NONEQUILIBRIUM FLUCTUATIONS IN SMALL
SYSTEMS: FROM PHYSICS TO BIOLOGY

FELIX RITORT

Department de Fisica Fonamental, Faculty of Physics, Universitat de
Barcelona, Diagonal 647, 08028 Barcelona, Spain

CONTENTS

I. What Are Small Systems?
II.  Small Systems in Physics and Biology
A. Colloidal Systems
B. Molecular Machines
II. Fluctuation Theorems
A. Nonequilibrium States
B. Fluctuation Theorems in Stochastic Dynamics
1. The Master Equation
2. Microscopic Reversibility
3. The Nonequilibrium Equality
4. The Fluctuation Theorem
C. Applications of the FT to Nonequilibrium States
1. Nonequilibrium Transient States (NETSs)
2. Nonequilibrium Steady States (NESSs)
IV. Examples and Applications
A. A Physical System: A Bead in an Optical Trap
1. Microscopic Reversibility
2. Entropy Production, Work, and Total Dissipation
3. Transitions Between Steady States
B. A Biological System: Pulling Biomolecules
1. Single Molecule Force Experiments
2. Free Energy Recovery
3. Efficient Strategies and Numerical Methods
V. Path Thermodynamics
A. The General Approach
B. Computation of the Work/Heat Distribution
1. An Instructive Example
2. A Mean-Field Approach

Advances in Chemical Physics, Volume 137, edited by Stuart A. Rice
Copyright © 2008 John Wiley & Sons, Inc.

31



32 FELIX RITORT

C. Large Deviation Functions and Tails
1. Work and Heat Tails
2. The Bias as a Large Deviation Function
VI. Glassy Dynamics
A. A Phenomenological Model
B. Nonequilibrium Temperatures
C. Intermittency
VII. Conclusions and Outlook
VIII. List of Abbreviations
Acknowledgments
References

I. WHAT ARE SMALL SYSTEMS?

Thermodynamics, a scientific discipline inherited from the 18th century, is
facing new challenges in the description of nonequilibrium small (sometimes
also called mesoscopic) systems. Thermodynamics is a discipline built in order
to explain and interpret energetic processes occurring in macroscopic systems
made out of a large number of molecules on the order of the Avogadro number.
Although thermodynamics makes general statements beyond reversible
processes, its full applicability is found in equilibrium systems where it can
make quantitative predictions just based on a few laws. The subsequent
development of statistical mechanics has provided a solid probabilistic basis
for thermodynamics and increased its predictive power at the same time. The
development of statistical mechanics goes together with the establishment of the
molecular hypothesis. Matter is made out of interacting molecules in motion.
Heat, energy, and work are measurable quantities that depend on the motion of
molecules. The laws of thermodynamics operate at all scales.

Let us now consider the case of heat conduction along polymer fibers.
Thermodynamics applies at the microscopic or molecular scale, where heat
conduction takes place along molecules linked along a single polymer fiber, up to
the macroscopic scale where heat is transmitted through all the fibers that make a
piece of rubber. The main difference between the two cases is the amount of heat
transmitted along the system per unit of time. In the first case the amount of heat
can be a few kg T per millisecond whereas in the second it can be on the order of
NtkgT, where Nt is the number of polymer fibers in the piece of rubber. The
relative amplitude of the heat fluctuations are on the order of 1 in the molecular
case and 1/+/N; in the macroscopic case. Because Ny is usually very large, the
relative magnitude of heat fluctuations is negligible for the piece of rubber as
compared to the single polymer fiber. We then say that the single polymer fiber is a
small system whereas the piece of rubber is a macroscopic system made out of a
very large collection of small systems that are assembled together.

Small systems are those in which the energy exchanged with the
environment is a few times kg7 and energy fluctuations are observable.
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A few can be 10 or 1000 depending on the system. A small system must not
necessarily be of molecular size or contain a few numbers of molecules. For
example, a single polymer chain may behave as a small system although it
contains millions of covalently linked monomer units. At the same time, a
molecular system may not be small if the transferred energy is measured over
long times compared to the characteristic heat diffusion time. In that case the
average energy exchanged with the environment during a time interval f can be
as large as desired by choosing ¢ large enough. Conversely, a macroscopic
system operating at short time scales could deliver a tiny amount of energy to
the environment, small enough for fluctuations to be observable and the system
being effectively small.

Because macroscopic systems are collections of many molecules, we expect
that the same laws that have been found to be applicable in macroscopic systems
are also valid in small systems containing a few numbers of molecules [1, 2]. Yet,
the phenomena that we will observe in the two regimes will be different.
Fluctuations in large systems are mostly determined by the conditions of the
environment. Large deviations from the average behavior are hardly observable
and the structural properties of the system cannot be inferred from the spectrum of
fluctuations. In contrast, small systems will display large deviations from their
average behavior. These turn out to be quite independent of the conditions of the
surrounding environment (temperature, pressure, chemical potential) and carry
information about the structure of the system and its nonequilibrium behavior. We
may then say that information about the structure is carried in the tails of the
statistical distributions describing molecular properties.

The world surrounding us is mostly out of equilibrium, equilibrium being
just an idealization that requires specific conditions to be met in the laboratory.
Even today we do not have a general theory about nonequilibrium macroscopic
systems as we have for equilibrium ones. Onsager theory is probably the most
successful attempt, albeit its domain of validity is restricted to the linear
response regime. In small systems the situation seems to be the opposite. Over
the past years, a set of theoretical results that go under the name of fluctuation
theorems have been unveiled. These theorems make specific predictions about
energy processes in small systems that can be scrutinized in the laboratory.

The interest of the scientific community on small systems has been boosted
by the recent advent of micromanipulation techniques and nanotechnologies.
These provide adequate scientific instruments that can measure tiny energies in
physical systems under nonequilibrium conditions. Most of the excitement
comes also from the more or less recent observation that biological matter has
successfully exploited the smallness of biomolecular structures (such as
complexes made out of nucleic acids and proteins) and the fact that they are
embedded in a nonequilibrium environment to become wonderfully complex
and efficient at the same time [3, 4].
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The goal of this chapter is to discuss these ideas from a physicist’s
perspective by emphasizing the underlying common aspects in a broad category
of systems, from glasses to biomolecules. We aim to put together some concepts
in statistical mechanics that may become the building blocks underlying a future
theory of nonequilibrium small systems. This is not a review in the traditional
sense but rather a survey of a few selected topics in nonequilibrium statistical
mechanics concerning systems that range from physics to biology. The selection
is biased by my own particular taste and expertise. For this reason I have not
tried to cover most of the relevant references for each selected topic but rather
emphasize a few of them that make explicit connection with my discourse.
Interested readers are advised to look at other reviews that have recently been
written on related subjects [5-7].

