðH�Þ ¼
�ðpdownÞ0ðH�Þ. From Eq. (137), we get

PðWÞ ¼ k0

4mr
1þ exp

W

T

� �� ��Tk0=2mr expðW=2TÞ
coshðW=2TÞ ð141Þ

and from this result we obtain the path entropy,

SðWÞ ¼ logðPðWÞÞ ¼ � Tk0

2mr
log exp

W

T

� �
þ 1

� �
þ W

2T

� log cosh
W

2T

� �� �
þ constant

ð142Þ

It is important to stress that Eq. (141) does not satisfy Eq. (136) except in the

limit r ! 1, where this approximation becomes exact. We now compute Wmp

and Wy in the large r limit. We obtain, to the leading order,

S0ðWmpÞ ¼ 0 ! Wmp ¼ T log
2mr
k0T

� �
þO 1

r

� �
ð143Þ

S0ðWyÞ ¼ 1

T
! Wy ¼ �T log

2mr
k0T

� �
þO 1

r

� �
ð144Þ
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so the symmetry in Eq. (126) (or Eq. (127)) is satisfied to the leading order (yet it

can be shown how the 1=r corrections appearing inWmp andWy (Eqs. (143) and
(144)) are different). We can also compute the leading behavior of the

fluctuation-dissipation parameter R (Eq. (42)) by observing that the average

work hWi is asymptotically equal to the most probable work. The variance of the

work, s2
W , is found by expanding SðWÞ around Wmp:

SðWÞ ¼ SðWmpÞ þ S00ðWmpÞ
2

ðW �WmpÞ2 þ ðhigher order termsÞ ð145Þ

s2
W ¼ � 1

S00ðWmpÞ ð146Þ

A simple computation shows that s2
W ¼ 2T and, therefore,

R ¼ s2
W

2TWdiss

! 1

logð2mr=k0TÞ
ð147Þ

so R decays logarithmically to zero. The logarithmic increase of the average

work with the ramping speed (Eq. (143)) is just a consequence of the logarithmic

increase of the average value of the switching field hH�i with the ramping speed.

This result has also been predicted for the dependence of the average breakage

force of molecular bonds in single molecule pulling experiments. This

phenomenology, related to the technique commonly known as dynamic force

spectroscopy, allows one to explore free energy landscapes by varying the

pulling speed over several orders of magnitude [131, 132].

2. A Mean-Field Approach

We now focus our attention on an analytical method useful for computing work

distributions, PðWÞ, in mean-field systems. The method has been introduced in

Ref. 117 and developed in full generality by A. Imparato and L. Peliti [133, 134].

This section is a bit technical. The reader not interested in the details can just skip

this section and go to Section V.C.

The idea behind the method is the following. We express the probability

distribution PðWÞ as a sum over all paths that start from a given initial state.

This sum results in a path integral that can be approximated by its dominant

solution or classical path in the large N limit, N being the number of particles.

The present approach exploits the fact that, as soon as N becomes moderately

large, the contribution to the path integral is very well approximated by the

classical path. In addition, the classical path exactly satisfies the FT. Here we

limit ourselves to show in a very sketchy way how the method applies to solve
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the specific example shown in Section V.B.1. A detailed and more complete

derivation of the method can be found in Refs. 117 and 134.

We come back to the original model, Eqs. (132) and (133), and include all

possible paths where the dipole reverses orientation more than once. The

problem now gets too complicated, so we modify the original model by

considering an ensemble of noninteracting N identical dipoles. A configuration

in the system is specified by the N-component vector C � f~m ¼ ðmiÞ1�i�Ng with

mi ¼ �m the two possible orientations of each dipole. A path is specified by the

time sequence � � f~mðsÞ; 0 � s � tg. The energy of the system is given by

EðCÞ ¼ �hMðCÞ ¼ �h
XN
i¼1

mi ð148Þ

where M ¼
P

i mi is the total magnetization. The equilibrium free energy is

F ¼ �Nlogð2 coshðmH=TÞÞ and the kinetic rules are the same as given in

Eqs. (132) and (133) and are identical for each dipole. The work along a given

path is given by Eq. (135),

Wð�Þ ¼ �
Z t

0

ds _HðsÞMðsÞ ð149Þ

so the work probability distribution is given by the path integral,

PðWÞ ¼
X
�

Pð�ÞdðWð�Þ �WÞ ¼
Z

D½~m�d W þ
Z t

0

ds _HðsÞMðsÞ
� �

ð150Þ

where we have to integrate over all paths where ~m starts at time 0 in a given

equilibrium state up to a final time t. To solve Eq. (150) we use the integral

representation of the delta function,

dðxÞ ¼ ð1=2pÞ
Z 1

�1
dl expð�ilxÞ ð151Þ

We also insert the following factor,

1 ¼
Z D½g�D½m�

2p
exp

i

�t

Z
gðsÞ mðsÞ � 1

N

XN
i¼1

miðsÞ
 ! !

ð152Þ

where�t is the discretization time step and we have introduced new scalar fields

gðsÞ and mðsÞ. After some manipulations one gets a closed expression for the
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work distribution PðwÞ (w ¼ W=N is the work per dipole). We quote the final

result [117]:

PðwÞ ¼ N
Z

dlD½g�D½m� exp Naðw; l; g;mÞð Þ ð153Þ

where N is a normalization constant and a represents an action given by

aðw; l; g;mÞ ¼ l wþ
Z t

0

ds _HðsÞMðsÞ
� �

ð154Þ

þ 1

2

Z t

0

ds mðsÞð2 _gðsÞ þ cðsÞÞ þ dðsÞð Þ

þ log expðgð0ÞÞkupðHiÞ þ expð�gð0ÞkdownðHiÞ
� 	

ð155Þ

with

cðsÞ ¼ kdownðHðsÞÞ expð�2gðsÞÞ � 1ð Þ � kupðHðsÞÞ expð2gðsÞÞ � 1ð Þ ð156Þ
dðsÞ ¼ kdownðHðsÞÞ expð�2gðsÞÞ � 1ð Þ þ kupðHðsÞÞ expð2gðsÞÞ � 1ð Þ ð157Þ

where the rates kup and kdown are given in Eqs. (132) and (133) and we have

assumed an initial equilibrium state at the the initial value of the field, Hð0Þ ¼ Hi.

Equation (155) has to be solved together with the boundary conditions:

gðtÞ ¼ 0; mð0Þ ¼ tanh gð0Þ þ mHi

T

� �
ð158Þ

Note that these boundary conditions break causality. The function g has the

boundary at the final time t whereas m has the boundary at the initial time 0.

Causality is broken because by imposing a fixed value of the work w along the

paths we are constraining the time evolution of the system.

To compute PðwÞ we take the large volume limit N ! 1 in Eq. (153). For a

given value of w the probability distribution is given by

PðwÞ / expðNsðwÞÞ ¼ exp NaðwÞ; lðwÞ; gwðsÞ;mwðsÞð Þ ð159Þ

where s is the path entropy (Eq. (119)) and the functions lðwÞ; gwðsÞ and mwðsÞ
are solutions of the saddle point equations,

da
dl

¼ wþ m
Z t

0

mwðsÞ _HðsÞ ds ¼ 0 ð160Þ

da
dgðsÞ ¼ _mwðsÞ þ mwðsÞðkupðsÞ þ kdownðsÞÞ

� ðkupðsÞ � kdownðsÞÞ þ mwðsÞdwðsÞ þ cwðsÞ ¼ 0 ð161Þ
da

dmðsÞ ¼
_gwðsÞ þ lðwÞm _HðsÞ þ 1

2
cwðsÞ ¼ 0 ð162Þ
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These equations must be solved together with the boundary conditions in

Eq. (158). Note that we use the subindex (or the argument) w in all fields (l;m; g)
to emphasize that there exists a solution of these fields for each value of the work

w. From the entropy s in Eq. (159) we can evaluate the path free energy, the path

temperature, and the values Wmp and Wy introduced in Section V.A. We

enumerate the different results.