Section II introduces two examples, one from physics and the other from
biology, that are paradigms of nonequilibrium behavior. Section III covers most
important aspects of fluctuation theorems, whereas Section IV presents
applications of fluctuation theorems to physics and biology. Section V presents
the discipline of path thermodynamics and briefly discusses large deviation
functions. Section VI discusses the topic of glassy dynamics from the
perspective of nonequilibrium fluctuations in small cooperatively rearranging
regions. We conclude with a brief discussion of future perspectives.

II. SMALL SYSTEMS IN PHYSICS AND BIOLOGY

A. Colloidal Systems

Condensed matter physics is full of examples where nonequilibrium fluctuations
of mesoscopic regions govern the nonequilibrium behavior that is observed at the
macroscopic level. A class of systems that have attracted a lot of attention for
many decades and that still remain poorly understood are glassy systems, such as
supercooled liquids and soft materials [8]. Glassy systems can be prepared in a
nonequilibrium state (e.g., by fast quenching the sample from high to low
temperatures) and subsequently following the time evolution of the system as a
function of time (also called age of the system). Glassy systems display
extremely slow relaxation and aging behavior, that is, an age-dependent response
to the action of an external perturbation. Aging systems respond slower as they
get older, keeping memory of their age for time scales that range from
picoseconds to years. The slow dynamics observed in glassy systems is
dominated by intermittent, large, and rare fluctuations, where mesoscopic
regions release some stress energy to the environment. Current experimental
evidence suggests that these events correspond to structural rearrangements of
clusters of molecules inside the glass, which release some energy through an
activated and cooperative process. These cooperatively rearranging regions are
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responsible for the heterogeneous dynamics observed in glassy systems, as these
lead to a great disparity of relaxation times. The fact that slow dynamics of glassy
systems virtually takes forever indicates that the average amount of energy
released in a rearrangement event must be small enough to account for an overall
net energy release of the whole sample that is not larger than the stress energy
contained in the system in the initial nonequilibrium state.

In some systems, such as colloids, the free volume (i.e., the volume of the
system that is available for motion to the colloidal particles) is the relevant
variable, and the volume fraction of colloidal particles ¢ is the parameter
governing the relaxation rate. Relaxation in colloidal systems is determined by
the release of tensional stress energy and free volume in spatial regions that
contain a few particles. Colloidal systems offer great advantages to do
experiments for several reasons: (1) in colloids the control parameter is the
volume fraction, ¢, a quantity easy to control in experiments; (2) under
appropriate solvent conditions colloidal particles behave as hard spheres, a
system that is pretty well known and has been theoretically and numerically
studied for many years; and (3) the size of colloidal particles is typically a few
microns, making it possible to follow the motion of a small number of
particles using video microscopy and spectroscopic techniques. This allows
one to detect cooperatively rearranging clusters of particles and characterize
the heterogeneous dynamics. Experiments have been done with poly(methyl
methacrylate) (PMMA) particles of ~1um radius suspended in organic
solvents [9, 10]. Confocal microscopy then allows one to acquire images of
spatial regions of extension on the order of tens of microns that contain a few
thousand of particles, small enough to detect the collective motion of clusters.
In experiments carried out by Courtland and Weeks [11], a highly stressed
nonequilibrium state is produced by mechanically stirring a colloidal system
at volume fractions ¢ ~ ¢,, where ¢, is the value of the volume fraction at the
glass transition where colloidal motion arrests. The subsequent motion is then
observed. A few experimental results are shown in Fig. 1. The mean square
displacement of the particles inside the confocal region shows aging behavior.
Importantly, the region observed is small enough to observe temporal
heterogeneity; that is, the aging behavior is not smooth with the age of the
system as usually observed in light scattering experiments. Finally, the mean
square displacement for a single trajectory shows abrupt events characteristic
of collective motions involving a few tens of particles. By analyzing the
average number of particles belonging to a single cluster, Courtland and
Weeks [11] found that no more than 40 particles participate in the
rearrangment of a single cluster, suggesting that cooperatively rearranging
regions are not larger than a few particle radii in extension. Large deviations,
intermittent events, and heterogeneous kinetics are the main features observed
in these experiments.
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B. Molecular Machines

Biochemistry and molecular biology are scientific disciplines aiming to describe
the structure, organization, and function of living matter [12, 13]. Both
disciplines seek an understanding of life processes in molecular terms. The
main objects of study are biological molecules and the function they play in the
biological process where they intervene. Biomolecules are small systems from
several points of view: first, from their size, where they span just a few
nanometers of extension; second, from the energies they require to function
properly, which is determined by the amount of energy that can be extracted by
hydrolyzing one molecule of ATP (approximately 12kg7T at room temperature or
300 K); and third, from the typically short amount of time that it takes to
complete an intermediate step in a biological reaction. Inside the cell many
reactions that would take an enormous amount of time under nonbiological
conditions are speeded up by several orders of magnitude in the presence of
specific enzymes.

Molecular machines (also called molecular motors) are amazing complexes
made out of several parts or domains that coordinate their behavior to perform
specific biological functions by operating out of equilibrium. Molecular
machines hydrolyze energy carrier molecules such as ATP to transform the
chemical energy contained in the high energy bonds into mechanical motion
[14-17]. An example of a molecular machine that has been studied by
molecular biologists and biophysicists is the RNA polymerase [18,19]. This is
an enzyme that synthesizes an premessenger RNA molecule by translocating
along the DNA and reading, step by step, the sequence of bases along the DNA
backbone. The readout of the RNA polymerase is exported from the nucleus to
the cytoplasm of the cell to later be translated in the ribosome, a huge molecular
machine that synthesizes the protein coded into the messenger RNA [20]. By
using single molecule experiments, it is possible to grab one DNA molecule by
both ends using optical tweezers and follow the translocation motion of the
RNA polymerase [21, 22]. Current optical tweezer techniques have even
resolved the motion of the enzyme at the level of a single base pair [23, 24]. The
experiment requires the flow of enzymes and proteins into the fluidics chamber
that are necessary to initiate the transcription reaction. The subsequent motion
and transcription by the RNA polymerase is called elongation and can be
studied under applied force conditions that assist or oppose the motion of the
enzyme [25]. In Fig. 2 we show the results obtained in the Bustamante group for
the RNA polymerase of Escherichia coli, a bacteria found in the intestinal tracts
of animals. In Fig. 2a the polymerase apparently moves at a constant average
speed but is characterized by pauses (black arrows) where motion temporarily
arrests. In Fig. 2b we show the transcription rate (or speed of the enzyme) as a
function of time. Note the large intermittent fluctuations in the transcription



(*119sUI JO[0D 93G) ("G7 "JOy WOL]) ‘SMOLIE [BONISA Sk umoys a1e (uonduosuen jo sjsare Arerodwa)) sasned “YiSus| InOJUOd Y JO uondUNy
& se 9el uonduosuen ay) (q) pue awn Jo UONOUNJ B st I1oUId) YN U} JO [ISus] Inojuod Jy [, (B) oW} JO UONoUNy € se (ISUS] Ul SOSBaIOul SpBaq Uaamlaq
104391 YN o) se uonduosuen YN SISIsse 9910] ‘dnjos SIy) U] “MO[j 9y} Ul PIsIoW peaq 1Yo 9y} o Jurjoe 9210J Feip saxo1§ oy Sursn xo[dwos renosjowr

VNA-[0dyNY ay3 uo parjdde are sao10 1nq speaq den o) pasn aIe s19zoom) [eondQ ‘sjuswaINSLIWw MO[) 9910§ ut dnjes [euowtradxyg (1Jo7)

() yIsud[ IN0JU0D)
¥y Ty Ov 8¢ 9¢

¥'¢

[a3

*Z dan3ig

(098) Qwi],
_oo,,i ,:oﬁ _oo_ﬁ 00IT _:om: 006 :cx oL

(09s/dq) @ye1 vondrioser,

apedidoroty
|'
MOT] IJng
|v
jduosuen YN
@ -
- —  ardud) yNa
L e O oy ey
O »\\ aserowijod yN Y
'€ 3 w/
L W praq oudIKISA[0g u‘w, peaq 2u1fysLjod
FS'¢ nl.ﬂ. W —
"2 € MOT] IoJIng
g -
0y ~
kS
2
Eh4
®

38



NONEQUILIBRIUM FLUCTUATIONS IN SMALL SYSTEMS 39

rate, a typical feature of small systems embedded in a noisy thermal
environment. In contrast to the slow dynamics observed in colloidal systems
(Section II.A), the kinetic motion of the polymerase is not progressively slower
but steady and fast. We then say that the polymerase is in a nonequilibrium
steady state. As in the previous case, large deviations, intermittent events, and
complex kinetics are the main features we observe in these experiments.

III. FLUCTUATION THEOREMS

Fluctuation theorems (FTs) make statements about energy exchanges that take
place between a system and its surroundings under general nonequilibrium
conditions. Since their discovery in the mid -1990s [26-28], there has been an
increasing interest to elucidate their importance and implications. FTs provide a
fresh new look at old questions such as the origin of irreversibility and the second
law in statistical mechanics [29, 30]. In addition, FTs provide statements about
energy fluctuations in small systems, which, under generic conditions, should be
experimentally observable. FTs have been discussed in the context of
deterministic, stochastic and thermostatted systems. Although the results
obtained differ depending on the particular model of the dynamics that is
used, in a nutshell they are pretty similar.

FTs are related to the so-called nonequilibrium work relations introduced by
Jarzynski [31]. This fundamental relation can be seen as a consequence of the
FTs [32, 33]. It represents a new result beyond classical thermodynamics that
shows the possibility to recover free energy differences using irreversible
processes. Several reviews have been written on the subject [3, 34—37] with
specific emphasis on theory and/or experiments. In the next sections we review
some of the main results. Throughout the text we will take kg = 1.

A. Nonequilibrium States

An important concept in thermodynamics is the state variable. State variables are
those that, once determined, uniquely specify the thermodynamic state of the
system. Examples are the temperature, the pressure, the volume, and the mass of
the different components in a given system. To specify the state variables of a
system it is common to put the system in contact with a bath. The bath is any set of
sources (of energy, volume, mass, etc.) large enough to remain unaffected by the
interaction with the system under study. The bath ensures that a system can reach
a given temperature, pressure, volume, and mass concentration of the different
components when put in thermal contact with the bath (i.e., with all the relevant
sources). Equilibrium states are then generated by putting the system in contact
with a bath and waiting until the system properties relax to the equilibrium values.
Under such conditions the system properties do not change with time and the
average heat/work/mass exchanged between the system and the bath is zero.
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Nonequilibrium states can be produced under a great variety of conditions,
either by continuously changing the parameters of the bath or by preparing the
system in an initial nonequilibrium state that slowly relaxes toward equilibrium.
In general, a nonequilibrium state is produced whenever the system properties
change with time and/or the net heat/work/mass exchanged by the system and
the bath is nonzero. We can distinguish at least three different types of
nonequilibrium states:

e Nonequilibrium Transient State (NETS). The system is initially
prepared in an equilibrium state and later driven out of equilibrium by
switching on an external perturbation. The system returns to a new
equilibrium state after waiting long enough once the external perturbation
stops changing.

e Nonequilibrium Steady State (NESS). The system is driven by external
forces (either time dependent or nonconservative) in a stationary none-
quilibrium state, where its properties do not change with time. The steady
state is an irreversible nonequilibrium process that cannot be described by
the Boltzmann—Gibbs distribution, where the average heat that is dissipated
by the system (equal to the entropy production of the bath) is positive.

There are still other categories of NESS. For example, in nonequilibrium
transient steady states the system starts in a nonequilibrium steady state
but is driven out of that steady state by an external perturbation to finally
settle in a new steady state.

e Nonequilibrium Aging State (NEAS). The system is initially prepared in
a nonequilibrium state and put in contact with the sources. The system is
then allowed to evolve alone but fails to reach thermal equilibrium in
observable or laboratory time scales. In this case the system is in a
nonstationary slowly relaxing nonequilibrium state called aging state and
is characterized by a very small entropy production of the sources. In the
aging state two-times correlations decay slower as the system becomes
older. Two-time correlation functions depend on both times and not just
on their difference.

There are many examples of nonequilibrium states. A classic example of a
NESS is an electrical circuit made out of a battery and a resistance. The current
flows through the resistance and the chemical energy stored in the battery is
dissipated to the environment in the form of heat; the average dissipated power,
‘Pdiss = VI, is identical to the power supplied by the battery. Another example is a
sheared fluid between two plates or coverslips and one of them is moved relative
to the other at a constant velocity v. To sustain such a state, a mechanical power
that is equal to P o< nv? has to be exerted on the moving plate, where 7 is the
viscosity of water. The mechanical work produced is then dissipated in the form of
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heat through the viscous friction between contiguous fluid layers. Other examples
of the NESS are chemical reactions in metabolic pathways that are sustained by
activated carrier molecules such as ATP. In this case, hydrolysis of ATP is strongly
coupled to specific oxidative reactions. For example, ionic channels use ATP
hydrolysis to transport protons against the electromotive force.