� The Path Entropy s(w). By inserting Eq. (162) into Eq. (155), we get

sðwÞ ¼ lðwÞwþ 1

2

Z t

0

dwðsÞ ds

þ log expðgð0ÞÞkupðHiÞ þ expð�gð0ÞÞkdownðHiÞ
� 	 ð163Þ

From the stationary conditions—Eqs. (160)–(162)—the path entropy in

Eq. (159) satisfies

s0ðwÞ ¼ dsðwÞ
dw

¼ qaðw; lðwÞ; gwðsÞ;mwðsÞÞ
qw

¼ lðwÞ ð164Þ

The most probable work can be determined by finding the extremum of the path

entropy sðwÞ,
s0ðwmpÞ ¼ lðwmpÞ ¼ 0 ð165Þ

where we used Eq. (123). The saddle point equations (160)–(162) give

gwmpðsÞ ¼ cwmpðsÞ ¼ dwmpðsÞ ¼ 0 and

_mwmpðsÞ ¼ �mwmpðsÞðkupðsÞ þ kdownðsÞÞ þ ðkupðsÞ � kdownðsÞÞ ð166Þ

which is the solution of the master equation for the magnetization. The stationary

solution of this equation gives the equilibrium solution meqðsÞ ¼ tanhðmHðsÞ=TÞ
corresponding to a quasistationary or reversible process.

� The Path Free Energy. The path free energy f ¼ �=N (Eq. (121)) is

given by

f y ¼ f ðwyÞ ¼ �F

N
¼ wrev ¼ wy � TsðwyÞ ¼ T

2

Z t

0

d
wyðsÞ ds ð167Þ

where wy is given by

s0ðwyÞ ¼ lðwyÞ ¼ 1

T
ð168Þ

and the path temperature (Eq. (124)) satisfies the identity

T̂ðwÞ ¼ 1

lðwÞ ; T̂ðwyÞ ¼ T ð169Þ
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This set of equations can be solved numerically. Figure 14 shows some of the

results.

C. Large Deviation Functions and Tails

A large deviation function P̂ðxÞ of a function PLðxÞ is defined if the following

limit exists:

P̂ðxÞ ¼ lim
L!1

1

L
log PL

x

L

� �� �
ð170Þ

From this point of view, the distribution of the entropy production in a NESS,

PðaÞ (Eq. (55)), where a ¼ Sp=hSpi, and the work distribution PðWÞ (Eq. (159)),
define large deviation functions. In the first case, limt!1 ftðaÞ is the large

deviation function (e.g. Eq. (84)), the average entropy production hSpi being the
equivalent of L in Eq. (170). In the second case, the path entropy sðwÞ ¼ SðWÞ=N
(Eqs. (119) and (159)) is a large deviation function, where L in Eq. (170)

corresponds to the size N. Large deviation functions are interesting for several

reasons.

� Nonequilibrium Theory Extensions. By knowing the large deviation

function of an observable (e.g., the velocity or position density) in a

nonequilibrium system, we can characterize the probability of macro-

scopic fluctuations. For example, by knowing the function sðwÞ we can

determine the probability of macroscopic work fluctuations dW / N,

where N is the size of the system. Large deviations (e.g., in work) may

depend on the particular details (e.g., the rules) of the nonequilibrium

dynamics. In contrast, small deviations (i.e., dW /
ffiffiffiffi
N

p
) are usually

insensitive to the microscopic details of the dynamics. Nonequilibrium

systems are nonuniversal and often strongly dependent on the microscopic

details of the system. In this regard, understanding large or macroscopic

deviations may be a first step in establishing a general theory for

nonequilibrium systems.

� Spectrum of Large Deviations. There are few examples where large

deviations can be analytically solved. Over the past years a large amount

of work has been devoted to understanding large deviations in some

statistical models such as exclusion processes. General results include the

additivity principle in spatially extended systems [135–137] and the

existence of exponential tails in the distributions [138]. These general

results and the spectrum of large deviations are partially determined by

the validity of the FT (Eq. (27)), which imposes a specific relation

between the forward and the reverse work/heat distributions. For example,

exponential tails in the work distribution PðWÞ (Eq. (119)) correspond to
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Figure 14. Various results for the mean-field solution, Eqs. (160)–(162), of a dipole in a field

that is ramped from Hi ¼ 0 to Hf ¼ 1. (a) Fields mlðsÞ and glðsÞ at the ramping speed r ¼ 1. Curves

correspond to different values of l (l ¼ �5;�2;�1;�0:5;�0:2; 0; 0:2; 0:5; 1; 2; 5 from top to

bottom in the upper and lower panel). The dashed line in mlðsÞ is the equilibrium solution

meqðHÞ ¼ tanhðHÞ corresponding to the reversible process r ! 0. (b) Magnetization mlðsÞ for the
most probable path l ¼ 0. The dashed line corresponds to the reversible trajectory, r ! 0. (c)

Lagrange multiplier lðwdisÞ for three ramping speeds. The intersection of the different curves with

the dashed line l ¼ 0 gives wmp (filled circles) whereas the intersection with l ¼ �1 gives wy (filled
squares). The intersection of all three curves around l ¼ 0:5 is only accidental (looking at a larger

resolution such crossing is not seen). (d) Path entropy and free energy corresponding to the solutions

shown in (b, c) (larger speeds correspond to wider distributions). Path entropies are maximum and

equal to zero at w
mp
dis ¼ wmp � wrev (filled circles) whereas path free energies are minimum and equal

to f y ¼ wrev at w
y
dis (filled squares). (From Ref. 117.) (See color insert.)
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a path entropy SðWÞ that is linear inW. This is the most natural solution of

the FT; see Eq. (125).

� Physical Interpretation of Large Deviations. In small systems, large

deviations are common and have to be considered as important as small

deviations. This means that, in order to understand the nonequilibrium

behavior of small systems, a full treatment of small and large deviations

may be necessary. The latter are described by the shape of the large

deviation function. The physical interpretation of small and large

deviations may be different. For example, if we think of the case of

molecular motors, small deviations (with respect to the average) of the

number of mechanochemical cycles may be responsible for the average

speed of a molecular motor, whereas large deviations may be relevant to

understanding why molecular motors operate so efficiently along the

mechanochemical cycles.

1. Work and Heat Tails

Let us consider the case of a NETS that starts initially in equilibrium and is

driven out of equilibrium by some external driving forces. As we have seen in

Eq. (159), ð1=NÞlogðPðwÞÞ ¼ sðwÞ is a large deviation function. At the same

time we could also consider the heat distribution PðQÞ and evaluate its large

deviation function ð1=NÞlogðPðQÞÞ ¼ sðqÞ, where q ¼ Q=N. Do we expect sðqÞ
and sðwÞ to be identical? Heat and work differ by a boundary term, the energy

difference. Yet the energy difference is extensive with N; therefore, boundary

terms modify the large deviation function so we expect that sðqÞ and sðwÞ are
different. An interesting example is the case of the bead in the harmonic trap

discussed in Section IV.A. Whereas the work distribution measured along

arbitrary time intervals is always Gaussian, the heat distribution is characterized

by a Gaussian distribution for small fluctuations dQ ¼ Q� hQi /
ffiffi
t

p
, plus

exponential tails for large deviations dQ / t. The difference between the large

deviation function for the heat and the work arises from a boundary term, the

energy difference. Again, in the large t limit, the boundary term is important for

large fluctuations when a ¼ jQj=hQi � a� ¼ 1 (Eq. (84)). Large deviation

functions always depend on boundary terms and these can never be neglected.

Let us come back now to the example of Section V.B.1, where we considered

work distributions in a system of noninteracting dipoles driven by an externally

varying magnetic field. Again, we will focus the discussion on the particular

case where the initial value of the field is negative and large, Hi ¼ �H0 ! �1,

and the field is ramped at speed r until reaching the final value Hf ¼ H0 ! 1.

In this case, Q ¼ W for individual paths so both large deviation functions

sðqÞ; sðwÞ are identical. In what follows we will use heat instead of work for the

arguments of all functions. In addition sF ¼ sR due to the time-reversal
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symmetry of the protocol. Exponential tails are indicated by a path temperature

T̂ðqÞ (Eq. (124)), which is constant along a finite interval of heat values.

In Section V.B.1 we have evaluated the path entropy sðqÞ (Eq. (163)) for an
individual dipole (N ¼ 1) in the approximation of a first-order Markov process.

The following result has been obtained (Eq. (142)):

sðqÞ ¼ � Tk0

2mr
log exp

q

T

� �
þ 1

� �
þ q

2T
� log cosh

q

2T

� �� �
þ constant ð171Þ

For jqj ! 1, we get

sðq ! 1Þ ¼ � qk0

2mr
þO exp � q

T

� �� �
ð172Þ

sðq ! �1Þ ¼ q

T
þO exp

q

T

� �� �
ð173Þ

The linear dependence of sðqÞ on q leads to

T̂ðq ! 1Þ ¼ T� ¼ � 2mr
k0

ð174Þ

T̂ðq ! �1Þ ¼ Tþ ¼ T ð175Þ
ð176Þ

where we use the notation Tþ and T� to stress the fact that these path

temperatures are positive and negative, respectively. Both path temperatures are

constant and lead to exponential tails for positive and negative work values. Note

that Eq. (125) reads

sðqÞ � sð�qÞ ¼ q

T
! ðsÞ0ðqÞ þ ðsÞ0ð�qÞ ¼ 1

T
! 1

Tþ þ 1

T� ¼ 1

T
ð177Þ

which is satisfied by (Eqs. (174) and (175)) up to 1=r corrections.
Another interesting limit is the quasistatic limit r ! 0. Based on the

numerical solution of the saddle point equations (160)–(162), it was suggested

in Ref. 117 that T̂ðqÞ converged to a constant value over a finite range of work

values. Figure 15a shows the results obtained for the heat distributions, whereas

the path temperature is shown in Fig. 15b. A more detailed analysis [134] has

shown that a plateau is never fully reached for a finite interval of heat values

when r ! 0. The presence of a plateau has been interpreted as the occurrence of

a first-order phase transition in the path entropy sðqÞ [134].
An analogy between the different type of work/heat fluctuations and the

emission of light radiation by atoms in a cavity can be established. Atoms can

absorb and reemit photons following two different mechanisms. One type of
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radiative mechanism is called stimulated because it depends on the density of

blackbody radiation in the cavity (directly related to the temperature of the

cavity). The other radiative mechanism is called spontaneous and is independent

of the density of radiation in the cavity (i.e., it does not depend on its

temperature). The stimulated process contributes to the absorption and emission

of radiation by atoms. The spontaneous process only contributes to the emitted

radiation. In general, the path entropy sðwÞ contains two sectors reminiscent of

the stimulated and spontaneous processes in the blackbody radiation.
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Figure 15. (a) Heat distributions (path entropy sðqÞ and path free energy f ðqÞ) evaluated at four

ramping speeds r ¼ 0:1; 0:5; 1; 10 (from the narrowest to the widest distributions). The dashed line in

the left panel is yðqÞ ¼ q=T (we take T ¼ 1) and is tangent to sðqÞ at qy (dots are shown for r ¼ 10).

The dashed line in the right panel corresponds to yðqÞ ¼ q and is tangent to the function f ðqÞ at the value
qmp (dots shown for r ¼ 10). (b) lðqÞ for the lowest speed r ¼ 0:1. It shows a linear behavior for small

values of q, lðqÞ ¼ ð1=s2
qÞðqmp � qÞ and two plateaus for q 	 1 and q 
 �1. The former contributes

as a Gaussian component to the heat distribution describing the statistics of small deviations with

respect to the most probable value (stimulated sector). The latter gives rise to two exponential tails for

the distribution describing the statistics of rare events (spontaneous sector). (Adapted from Ref. 117.)
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� The FDT or Stimulated Sector. This sector is described by Gaussian

work fluctuations (Eq. (128)) leading to sðqÞ ¼ �ðq� qmpÞ2=ð2s2
qÞ

þconstant. Therefore, we get Eq. (129),

lðqÞ ¼ 1

T̂ðqÞ
¼ � q� qmp

s2
q

ð178Þ

which behaves linearly in q for small deviations around qmp. Note that

T̂ðqÞ satisfies Eq. (177) and, therefore,

s2
q ¼ 2Tqmp ð179Þ

leading to a fluctuation-dissipation parameter R ¼ 1, a result equivalent to

the validity of the fluctuation-dissipation theorem (FDT). This sector we

call stimulated because work fluctuations (Eq. (179)) depend directly on

the temperature of the bath.

� The Large Deviation or Spontaneous Sector. Under some conditions

this sector is well reproduced by exponential work tails describing large or

macroscopic deviations. In this sector,

1

T̂ðqÞ
� 1

T̂ð�qÞ
¼ 1

T
! 1

Tþ þ 1

T� ¼ 1

T
ð180Þ

The physical interpretation of Tþ and T� is as follows. Because T� is

negative, T� describes fluctuations where net heat is released to the bath,

whereas Tþ is positive and describes fluctuations where net heat is

absorbed from the bath. Equation (180) imposes Tþ < jT�j, implying

that large deviations also satisfy the second law: the average net amount

of heat supplied to the bath (/ jT�j) is always larger than the average net

heat absorbed from the bath (/ jTþj). In the previous example Eqs. (174)

and (175), Tþ converges to the bath temperature whereas T� diverges to

�1 when r ! 1. We call this sector spontaneous because the energy

fluctuations mainly depend on the nonequilibrium protocol (in the current

example, such dependence is contained in the r dependence of T�,
Eq. (174)).