A classic example of a NETS is the case of a protein in its initial native state
that is mechanically pulled (e.g., using AFM) by exerting force on the ends of
the molecule. The protein is initially folded and in thermal equilibrium with the
surrounding aqueous solvent. By mechanically stretching the protein is pulled
away from equilibrium into a transient state until it finally settles into the
unfolded and extended new equilibrium state. Another example of a NETS is a
bead immersed in water and trapped in an optical well generated by a focused
laser beam. When the trap is moved to a new position (e.g., by moving the laser
beam) the bead is driven into a NETS. After some time the bead again reaches
equilibrium at the new position of the trap. In another experiment the trap is
suddenly put into motion at a speed v so the bead is transiently driven away
from its equilibrium average position until it settles into a NESS characterized
by the speed of the trap. This results in the average position of the bead lagging
behind the position of the center of the trap.

The classic example of a NEAS is a supercooled liquid cooled below its glass
transition temperature. The liquid solidifies into an amorphous, slowly relaxing
state characterized by huge relaxational times and anomalous low frequency
response. Other systems are colloids that can be prepared in a NEAS by the
sudden reduction/increase of the volume fraction of the colloidal particles or by
putting the system under a strain/stress.

The classes of nonequilibrium states previously described do not make
distinctions based on whether the system is macroscopic or small. In small
systems, however, it is common to speak about the control parameter to
emphasize the importance of the constraints imposed by the bath that are
externally controlled and do not fluctuate. The control parameter (L) represents
a value (in general, a set of values) that defines the state of the bath. Its value
determines the equilibrium properties of the system (e.g., the equation of state).
In macroscopic systems, it is unnecessary to discern which value is externally
controlled because fluctuations are small and all equilibrium ensembles give the
same equivalent thermodynamic description (i.e., the same equation of state).
Differences arise only when including fluctuations in the description. The
nonequilibrium behavior of small systems is then strongly dependent on the
protocol used to drive them out of equilibrium. The protocol is generally defined
by the time evolution of the control parameter A(¢). As a consequence, the
characterization of the protocol A(f) is an essential step to unambiguously
defining the nonequilibrium state. Figure 3 shows a representation of a few
examples of the NESS and control parameters.
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Figure 3. Examples of the NESS. (a) An electric current / flowing through a resistance R and
maintained by a voltage source or control parameter V. (b) A fluid sheared between two plates that
move at speed v (the control parameter) relative to each other. (¢) A chemical reaction A — B
coupled to ATP hydrolysis. The control parameters here are the concentrations of ATP and ADP.

B. Fluctuation Theorems in Stochastic Dynamics

In this section we present a derivation of the FT based on stochastic dynamics. In
contrast to deterministic systems, stochastic dynamics naturally incorporates
crucial assumptions needed for the derivation, such as the ergodicity hypothesis.
The derivation we present here follows the approach introduced by Crooks—
Kurchan-Lebowitz—Spohn [38, 39] and includes some results recently obtained
by Seifert [40] using Langevin systems.

1. The Master Equation

Let us consider a stochastic system described by a generic variable C. This
variable may stand for the position of a bead in an optical trap, the velocity field
of a fluid, the current passing through a resistance, of the number of native
contacts in a protein. A trajectory or path I' in configurational space is described
by a discrete sequence of configurations in phase space,

FE{Co,C1,627...7CM} (1)

where the system occupies configuration C; at time #;, = k At and At is the
duration of the discretized elementary time step. In what follows, we consider
paths that start at Cy at time # = 0 and end at the configuration Cy at time
t = M At. The continuous time limit is recovered by taking M — oo, At — 0 for
a fixed value of ¢.
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Let ((- - -)) denote the average over all paths that start at # = 0 at configurations
Co initially chosen from a distribution Py(C). We also define Py(C) as the
probability, measured over all possible dynamical paths, that the system is in
configuration C at time #; = k At. Probabilities are normalized for all &,

> P(C) =1 (2)
C

The system is assumed to be in contact with a thermal bath at temperature 7.
We also assume that the microscopic dynamics of the system is of the
Markovian type: the probability that the system has a given configuration at a
given time only depends on its previous configuration. We then introduce the
transition probability W;(C — C'). This denotes the probability for the system
to change from C to C’ at time step k. According to the Bayes formula,

Pea(C) = Y WilC — C)Pi(C) (3)
~

where the W' satisfy the normalization condition,

> wc—=c)=1 (4)
7

Using Eqgs. (2) and (3) we can write the following master equation for the
probability Pi(C):

APLC) =P 1(C)=Pi(C) =D Wi(C'=C)PL(C) =Y Wi(C—C)P(C) (5)
C'#C c#C

where the terms C = C’ have not been included as they cancel out in the first and
second sums on the right-hand side (rhs). The first term on the rhs accounts for all
transitions leading to the configuration C, whereas the second term counts all
processes leaving C. It is convenient to introduce the rates r,(C — C') in the
continuous time limit Az — 0,

Equation (5) becomes
OP:(C) , , /
= > n(C = C)P(C) =D r(C— CHPIC) (7)

C'#C C'#C
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2. Microscopic Reversibility

We now introduce the concept of the control parameter A (see Section III.A). In
the present scheme the discrete time sequence {A4;0 < k < M} defines the
perturbation protocol. The transition probability Wy(C — C') now depends
explicitly on time through the value of an external time-dependent parameter ;.
The parameter A, may indicate any sort of externally controlled variable that
determines the state of the system, for instance, the value of the external
magnetic field applied on a magnetic system, the value of the mechanical force
applied to the ends of a molecule, the position of a piston containing a gas, or the
concentrations of ATP and ADP in a molecular reaction coupled to hydrolysis
(see Fig. 3). The time variation of the control parameter, A= (Ms1 — M) /At is
used as a tunable parameter, which determines how irreversible the none-
quilibrium process is. In order to emphasize the importance of the control
parameter, in what follows we will parameterize probabilities and transition
probabilities by the value of the control parameter at time step k, A (rather than by
the time ). Therefore, we will write P3(C) and W, (C — (') for the probabilities
and transition probabilities, respectively, at a given time .