2. The Bias as a Large Deviation Function

The bias defined in Eq. (103) is still another example of a large deviation

function. Let us define the variable

X ¼
XN
i¼1

exp �Wi

T

� �
ð181Þ
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where Wi ! Wi ��F stands for the dissipated work. The free energy estimate

in Eq. (103) satisfies the relation

x ¼ exp �FJE ��F

T

� �
; x ¼ X

N
¼ 1

N

XN
i¼1

expð�WiÞ ð182Þ

where N is the total number of experiments. The N values of Wi are extracted

from a distribution PðWÞ that satisfies the relations

h1i¼
Z 1

�1
PðWÞdW¼1; hexpð�WÞi¼

Z 1

�1
expð�WÞPðWÞdW¼1 ð183Þ

We follow the same procedure as in Section IV.B.2 and extract N different values

of Wi to obtain a single x using Eq. (182). By repeating this procedure a large

number of times, M, we generate the probability distribution of x, which we will

call PNðxÞ, in the limit M ! 1. The bias in Eq. (104) is defined by

BðNÞ ¼ �ThlogðxÞi ¼ �T

Z 1

�1
logðxÞPNðxÞ dx ð184Þ

In the following we show that PNðxÞ defines a large deviation function in the

limit N ! 1. We write

PNðxÞ¼
Z YN

i¼1

dWiPðWiÞd x� 1

N

XN
i¼1

expð�WiÞ
 !

¼ 1

2pi

Z i1

�i1
dm exp mx� m

N

XN
i¼1

expð�WiÞ
 !YN

i¼1

PðWiÞdWi

¼ N

2pi

Z i1

�i1
dm̂ exp Nm̂xþNlog

Z
dWPðWÞexpð�m̂expð�WÞÞ

� �� �

¼ N

2pi

Z i1

�i1
dm̂ exp Ngðm̂;xÞð Þ
N!1 exp Ngðm̂�;xÞð Þ

ð185Þ

where in the second line we used the integral representation of the delta function

(Eq. (151)); in the third line we separate the integrals and independently integrate

the contribution of each variable Wi; in the last line we apply the saddle point

integration method to the function gðm̂; xÞ defined as

gðm̂; xÞ ¼ m̂xþ log

Z 1

�1
expð�m̂ expð�WÞÞ

� �
ð186Þ
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where m̂� is equal to the absolute maximum of gðm̂; xÞ,

qgðm̂; xÞ
qm̂

� �
m̂¼ m̂�

¼ 0 ! x ¼
 expð�WÞ 	m̂� ð187Þ

with


 � � � 	m̂¼
R1
�1 expð�WÞ exp �m̂ expð�WÞð ÞPðWÞ dWR1

�1 exp �m̂ expð�WÞð ÞPðWÞ dW
ð188Þ

The function gðm̂; xÞ evaluated at m̂ ¼ m̂� defines a large deviation function

(Eq. (170)):

g�ðxÞ ¼ gðm̂�ðxÞ; xÞ ¼ lim
N!1

1

N
log PN

X

N

� �� �
¼ lim

N!1

1

N
log PNðxÞð Þ ð189Þ

Using Eq. (189), we can write for the bias in Eq. (184) in the large N limit

BðNÞ ¼ �T

R
dx logðxÞ exp Ng�ðxÞð ÞR

dx exp Ng�ðxÞð Þ ð190Þ

The integrals in the numerator and denominator can be estimated by using the

saddle point method again. By expanding g�ðxÞ around the maximum

contribution at xmax, we get, up to second order,

g�ðxÞ ¼ g�ðxmaxÞ þ 1
2
ðg�Þ00ðxmaxÞðx� xmaxÞ2 ð191Þ

To determine xmax, we compute first

ðg�Þ0ðxÞ ¼ qgðm̂; xÞ
qm̂

� �
m̂¼ m̂�ðxÞ

dm̂�ðxÞ
dx

� �
þ qgðm̂�; xÞ

qx

� �

¼ qgðm̂�; xÞ
qx

� �
¼ m̂�ðxÞ

ð192Þ

where we have used Eqs. (186) and (187). The value xmax satisfies

ðg�Þ0ðxmaxÞ ¼ m̂�ðxmaxÞ ¼ 0 ð193Þ

Inspection of Eqs. (187) and (188) shows that xmax ¼ 1. The second term on the

rhs of Eq. (191) is then given by

ðg�Þ00ðx ¼ 1Þ ¼ ðm̂�Þ0ðx ¼ 1Þ ¼ 1

1� hexpð�2WÞi ð194Þ
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where h� � �i denotes the average over the distribution PðWÞ (Eq. (183)). Using
Eq. (194) and inserting Eq. (191) into Eq. (190), we finally obtain

BðNÞ ¼ T
hexpð�2WÞi � 1

2N
þO 1

N2

� �
ð195Þ

For a Gaussian distribution, we get BðNÞ ¼ T expðs2
W � 1Þ=ð2NÞ. Equation

(195) was derived in Ref. 104. For intermediate values of N (i.e., for values of N

where BðNÞ > 1), other approaches are necessary.

VI. GLASSY DYNAMICS

Understanding glassy systems (see Section II.A) is a major goal in modern

condensed matter physics [139–142]. Glasses represent an intermediate state of

matter sharing some properties of solids and liquids. Glasses are produced by fast

cooling of a liquid when the crystallization transition is avoided and the liquid

enters the metastable supercooled region. The relaxation of the glass to the

supercooled state proceeds by reorganization of molecular clusters inside the

liquid, a process that is thermally activated and strongly dependent on the

temperature. The relaxation of the supercooled liquid is a nonequilibrium

process that can be extremely slow leading to aging. The glass analogy is very

fruitful to describe the nonequilibrium behavior of a large variety of systems in

condensed matter physics, all of them showing a related phenomenology.

The nonequilibrium aging state (NEAS, see Section III.A) is a nonstationary

state characterized by slow relaxation and a very low rate of energy dissipation

to the surroundings. Aging systems fail to reach equilibrium unless one waits an

exceedingly large amount of time. For this reason, the NEAS is very different

from either the nonequilibrium transient state (NETS) or the nonequilibrium

steady state (NESS).

What do aging systems have in common with the nonequilibrium behavior

of small systems? Relaxation in aging systems is driven by fluctuations of a

small number of molecules that relax by releasing a small amount of stress

energy to the surroundings. These molecules are grouped into clusters often

called cooperatively rearranging regions (CRRs). A few observations support

this interpretation.

� Experimental Facts. Traditionally, the glass transition has been studied

with bulk methods such as calorimetry or light scattering. These

measurements perform an average over all mesoscopic regions in the

sample but are not suitable to follow the motion of individual clusters of a

few nanometers in extension. The few direct evidences we have on aging

as driven by the rearrangement of small regions comes from AFM
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measurements on glass surfaces, confocal microscopy of colloids, and the

direct observation of molecular motion (NMR and photobleaching tests)

[8]. More indirect evidence is obtained from the heterogeneous character

of the dynamics, that is, the presence of different regions in the system

that show a great disparity of relaxation times [143]. The observation of

strong intermittent signals [144] in Nyquist noise measurements while the

system ages has been interpreted as the result of CRRs, that is, events

corresponding to the rearrangement of molecular clusters. Finally, the

direct measure of a correlation length in colloidal glasses hints at the

existence of CRRs [145]. Future accomplishments in this area are

expected to come from developments in micromanipulation and

nanotechnology applied to direct experimental observation of molecular

clusters.

� Numerical Facts. Numerical simulations are a very useful approach to

examine our understanding of the NEAS [146]. Numerical simulations

allow one to measure correlation functions and other observables that are

hardly accessible in experiments. Susceptibilities in glasses are usually

defined in terms of four-point correlation functions (two-point in space

and two-point in time), which give information about how spatially

separated regions are correlated in time [147]. A characteristic quantity is

the typical length of such regions. Numerical simulations of glasses show

that the maximum length of spatially correlated regions is small, just a

few nanometers in molecular glasses or a few radii in colloidal systems.

Its growth in time is also exceedingly slow (logarithmic in time),

suggesting that the correlation length is small for the experimentally

accessible timescales.

� Theoretical Facts. There are several aspects that suggest that glassy

dynamics must be understood as a result of the relaxation of CRRs.

Important advances in the understanding of glass phenomena come from

spin glass theory [148, 149]. Historically, this theory was proposed to

study disordered magnetic alloys, which show nonequilibrium phenomena

(e.g., aging) below the spin glass transition temperature. However, it has

been shown later how spin glass theory provides a consistent picture of the

NEAS in structural glass models that do not explicitly contain quenched

disorder in the Hamiltonian [150–153]. Most of the progress in this area

comes from the study of mean-field models, that is, systems with long

range interactions. The success of mean-field theory to reproduce most of

the observed phenomenology in glasses suggests that NEASs are

determined by the relaxation of mean-field-like regions, perhaps the

largest CRRs in the system. Based on this analogy, several mean-field-

based phenomenological approaches have been proposed [154–158].
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In the next sections I briefly discuss some of the theoretical concepts

important to understanding the glass state and nonequilibrium aging dynamics.

A. A Phenomenological Model

To better understand why CRRs are predominantly small, we introduce a simple

phenomenological aging model inspired by mean-field theory [155]. The model

consists of a set of regions or domains of different sizes s. A region of size s is just

a molecular cluster (colloidal cluster), containing s molecules (or s colloidal

particles). The system is prepared in an initial high energy configuration, where

spatially localized regions in the system contain some stress energy. That energy

can be irreversibly released to the environment if a cooperative rearrangement of

that region takes place. The release occurs when some correlated structures are

built inside the region by a cooperative or anchorage mechanism. Anchorage

occurs when all s molecules in that region move to collectively find a transition

state that gives access to the release pathway, that is, a path in configurational

space that activates the rearrangement process. Because the cooperative process

involves s particles, the characteristic time to anchor the transition state is given by

ts
t0

/ t�

t0

� �s

¼ exp
Bs

T

� �
ð196Þ

where t� ¼ t0 expðB=TÞ is the activated time required to anchor one molecule, t0
is a microscopic time, and B is the activation barrier that is equal to the energy of

the transition state. How do CRRs exchange energy with the environment? Once

relaxation starts, regions of all sizes contain some amount of stress energy ready

to be released to the environment in the form of heat. The first time a given region

rearranges it typically releases an amount of heat Q that does not scale with the

size of the region. After the first rearrangement has taken place, the region

immediately equilibrates with its environment. Subsequent rearrangement events

in that same region do not release more stress energy to the environment. These

regions can either absorb or release heat from/to the environment as if they were

thermally equilibrated with the bath, the net average heat exchanged with

the environment being equal to 0. The release of the stored stress energy in the

system proceeds in a hierarchical fashion. At a given age t (the time elapsed after

relaxation starts, also called waiting time), only the CRRs of size s� have some

stress energy Q available to be released to the environment. Smaller regions with

s < s� already released their stress energy sometime in the past, being now in

thermal equilibrium with the environment. Larger regions with s > s� have not

yet had enough time to release their stress energy. Only the CRRs with s in the

vicinity of s� contribute to the overall relaxation of the glass toward the

supercooled state. That size s� depends on the waiting time or time elapsed since

the relaxation started.
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Let nsðtÞ be the number of CRRs of size s at time t. At a given time the

system is made up of nonoverlapping regions in the system that randomly

rearrange according to Eq. (196). After a rearrangement occurs, CRRs

destabilize, probably breaking up into smaller regions. In the simplest

description we can assume that regions can just gain or lose one particle

from the environment with respective (gain,loose) rates kgs ; k
l
s with kgs þ kls ¼ ks.

ks, the rate of rearrangement, is proportional to 1=ts, where ts is given in

Eq. (196). To further simplify the description, we just take kgs ¼ gks; k
l
s ¼ lks

with gþ l ¼ 1. Consequently, the balance equations involve the following steps:

Ds ! Ds�1 þ p; Ds þ p ! Dsþ1 ð197Þ

with rates kls; k
g
s , where Ds denotes a region of size s and p denotes a particle (an

individual molecule or a colloidal particle) in the system. The balance equations

for the occupation probabilities read (s � 2),

qnsðtÞ
qt

¼ klsþ1nsþ1ðtÞ þ k
g
s�1ns�1ðtÞ � ksnsðtÞ ð198Þ

This set of equations must be solved together with mass conservationP1
s¼1 snsðtÞ ¼ constant. The equations can be solved numerically for all

parameters of the model. Particularly interesting results are found for g 
 l.

Physically, this means that, after rearranging, regions are more prone to lose

molecules than to capture them, a reasonable assumption if a cooperative

rearrangement leads to a destabilization of the region. A few remarkable results

can be inferred from this simple model.

� Time Dependent Correlation Length. In Fig. 16a we show the time

evolution for nsðtÞ. At any time it displays a well defined time-dependent

cutoff value s�ðtÞ above which nsðtÞ abruptly drops to zero. The

distribution of the sizes of the CRRs scales like nsðtÞ ¼ ð1=s�Þn̂ðs=s�Þ,
where s� is a waiting-time-dependent cutoff size (data not shown). The

NEAS can be parameterized by either the waiting time or the size of the

region s�ðtÞ. Relaxation to equilibrium is driven by the growth of s�ðtÞ and
its eventual convergence to the stationary solution of Eq. (198). The size

s�ðtÞ defines a characteristic growing correlation length, xðtÞ ¼ ðs�ðtÞÞ1=d,
where d is the dimensionality of the system. Because s�ðtÞ grows

logarithmically in time (Eq. (196)), sizes as small as ’10 already require

1033 iteration steps. Small CRRs govern the relaxation of the system even

for exceedingly long times.

� Logarithmic Energy Decay. The release of stress energy to the

environment occurs when the regions of size s� rearrange for the first time.

The advance of the front in nsðtÞ located at s ¼ s� is the leading source of
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energy dissipation. Cooperative rearrangements of regions of size smaller

than s� have already occurred several times in the past and do not yield a net

thermal heat flow to the bath, whereas regions of size larger than s� have not
yet released their stress energy. The supercooled state is reached when the

cutoff size s� saturates to the stationary solution of Eq. (198) and the net

energy flow between the glass and the bath vanishes. The rate of energy

decay in the system is given by the stress energy Q released by regions of

size s�ðtÞ times their number ns� ðtÞ ¼ n̂ð1Þ=s�, divided by the activated time

(Eq. (196)) (equal to the waiting time t 
 expðBs�=TÞ),
qE
qt


 Qns� ðtÞ
t


 Q

s�t
ð199Þ

Because s�ðtÞ 
 T logðtÞ, the energy decays logarithmically with time,

EðtÞ 
 1=logðtÞ.