The transition probabilities W, (C — C') cannot be arbitrary but must
guarantee that the equilibrium state P;?(C) is a stationary solution of the master
equation (5). The simplest way to impose such a condition is to model the
microscopic dynamics as ergodic and reversible for a fixed value of A:

Wi(C —C) _P(C) 5
Wi(@ —=¢C) PU(C)

The latter condition is commonly known as microscopic reversibility or local
detailed balance. This property is equivalent to time reversal invariance in
deterministic (e.g., thermostatted) dynamics. Although it can be relaxed by
requiring just global (rather than detailed) balance, it is physically natural to
think of equilibrium as a local property. Microscopic reversibility, a common
assumption in nonequilibrium statistical mechanics, is the crucial ingredient in
the present derivation.

Equation (8) has been criticized as a relation that is valid only very near to
equilibrium because the rates appearing in Eq. (8) are related to the equilibrium
distribution P;%(C). However, we must observe that the equilibrium distribution
evaluated at a given configuration depends only on the Hamiltonian of the
system at that configuration. Therefore, Eq. (8) must be read as a relation that
only depends on the energy of configurations, valid close but also far from
equilibrium.

Let us now consider all possible dynamical paths I' that are generated
starting from an ensemble of initial configurations at time O (described by the
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initial distribution P;,(C)) and that evolve according to Eq. (8) until time ¢
(t =M At, M being the total number of discrete time steps). Dynamical
evolution takes place according to a given protocol, {A,0 <k < M}, the
protocol defining the nonequilibrium experiment. Different dynamical paths
will be generated because of the different initial conditions (weighted with the
probability P;,(C)) and because of the stochastic nature of the transitions
between configurations at consecutive time steps.

3. The Nonequilibrium Equality

Let us consider a generic observable A(I"). The average value of A is given by
A) =Y PD)AT) ©)
T

where I' denotes the path and P(T") indicates the probability of that path. Using
the fact that the dynamics is Markovian together with the definition Eq. (1), we
can write

M—1
P(I') = Py, (Co) H Wi (Ck — Cii1) (10)
k=0
By inserting Eq. (10) into Eq. (9), we obtain
M—1

(A) = AP, (Co) [T Whi(Ch — Cis) (11)
T k=0

Using the detailed balance condition Eq. (8), this expression reduces to

B Mt P (Crs)
./4> - ;PM(CO kl:!) <WM Ck+1 Ck) P;(:(Ck) ) (12)

= ZA )P, (Co) exp (Z log ( = Ck:)l)>> 1:[ Wi, (Cri1 — Ci) (13)
k=0

This equation cannot be worked out further. However, let us consider the
following observable S(I'), defined by

" M—1 ©q C
AT) = exp(=5(0) = 5 (Pj”(é>)> (14)
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where b(C) is any positive definite and normalizable function,
> be) =1 (15)
c

and Py, (Co) > 0,VCo. By inserting Eq. (14) into Eq. (13) we get

M-1

(exp(=8)) = > _b(Cu) [[ Wi (Csr — C) =1 (16)
I

k=0

where we have applied a telescopic sum (we first summed over Cy—; by using
Eq. (4), and used Eq. (15), and subsequently summed over the rest of variables and
used Eq. (4) again). We call S(T") the total dissipation of the system. It is given by

S = S tog (PN L 1os(p (o)) — Togbic 17
()_;og% +log(Py,(Co)) — log(b(Ci)) (17)
The equality in Eq. (16) immediately implies, by using Jensen’s inequality, the
following inequality,

(8) =0 (18)

which is reminiscent of the second law of thermodynamics for nonequilibrium
systems: the entropy of the universe (system plus the environment) always
increases. Yet, we have to identify the different terms appearing in Eq. (17). It is
important to stress that entropy production in nonequilibrium systems can be
defined just in terms of the work/heat/mass transferred by the system to the
external sources, which represent the bath. The definition of the total dissipation
in Eq. (17) is arbitrary because it depends on an undetermined function b(C),
Eq. (15). Therefore, the total dissipation S may not necessarily have a general
physical meaning and could be interpreted in different ways depending on the
specific nonequilibrium context.

Equation (16) has appeared in the past in the literature [41, 42] and is
mathematically identical to the Jarzynski equality [31]. We analyze this
connection in Section III.C.1.

4. The Fluctuation Theorem

A physical insight on the meaning of the total dissipation S can be obtained by
deriving the fluctuation theorem. We start by defining the reverse path I'* of a
given path I'. Let us consider the path ' = Cy — C; — - - - — Cy corresponding
to the forward (F) protocol, which is described by the sequence of values of A at
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different time steps k, A;. Every transition occurring at time step k , Cy — Cyy1, 18
governed by the transition probability W), (Cy — Ci41). The reverse path of T is
defined as the time reverse sequence of configurations, I'* =Cy — Cy—;
— -+ — Cp corresponding to the reverse (R) protocol described by the time-
reversed sequence of values of A, 7»5 = My—k—1-

The probabilities of a given path and its reverse are given by

M-1
Pe(l) = [ Wi (G — Cii1) (19)
k=0
M-1 M—1
Pr(l™) = H Wi (Cy—k = Cy—k-1) = H Wi (G — C)  (20)
k=0 k=0

where in the last line we shifted variables k — M — 1 — k. We use the notation P
for the path probabilities rather than the usual letter P. This difference in notation
is introduced to stress the fact that path probabilities (Egs. (19) and (20)) are
nonnormalized conditional probabilities; that is, > . Pgr)(I') # 1. By using
Eq. (8) we get

Pel) Ty PulCes)

Pr(*) P;‘:(Ck) = exp(Sp(I)) (21)

k=0

where we defined the entropy production of the system,
M—1 Peq (Ck+l)
Sy(T) =S log | 2~ (22)
=2 Pi(C)
Note that S,(I") is just a part of the total dissipation introduced in Eq. (17),
S(I') = $,(I') + B(T) (23)
where B(I) is the boundary term,

B(T') = log(Py, (Co)) — log(b(Cm)) (24)

We tend to identify S,(I") as the entropy production in a nonequilibrium system,
whereas B(T') is a term that contributes just at the beginning and end of the
nonequilibrium process. Note that the entropy production S, (I') is antisymmetric
under time reversal, S,(I"™) = —S,(T"), expressing the fact that the entropy
production is a quantity related to irreversible motion. According to Eq. (21)
paths that produce a given amount of entropy are much more probable than those
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that consume the same amount of entropy. How improbable entropy consump-
tion is depends exponentially on the amount of entropy consumed. The larger the
system is, the larger the probability to produce (rather than consume) a given
amount of entropy S,.

Equation (21) already has the form of a fluctuation theorem. However, in
order to get a proper fluctuation theorem we need to specify relations between
probabilities for physically measurable observables rather than paths. From
Eq. (21) it is straightforward to derive a fluctuation theorem for the total
dissipation S. Let us take b(C) = Py,,(C). With this choice we get

N = M Ck+l)
S0 =50 +511) = 3o ( Ck)> o

k

+log(Py,(Co)) — log(Ps,, (Cm))

The physical motivation behind this choice is that S now becomes an
antisymmetric observable under time reversal. Albeit S,(I") is always antisym-
metric, the choice of Eq. (25) is the only one that guarantees that the total
dissipation S changes sign upon reversal of the path, S(I'*) = —S(T"). The
symmetry property of observables under time reversal and the possibility of
considering boundary terms where S is symmetric (rather than antisymmetric)
under time reversal has been discussed in Ref. 43.

The probability of producing a total dissipation S along the forward protocol
is given by

=" P, (Co)Pe(D)B(S(T) = S)
T

=" Py, (Co)Pr(I™) exp(S,(1))3(S(T) - S)
I

=" Py, (Cu)Pr(I™) exp(S(I))3(S(T) — S)
I

=exp(8) Y Pa, (Co) Pr(T)3(S(T) + 8) = exp(S)Pr(=S)  (26)
=

In the first line of the derivation we used Eq. (21), in the second we used Eq. (295),
and in the last line we took into account the antisymmetric property of S(I") and
the unicity of the assignment I' — I'*. This result is known under the generic
name of fluctuation theorem,

Pg(S)
Pr(—S)

— exp(S) (27)
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It is interesting to observe that this relation is not satisfied by the entropy
production because the inclusion of a boundary term, Eq. (24), in the total
dissipation is required to respect the fluctuation symmetry. In what follows we
discuss some of its consequences in some specific situations.

e Jarzynski Equality. The nonequilibrium equality, Eq. (16), is just a
consequence of Eq. (27) that is obtained by rewriting it as Pr(—S) =
Pr(S) exp(—S) and integrating both sides of the equation from S = —oco
to S = 0.

e Linear Response Regime. Equation (27) is trivially satisfied for S = 0 if
Pg(0) = Pg(0). The process where Prr)(S) = 6(S) is called quasistatic
or reversible. When S is different from zero but small (S < 1), we can
expand Eq. (27) around S = 0 to obtain

SPx(S) = Sexp(S)Pr(~S)
(S)p = (=8 +8))p + O(S) (28)
<(82)>F(R) = 2<S>F(R)

where we used (S)g = (S)g, valid up to second order in S. Note the
presence of the subindex F(R) for the expectation values in the last line of
Eq. (28), which emphasizes the equality of these averages along the
forward and reverse processes. Equation (28) is a version of the
fluctuation-dissipation theorem (FDT) valid in the linear response region
and equivalent to the Onsager reciprocity relations [44].

C. Applications of the FT to Nonequilibrium States

The FT in Eq. (27) finds application in several nonequilibrium contexts. Here we
describe specific results for transient and steady states.

1. Nonequilibrium Transient States (NETSs)

We will assume a system initially in thermal equilibrium that is transiently
brought to a nonequilibrium state. We are going to show that, under such
conditions, the entropy production in Eq. (22) is equal to the heat delivered by the
system to the sources. We rewrite Eq. (22) by introducing the potential energy
function G (C),

_ exp(=Gi(€))

e =222

=exp(=G(C) + G (29)
where Z; =) ,exp(—G(C)) = exp(—G,.) is the partition function and Gy is
the thermodynamic potential. The existence of the potential G, (C) and the
thermodynamic potential G, is guaranteed by the Boltzmann—Gibbs ensemble
theory. For simplicity we will consider here the canonical ensemble, where the
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volume V, the number of particles N, and the temperature T are fixed. Needless to
say, the following results can be generalized to arbitrary ensembles. In the
canonical case G (C) is equal to Ey(C)/T, where E)(C) is the total energy
function (that includes the kinetic plus the potential terms). G, is equal to
F\(V,T,N)/T, where F,, stands for the Helmholtz free energy.

With these definitions the entropy production in Eq. (22) is given by

=Y (61C) ~ G (€)= 3 D (Bn(C) ~ B (C))  (30)
k=0 k=0

For the boundary term, Eq. (24), let us take b(C) = P;! (C):

B(T') = log(P;7(Co)) — log(P3;, (Cu))

= Gy, (Cu) — Gy, (Co) — QAM + G, (31)
1
= ?(E)LM(CM) - EN)(CO) — Fy, + FM)

The total dissipation, Eq. (25), is then equal to

S(0) = $o() + (B (Co) — Baa(Co) — Fay + Fr) (32)

which can be rewritten as a balance equation for the variation of the energy E; (C)
along a given path,

AE(T) = By, (Cy) — By, (Co) = TS(T') + AF — TS, () (33)

where AF = F),, — F),. This is the first law of thermodynamics, where we have
identified the term on the left-hand side (lhs) with the total variation of the
internal energy AE(T"). Whereas TS(I') + AF and 7S, (I") are identified with the
mechanical work exerted on the system and the heat delivered to the bath,
respectively,

AE(I) = w(I') — Q(T') (34)
W(I) = TS(T) + AF (35)
o(r) = 75,(T) (36)

By using Eq. (30) we obtain the following expressions for work and heat:

W) =3 (Eny (Cort) — Eny(Conn) (37)
k=0
0) = 3" (B (C) — B (Ciar)) (38)
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The physical meaning of both entropies is now clear. Whereas S, stands for the
heat transferred by the system to the sources (Eq. (36)), the total dissipation term
TS (Eq. (35)) is just the difference between the total mechanical work exerted on
the system, W(T'), and the reversible work, Wy, = AF. It is customary to define
this quantity as the dissipated work, Wi;ss:

Wdiss(r) = TS(F) - W(F) —AF = W(F) - Wrev (39)

The nonequilibrium equality in Eq. (16) becomes the nonequilibrium work
relation originally derived by Jarzynski using Hamiltonian dynamics [31],

(exp(—Wyiss/T)) =1 or (exp(—W/T)) = exp(—AF/T) (40)

This relation is called the Jarzynski equality (hereafter referred to as JE) and can
be used to recover free energies from nonequilibrium simulations or experiments
(see Section IV.B.2). The FT in Eq. (27) becomes the Crooks fluctuation theorem
(hereafter referred to as CFT) [45, 46]:

Pr(Waiss) Wiaiss Pr(W) W—AF
——=exp|——] or ————=exp|——— (41)
Pr(—Waiss) T Pr(—W) T
The second law of thermodynamics W > AF also follows naturally as a
particular case of Eq. (18) by using Egs. (39) and (40). Note that for the heat Q a
relation equivalent to Eq. (41) does not exist. We mention three aspects of the JE
and the CFT.

e The Fluctuation-Dissipation Parameter R. In the limit of small
dissipation Wgiic — O, the linear response result, Eq. (28), holds. It is
then possible to introduce a parameter R that measures deviations from
the linear response behavior.' It is defined as

_ O
2T‘}Vdiss

(42)

where o3, = (W?) — (W)? is the variance of the work distribution. In the

limit Wgis — 0, a second-order cumulant expansion in Eq. (40) gives that
R is equal to 1 and Eq. (28) holds. Deviations from R =1 are often
interpreted as deviations of the work distribution from a Gaussian. When

'Sometimes R is called the fluctuation-dissipation ratio, not to be confused with the identically
called but different quantity introduced in glassy systems (see Section VI.B) that quantifies
deviations from the fluctuation-dissipation theorem that is valid in equilibrium.
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the work distribution is nonGaussian, the system is far from the linear
response regime and Eq. (28) is not satisfied anymore.