� Aging. If we assume independent exponential relaxations for the CRRs,

we obtain the following expression for the two-times correlation function:

Cðt; t þ t0Þ ¼
X
s�1

snsðtÞ expð�t0=tsÞ ð200Þ
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Figure 16. nsðtÞ (a) and Cðt; t þ t0Þ (b) for different waiting times t ¼ 1014–1033 for the

numerical solution of Eq. (198) with l ¼ 8; g ¼ 1, and T ¼ 0:45. The relaxation time and the

stretching exponent are very well fitted by tðtÞ¼2:2t0:35, bsðtÞ¼0:34þ0:45t�0:06. (From Ref. 155.)
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where t denotes the waiting time after the initiation of the relaxation and

ts is given by Eq. (196). In Fig. 16b we show the correlation function,

Eq. (200), for different values of t (empty circles in the figure).

Correlations in Eq. (200) are excellently fitted by a stretched exponential

with a t-dependent stretching exponent bs:

Cðt; t þ t0Þ � Ctðt0Þ ¼ exp � t0

tt

� �bsðtÞ
 !

ð201Þ

In Fig. 16b we also show the best fits (continuous lines). Correlation

functions show simple aging and scale like t0=t with t ¼ expðs�=TÞ, where
s� is the waiting-time-dependent cutoff size.

� Configurational Entropy and Effective Temperature. An important

concept in the glass literature that goes back to Adam and Gibbs in the

1950s [159, 160] is the configurational entropy, also called complexity

and denoted by Sc [146]. It is proportional to the logarithm of the number

of cooperative regions with a given free energy F, �ðFÞ:
ScðFÞ ¼ log �ðFÞð Þ ð202Þ

At a given time t after relaxation starts, the regions of size s� contain a

characteristic free energy F�. Fluctuations in these regions lead to

rearrangements that release a net amount of heat to the environment, Eq.

(199). Local detailed balance implies that, after a rearrangement takes

place, new regions with free energies around F� are generated with

identical probability. Therefore,

WðF ! F0Þ
WðF0 ! FÞ ¼

�ðF0Þ
�ðFÞ ¼ exp ScðF0Þ � ScðFÞð Þ ð203Þ

where WðF ! F0Þ is the rate of creating a region of free energy F0 after
rearranging a region of free energy F. Note the similarity between Eqs.

(203) and (8). If �F0 ¼ F0 � F is much smaller than ScðFÞ, we can

expand the difference in the configurational entropy in Eq. (203) and write

Wð�FÞ
Wð��FÞ ¼ exp

qScðFÞ
qF

� �
F¼F�

�F

� �
¼ exp

�F

TeffðF�Þ

� �
ð204Þ

with the shorthand notation Wð�FÞ ¼ WðF ! F0Þ and the time-

dependent effective temperature TeffðF�Þ defined as

1

TeffðF�Þ ¼
qScðFÞ
qF

� �
F¼F�

ð205Þ
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In the present phenomenological model, only regions that have not yet

equilibrated (i.e., of size s � s�ðtÞ) can release stress energy in the form of

a net amount of heat to the surroundings. This means that only transitions

with �F < 0 contribute to the overall relaxation toward equilibrium.

Therefore, the rate of energy dissipated by the system can be written as

qE
qt

/ 1

t

R 0
�1 dx xWðxÞR 0
�1 dxWðxÞ

¼ 2TeffðF�Þ
t

ð206Þ

where we take

Wð�FÞ / exp
�F

2TeffðF�Þ

� �
ð207Þ

as the solution of Eq. (204). Identifying Eqs. (206) and (199), we get

TeffðF�Þ ¼ 2Q

s�
ð208Þ

The time dependence of s� derived in Eq. (199) shows that the effective

temperature decreases logarithmically in time.

B. Nonequilibrium Temperatures

The concept of a nonequilibrium temperature has stimulated a lot of research

in the area of glasses. This line of research has been promoted by Cugliandolo

and Kurchan in the study of mean-field models of spin glasses [161, 162] that

show violations of the fluctuation-dissipation theorem (FDT) in the NEAS.

The main result in the theory is that two-time correlations Cðt; twÞ and

responses Rðt; twÞ satisfy a modified version of the FDT. It is customary to

introduce the effective temperature through the fluctuation-dissipation ratio

(FDR) [163] defined as

TeffðtwÞ ¼ lim
tw!1

qCðt; twÞ=qtw
Rðt; twÞ

� �
ð209Þ

in the limit where t � tw 	 tw. In contrast, in the limit t � tw 
 tw local

equilibrium holds and TeffðtwÞ ¼ T . In general, TeffðtwÞ � T , although there are

exceptions to this rule and even negative effective temperatures have been found

[164]. These predictions have been tested in many exactly solvable models and

numerical simulations of glass formers [146]. In what follows we try to

emphasize how the concept of the effective temperature TeffðtwÞ contributes to
our understanding of nonequilibrium fluctuations in small systems.
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Particularly illuminating in this direction is the study of mean-field spin

glasses. These models can be analytically solved in the large volume limit. At

the same time, numerical simulations allow one to investigate finite-size effects

in detail. Theoretical calculations in mean-field spin glasses are usually carried

out by first taking the infinite-size limit and later the long-time limit. Due to the

infinite range nature of the interactions, this order of limits introduces

pathologies in the dynamical solutions and excludes a large spectrum of

fluctuations that are relevant in real systems. The infinite-size limit in mean-

field models, albeit physically dubious, is mathematically convenient. Because

analytical computations for finite-size systems are not available, we can resort

to numerical simulations in order to understand the role of finite-size effects in

the NEAS. A spin glass model that has been extensively studied is the random

orthogonal model (ROM) [165], a variant of the Sherrington–Kirkpatrick model

[166], known to reproduce the ideal mode coupling theory [167]. The model is

defined in terms of the following energy function:

H ¼ �
X
ði;jÞ

Jijsisj ð210Þ

where the si are N Ising spin variables (s ¼ �1) and Jij is a random N � N

symmetric orthogonal matrix with zero diagonal elements. In the limit N ! 1,

this model has the same thermodynamic properties as the random-energy model

of Derrida [168, 169] or the p-spin model [170] in the large p limit [171, 172].

The ROM shows a dynamical transition at a characteristic temperature Tdyn (that

corresponds to the mode coupling temperature TMCT in mode coupling theories

for the glass transition [173]). Below that temperature, ergodicity is broken and

the phase space splits up into disconnected regions that are separated by infinitely

high energy barriers. For finite N, the dynamics is different and the dynamical

transition is smeared out. The scenario is then much reminiscent of the

phenomenological model we discussed in Section VI.A. Different sets of spins

collectively relax in finite time scales, each one representing a CRR. There are

two important and useful concepts in this regard.

� The Free Energy Landscape. An interesting approach to identify CRRs

in glassy systems is the study of the topological properties of the potential

energy landscape [174]. The slow dynamics observed in glassy systems in

the NEAS is attributed to the presence of minima, maxima, and saddles in

the potential energy surface. Pathways connecting minima are often

separated by large energy barriers that slow down the relaxation. Stillinger

and Weber have proposed identifying phase space regions with the

so-called inherent structure (IS) [175, 176]. The inherent structure of a

region in phase space is the configuration that can be reached by energy

minimization starting from any configuration contained in the region.
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Inherent structures are used as labels for regions in phase space. Figure 17

(left panel) shows a schematic representation of this concept. Figure 17

(right panel) shows the relaxation of the energy of the inherent structure

energy starting from a high energy initial nonequilibrium state [177–179].