The Kirkwood Formula. A particular case of the JE, Eq. (40), is the
Kirkwood formula [47, 48]. It corresponds to the case where the control
parameter only takes two values A and A;. The system is initially in
equilibrium at the value Ay and, at an arbitrary later time ¢, the value of A
instantaneously switches to A;. In this case Eq. (37) reads

W(I') = AE(C) = £, (C) — By, (C) (43)

In this case a path corresponds to a single configuration, I' = C, and
Eq. (40) becomes

o[ 2EDY g2 w

the average ﬁ is taken over all configurations C sampled according to
the equilibrium distribution taken at Ao, P52(C).

Heat Exchange Between Two Bodies. Suppose that we take two bodies
initially at equilibrium at temperatures Ty and T, where Ty and T¢ stand
for a hot and a cold temperature, respectively. At time ¢t = 0 we put them
in contact and ask about the probability distribution of heat flow between
them. In this case, no work is done between the two bodies and the heat
transferred is equal to the energy variation of each of the bodies. Let QO be
equal to the heat transferred from the hot to the cold body in one
experiment. It can be shown [49] that in this case the total dissipation S is

given by
1 1
=0|——— 4
s=0(z-7) (43)

and the equality in Eq. (40) reads

ol

showing that, on average, net heat is always transferred from the hot to the
cold body. Yet, sometimes, we also expect some heat to flow from the cold
to the hot body. Again, the probability of such events will be
exponentially small with the size of the system.

2. Nonegquilibrium Steady States (NESSs)

Most investigations on nonequilibrium systems were initially carried out in the
NESS. It is widely believed that NESSs are among the best candidate
nonequilibrium systems to possibly extend the Boltzmann—Gibbs ensemble
theory beyond equilibrium [50, 51].
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We can distinguish two types of NESS: time-dependent conservative (C)
systems and nonconservative (NC) systems. In the C case the system is acted by a
time-dependent force that derives from an external potential. In the NC case the
system is driven by (time dependent or not) nonconservative forces. In C systems
the control parameter A has the usual meaning: it specifies the set of external
parameters that, once fixed, determine an equilibrium state. Examples are a
magnetic dipole in an oscillating field (A is the value of the time-dependent
magnetic field), a bead confined on a moving optical trap and dragged through
water (A is the position of the center of the moving trap), and a fluid sheared
between two plates (A is the time-dependent relative position of the upper and
lower plates). In C systems we assume local detailed balance so Eq. (8) still holds.

In contrast to the C case, in NC systems the local detailed balance property, in
the form of Eq. (8), does not hold because the system reaches not thermal
equilibrium but a stationary or steady state. It is then customary to characterize the
NESS by the parameter A and the stationary distribution by P5*(C). NESS systems
in the linear regime (i.e., not driven arbitrarily far from equilibrium) satisfy the
Onsager reciprocity relations, where the fluxes are proportional to the forces. The
NESS can be maintained by keeping constant either the forces or the fluxes.
Examples of NC systems are the flow of a current in an electric circuit (e.g.,
A = I, AV is either the constant current flowing through the circuit or the constant
voltage difference), a Poiseuille fluid flow inside a cylinder (A could be either the
constant fluid flux, ®, or the pressure difference, AP), heat flowing between two
sources kept at two different temperatures (A could be either the heat flux, Jy, or
the temperature difference, AT), and the particle exclusion process (A = u™~ are
the rates of inserting and removing particles at both ends of the chain). In the
NESS of NC type, the local detailed balance property of Eq. (8) holds but we
replace P;(C) by the corresponding stationary distribution, P§*(C):

WiC—C) _ PE(C)
Wi —=C) P3(C)

(47)

In a steady state in an NC system A is maintained constant. Because the local
form of detailed balance, Eq. (47), holds, the main results of Section III follow. In
particular, the nonequilibrium equality in Eq. (16) and the FT in Eq. (27) are still
true. However, there is an important difference. In steady states the reverse
process is identical to the forward process, Pp(S) = Pr(S), because A is
maintained constant. Therefore, Eq. (16) and Eq. (27) become

(exp(—~S) = 1 (48)
e = exp(S) (49)

We can now extract a general FT for the entropy production S, in the NESS. Let
us assume that, on average, S, grows linearly with time, that is, S, > B for large ¢.
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Because S =S, +B (Eq. (23)), in the large ¢ limit fluctuations in S are
asymptotically dominated by fluctuations in S,. On average, fluctuations in S,
grow like /¢, whereas fluctuations in the boundary term are finite.

Therefore, Eq. (23) should be asymptotically valid in the large ¢ limit. By
taking the logarithm of the right expression we obtain

S=log(P(S)) —log(P(—S))— Sp,+B=log(P(S,+B)) —log(P(S,—B)) (50)

In the NESS, the entropy produced, S,(I'), along paths of duration ¢ is a
fluctuating quantity. By expanding Eq. (50) around S, we get

P(S,) P'(S,)  P(=S,)
Sp = log <P<—§p>) +B(P(i) RS 1) 5D

The average entropy production (S,) is defined by averaging S, along an infinite
number of paths. Dividing Eq. (51) by (S,) we get

S L (RS B (P(s) | P8
590 <p>1g(p(_sp))+<sp> (P(SPWP(—SI)) 1) 52)

We introduce a quantity a that is equal to the ratio between the entropy
production and its average value, a = S,/(S,). We can define the function

P
fil@) =75 y! g(P(—co) (53)