Inherent structures are a useful way to keep track of all cooperative

rearrangements that occur during the aging process [180].

� FD Plots. Numerical tests of the validity of the FDR (Eq. (209)) use

fluctuation-dissipation plots (FD plots) to represent the integrated

response as a function of the correlation. The integrated version of

relation (209) is expressed in terms of the susceptibility,

wðt; twÞ ¼
Z t

tw

dt0 Rðt; t0Þ ð211Þ

By introducing Eq. (211) into Eq. (209), we obtain

wðt; twÞ ¼
Z t

tw

dt0
1

Teffðt0Þ
qCðt; t0Þ

qt0
¼ 1

TeffðtwÞ
Cðt; tÞ � Cðt; twÞð Þ ð212Þ

where we have approximated Teffðt0Þ by TeffðtwÞ. By measuring the

susceptibility and the correlation function for a fixed value of tw and

plotting one with respect to the other, the slope of the curve w with respect

to C gives the effective temperature. This result follows naturally from

Eq. (212) if we take Cðt; tÞ time independent (which is the case for spin

systems). If not, proper normalization of the susceptibility and correla-

tions by Cðt; tÞ is required and a similar result is obtained [181]. A

numerical test of these relations in the ROM is shown in Fig. 18. We stress

that these results have been obtained in finite-size systems. As the system

becomes larger, the time scales required to see rearrangement events

become prohibitively longer and the relaxation of the system toward

equilibrium drastically slows down.

C. Intermittency

Indirect evidence of nonequilibrium fluctuations due to CRRs in structural

glasses has been obtained in Nyquist noise experiments by Ciliberto and

co-workers. In these experiments a polycarbonate glass is placed inside the plates

of a condenser and quenched at temperatures below the glass transition

temperature. Voltage fluctuations are then recorded as a function of time during

the relaxation process and the effective temperature is measured:

Teffðo; twÞ ¼
SZðo; twÞ

4RðZðo; twÞÞ
ð213Þ
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whereRðZðo; twÞÞ is the real part of the impedance of the system and SZðo; twÞ is
the noise spectrum of the impedance that can be measured from the voltage noise

[144].

Experimental data shows a strong variation of the effective temperature with

the waiting time by several orders of magnitude. The voltage signal is also

intermittent with strong voltage spikes at random times. The distribution of the
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Figure 18. (a) Response versus the dynamical structure factor for the binary mixture Lennard-

Jones particles system in a quench from the initial temperature Ti ¼ 0:8 to a final temperature

Tf ¼ 0:25 and two waiting times tw ¼ 1024 (square) and tw ¼ 16384 (circle). Dashed lines have

slope 1=Tf while thick lines have slope 1=TeffðtwÞ. ( From Ref. 182.) (b) Integrated response function

as a function of IS correlation, that is the correlation between different IS configurations for the

ROM. The dashed line has slope Tf ¼ 5:0, where Tf is the final quench temperature, whereas the full

lines are the prediction from Eq. (205) and F� ¼ FISðTwÞ : Teffð211Þ ’ 0:694; Teffð216Þ ’ 0:634, and

Teffð219Þ ’ 0:608. The dot-dash line is TeffðtwÞ for tw ¼ 211 drawn for comparison. (From Ref. 178.)
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times between spikes follows a power law characteristic of trap models. These

results point to the fact that the observed voltage spikes correspond to CRRs

occurring in the polycarbonate sample. Finally, the probability distribution

function (PDF) of the voltage signal strongly depends on the cooling rate in the

glass, suggesting that relaxational pathways in glasses are very sensitive to

temperature changes. A related effect that goes under the name of the Kovacs

effect has been also observed in calorimetry experiments, numerical simula-

tions, and exactly solvable models [183–185].

A physical interpretation of the intermittency found in aging systems has been

put forward based on exactly solvable models of glasses [186–188]. According to

this, energy relaxation in glassy systems follows two different mechanisms (see

Section V.C.1): stimulated relaxation and spontaneous relaxation. In the NEAS,

the system does not dowork but exchanges heat with the environment. Contrary to

what was done in previous sections, here we adopt the following convention:

Q > 0 (Q < 0) denotes heat absorbed (released) by the system from (to) the

environment. In the NEAS, �E ¼ Q: the energy released by the system is

dissipated in the form of heat. In the phenomenological model put forward in

Section VI.A, different CRRs can exchange (absorb or release) heat to the

environment. The regions that cooperatively rearrange for the first time release

stress energy to the environment and contribute to the net energy dissipation of the

glass. We call this mechanism spontaneous relaxation. Regions that have already

rearranged for the first time can absorb or release energy from/to the bath several

times but do not contribute to the net heat exchanged between the system and the

bath. We call this mechanism stimulated relaxation. There are several aspects

worth mentioning.

� Heat Distribution. The distribution of heat exchanges Q ¼ EðtwÞ � EðtÞ
for the stimulated process is a Gaussian distribution with zero mean and

finite variance. This process corresponds to the heat exchange distribution

of the system in equilibrium at the quenching temperature. In contrast, in

the spontaneous process a net amount of heat is released to the bath.

Spontaneous heat arises from the fact that the system has been prepared in

a nonequilibrium high energy state. Let us consider a glass that has been

quenched at temperature T for an age tw. During aging, CRRs that release

stress energy (in the form of heat Q < 0) to the environment satisfy the

relation (204):

PspðQÞ
Pspð�QÞ ¼ exp

Q

TeffðF�Þ

� �
ð214Þ

Therefore, as in the phenomenological model (Eq. (207)), we expect

PspðQÞ / exp
Q

2TeffðF�Þ

� �
for Q < 0 ð215Þ
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Note that TeffðF�Þ depends on the age of the system through the value of the

typical free energy of the CRRs that release their stress energy at tw, F
�ðtwÞ.

This relation has been tested numerically in the ROM (Eq. (210)) by

carrying out aging simulations at different temperatures and small sizes N

[186] (see next item).

� Numerical Tests. How do we measure the heat distribution (Eq. (215)) in

numerical simulations of NEAS? A powerful procedure that uses the

concept of inherent structures goes as follows. The heat exchanged

during the time interval ½tw; t� (t > tw) has to be averaged over many

aging paths (ideally an infinite number of paths). Along each aging

path many rearrangement events occur between tw and t. Most of them

are stimulated, a few of them are spontaneous. In fact, because the

spontaneous process gets contributions only from those cooperative

regions that rearrange for the first time, its PDF signal gets masked by

the much larger one coming from the stimulated component where

rearrangement events from a single region contribute more than once. To

better disentangle both processes, we measure, for a given aging path, the

heat exchange corresponding to the first rearrangement event observed

after tw. To identify a rearrangement event, we keep track of the IS

corresponding to the run time configuration. Following the IS is an

indirect way of catching rearranging events due to CRRs. Only when the

system changes IS do we know that a cooperative rearrangement event has

taken place. Rearrangement events take place at different times t after tw,

therefore, the heat distribution PspðQÞ is measured along a heterogeneous

set of time intervals. The results for the heat distributions at various ages

tw are shown in Fig. 19. We notice the presence of two well defined

contributions to the heat PDFs: a Gaussian central component plus

additional exponential tails at large and negative values of Q. The

Gaussian component corresponds to the stimulated process; however, its

mean is different from zero. The reason for this apparent discrepancy lies

in the numerical procedure used to measure the heat PDF: the average

stimulated heat is not equal to the net exchanged heat (which should be

equal to 0) because different aging paths contribute to the heat exchange

along different time intervals. The Gaussian component should be equal to

the heat PDF for the system in thermal equilibrium at the same

temperature and therefore independent of tw. Indeed, the variance of the

Gaussian distribution is found to be independent of tw [186].

� Spontaneous Events Release Stress Energy. One striking aspect of the

spontaneous process is that, according to Eq. (214), the probability of heat

absorption (Q > 0) should be much larger than the probability of heat

release (Q < 0). However, this is not observed in the numerical results of
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Fig. 19, where the exponential tail is restricted to the region Q < 0. Why

are spontaneous events not observed for Q > 0? The reason is that

spontaneous events can only release and not absorb energy from the

environment; see Eq. (215). This is in line with the argumentation put

forward in Section VI.A, where the first time that cooperative regions

release the stress energy, it gets irreversibly lost as heat in the

environment. As the number of stressed regions monotonically decreases

as a function of time, the weight of the heat exponential tails decreases

with the age of the system as observed in Fig. 19. The idea that only

energy decreasing events contribute to the effective temperature

(Eq. (215)) makes it possible to define a time-dependent configurational

entropy [189].

� Zero-Temperature Relaxation. This interpretation rationalizes the aging

behavior found in exactly solvable entropy barrier models that relax to the

ground state and show aging at zero temperature [190, 191]. At T ¼ 0, the

stimulated process is suppressed (microscopic reversibility, Eq. (8), does

not hold), and Eq. (204) holds by replacing the free energy of a CRR by

its energy, F ¼ E. In these models a region corresponds to just a
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Figure 19. Heat exchange PDFs for T ¼ 0:3 (a), T ¼ 0:2 (b), and T ¼ 0:1 (c). Circles are for

tw ¼ 210 and asterisks for tw ¼ 215. The continuous lines are Gaussian fits to the stimulated sector;

the dashed lines are the exponential fits to the spontaneous sector. (From Ref. 186.)
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configuration in phase space and relaxation occurs through spontaneous

rearrangements, where configurations are visited only once. In entropic

barrier models the effective temperature (Eq. (205)) still governs aging at

T ¼ 0. Because the energy is a monotonically decreasing quantity for all

aging paths, Eq. (204) does not strictly hold as Wð�E > 0Þ ¼ 0. Yet, the

effective temperature obtained from Eq. (204) has been shown to coincide

with that derived from the FDR (Eq. (209)) [187, 188].

VII. CONCLUSIONS AND OUTLOOK

We have presented a general overview of several topics related to the

nonequilibrium behavior of small systems: from fluctuations in mesoscopic

systems such as small beads in optical traps up to molecular machines and

biomolecules. The main common theme is that, under appropriate conditions,

physical systems exchange small amounts of energy with the environment,

leading to large fluctuations and strong deviations from the average behavior. We

call such systems small because their properties and behavior are markedly

different from macroscopic systems. We started our discussion by stressing the

similarities between colloidal systems and molecular machines: intermittency

and nonequilibrium behavior are common aspects there. We then discussed

fluctuation theorems (FTs) in detail and focused our discussion on two well

studied systems: the bead in a trap and single molecule force experiments.

Experimental results in such systems show the presence of large tails in heat and

work distributions in marked contrast to Gaussian distributions, characteristic of

macroscopic systems. Such behavior can be rationalized by introducing a path

formalism that quantifies work/heat distributions. Finally, we revised some of the

main concepts in glassy dynamics where small energy fluctuations appear as an

essential underlying ingredient of the observed slow relaxation. Yet, we still lack

a clear understanding of the right theory that unifies all phenomena, and a clear

and direct observation of the postulated small and cooperatively rearranging

regions remains an experimental challenge. We envision three future lines of

research.

� Developments in FTs. FTs are simple results that provide a new view to

better understanding issues related to irreversibility and the second law of

thermodynamics. The main assumption of FTs is microscopic reversibility

or local equilibrium, an assumption that has received some criticism

[192–194]. Establishing limitations on the validity of FTs is the next task

for the future. At present, no experimental result contradicts any of the

FTs, mainly because the underlying assumptions are respected in the

experiments or because current techniques are not accurate enough to

detect systematic discrepancies. Under some experimental conditions, we
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might discover that microscopic reversibility breaks down. We then might

need a more refined and fundamental description of the relevant degrees

of freedom in the system. Validation of FTs under different and far from

equilibrium conditions will be useful to test the main assumptions.

� Large Deviation Functions. The presence of large tails can be

investigated in statistical mechanics theories by exact analytical solutions

of simple models, by introducing simplified theoretical approaches or

even by designing smart and efficient algorithms. In all cases, we expect

to obtain a good theoretical understanding of the relation between large

deviations and nonequilibrium processes. Ultimately, this understanding

can be very important in biological systems where nonequilibrium

fluctuations and biological function may have gone hand in hand during

biological evolution on Earth over the past 4.5 billion years. A very

promising line of research in this area will be the study of molecular

motors, where the large efficiency observed at the level of a single

mechanochemical cycle might be due to a very specific adaptation of

the molecular structure of the enzyme to the aqueous environment. This

fact may have important implications at the level of single molecules and

larger cellular structures.

� Glassy Systems. We still need to have direct and clear experimental

evidence of the existence of the cooperatively rearranging regions,

responsible for most of the observed nonequilibrium relaxational proper-

ties in glasses. However, the direct observation of these regions will not be

enough. It will also be necessary to have a clear idea of how to identify

them in order to extract useful statistical information that can be

interpreted in the framework of a predictive theory. Numerical simulations

will be very helpful in this regard. If the concept of nonequilibrium

temperature has to survive the time then it will be necessary also to

provide accurate experimental measurements at the level of what we can

now get from numerical simulations.

Since the discovery of Brownian motion in 1827 by the biologist Robert

Brown and the later development of the theory for Brownian motion in 1905,

science has witnessed an unprecedented convergence of physics toward

biology. This was anticipated several decades ago by Erwin Schrödinger, who

in his famous 1944 monograph entitledWhat Is Life? [195] wrote when talking

about the motion of a clock: ‘‘The true physical picture includes the possibility

that even a regularly going clock should all at once invert its motion and,

working backward, rewind its own spring—at the expense of the heat of the

environment. The event is just ‘still a little less likely’ than a ‘Brownian fit’ of a

clock without driving mechanism.’’ Biological systems seem to have exploited

thermal fluctuations to build new molecular designs and structures that
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efficiently operate out of equilibrium at the molecular and cellular levels

[196–199]. The synergy between structure and function is most strong in living

systems where nonequilibrium fluctuations are at the root of their amazing and

rich behavior.

VIII. LIST OF ABBREVIATIONS

CFT Crooks fluctuation theorem

CRRs Cooperatively rearranging regions

JE Jarzynski equality

FDR Fluctuation-dssipation ratio

FDT Fluctuation-dissipation theorem

FEC Force-extension curve

FT Fluctuation theorem

IS Inherent structure

NEAS Nonequilibrium aging state

NESS Nonequilibrium steady state

NETS Nonequilibrium transient state

PDF Probability distribution function

ROM Random orthogonal model
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