Equation (52) can be rewritten as

LB (PlS) PS,)
o) =a =55 (sm sy 1) >y

In the large time limit, assuming that log(P(Sp)) ~ t, and because B is finite, the
second term vanishes relative to the first and f;(a) = a + O(1/t). Substituting
this result into Eq. (53) we find that an FT holds in the large ¢ limit. However, this
is not necessarily, always true. Even for very large ¢ there can be strong
deviations in the initial and final states that can make the boundary term B large
enough to be comparable to (Sp). In other words, for certain initial and/or final
conditions, the second term on the rhs of Eq. (54) can be on the same order and
comparable to the first term, a. The boundary term can be neglected only if we
restrict the size of such large deviations; that is, if we require |a| < a*, where a*
is a maximum given value. With this proviso, the FT in a NESS reads

. 1 Pla) \ .
llg(r)lC@log (P(—a)) =a; l|a<a (53)
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In general, it can be very difficult to determine the nature of the boundary terms.
A specific result in an exactly solvable case is discussed in Section IV.A.2.
Equation (55) is the Gallavotti-Cohen FT derived in the context of deterministic
Anosov systems [28]. In that case, S, stands for the so-called phase space
compression factor. It has been experimentally tested by Ciliberto and
co-workers in Rayleigh-Bernard convection [52] and turbulent flows [53].
Similar relations have also been tested in athermal systems, for example, in
fluidized granular media [54] or the case of two-level systems in fluorescent
diamond defects excited by light [55].

The FT in Eq. (27) also describes fluctuations in the total dissipation for
transitions between steady states, where A varies according to a given protocol.
In that case, the system starts at time O in a given steady state, P} (C), and
evolves away from that steady state at subsequent times. The boundary term for
steady-state transitions is then given by

B(T') = log(P3; (Co)) — log(P3;, (Cu)) (56)

where we have chosen the boundary function 5(C) = P’ (C). In that case, the
total dissipation is antisymmetric under the time-reversal operation and Eq. (27)
holds. Only in cases where the reverse process is equivalent to the forward
process is Eq. (49) an exact result. Transitions between nonequilibrium steady
states and definitions of the function S have been considered by Hatano and Sasa
[56] in the context of Langevin systems.

IV. EXAMPLES AND APPLICATIONS

In this section we analyze in detail two cases where analytical calculations are
available and FTs have been experimentally tested: one extracted from physics,
the other from biology. We first analyze the bead in a trap and later consider
single molecule pulling experiments. These examples show that there are lots of
interesting observations that can be made by comparing theory and none-
quilibrium experiments in simple systems.

A. A Physical System: A Bead in an Optical Trap

It is very instructive to work out in detail the fluctuations of a bead trapped in a
moving potential. This case is of great interest for at least two reasons. First, it
provides a simple example of both a NETS and a NESS that can be analytically
solved in detail. Second, it can be experimentally realized by trapping micron-
sized beads using optical tweezers. The first experiments studying
nonequilibrium fluctuations in a bead in a trap were carried out by Evans and
collaborators [57] and later on extended in a series of works [58, 59]. Mazonka
and Jarzynski [60] and later Van Zon and Cohen [61-63] have carried out
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detailed theoretical calculations of heat and work fluctuations. Recent experi-
ments have also analyzed the case of a particle in a nonharmonic optical potential
[64]. These results have greatly clarified the general validity of the FT and the
role of the boundary terms appearing in the total dissipation S.

The case of a bead in a trap is also equivalent to the power fluctuations in a
resistance in an RC electrical circuit [65] (see Fig. 4). The experimental setup is
shown in Fig. 5. A micron-sized bead is immersed in water and trapped in an
optical well. In the simplest case the trapping potential is harmonic. Here we
will assume that the potential well can have an arbitrary shape and carry out
specific analytical computations for the harmonic case.

Let x be the position of the bead in the laboratory frame and U(x — x*) be the
trapping potential of a laser focus that is centered at a reference position x*. For
harmonic potentials we will take U(x) = %sz. By changing the value of x* the
trap is shifted along the x coordinate. A nonequilibrium state can be generated
by changing the value of x* according to a protocol x*(z). In the notation of the
previous sections, A =x" is the control parameter and C=x is the
configuration. A path T' starts at x(0) at time O and ends at x(¢) at time f,
= {x(s);0 <s <t}

At low Reynolds number the motion of the bead can be described by a one-
dimensional Langevin equation that contains only the overdamping term,

vE=fe(x)+n; (n(On(s)) = 2Tv8(1 — s) (57)

where x is the position of the bead in the laboratory frame, v is the friction
coefficient, f,-(x) is a conservative force deriving from the trap potential
U(x — x*),

fola) = (U =) = - (25 ) (58)

and m is a stochastic white noise.
In equilibrium x*(#) = x* is constant in time. In this case, the stationary
solution of the master equation is the equilibrium solution

T Jdxexp(—BU(x—x))  Z

(59)

where Z = [dxexp(—U(x)/T) is the partition function that is independent of
the reference position x*. Because the free energy F = —Tlog(Z) does not
depend on the control parameter x*, the free energy change is always zero for
arbitrary translations of the trap.
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Figure 5. (Left) Bead confined in a moving optical trap. (Right) Total entropy S distributions
(b—d) for the velocity protocols shown in (a). (From Ref. 69.) (See color insert.)

Let us now consider a NESS where the trap is moved at constant velocity,
x*(¢) = vt. It is not possible to solve the Fokker—Planck equation to find the
probability distribution in the steady state for arbitrary potentials. Only for
harmonic potentials, U(x) = kx?/2, can the Fokker-Planck equation be solved
exactly. The result is

T -172 x—x* v/x)?
P () = (%) exp - X (QT” /€) (60)

Note that the steady-state solution, Eq. (60), depends explicitly on time through
x*(t). To obtain a time-independent solution we must change variables x — x—
x*(¢) and describe the motion of the bead in the reference frame that is solid and
moves with the trap. We will come back to this problem in Section IV.A.3.

1.  Microscopic Reversibility

In this section we show that the Langevin dynamics, Eq. (57), satisfies the
microscopic reversibility assumption or local detailed balance, Eq. (8). We recall
that x is the position of the bead in the laboratory frame. The transition rates
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W, (x — x') for the configuration x at time 7 to change to x’ at a later time ¢ + At
can be computed from Eq. (57). We discretize the Langevin equation [66] by

writing
x —x+f(x;x)At+ WIZTTAtrJrO((AI)z) (61)

where r is a random Gaussian number of zero mean and unit variance. For a
given value of x, the distribution of values x’ is also a Gaussian with average and
variance given by

xl

Jx—x"(1)
S AL o((m)z) (62)

2T At

oy = () = ()

+ o((m)z) (63)

and therefore,

(x, e x*)At)2

We(x — x') = (21:6)2,)71/2 exp Y

202 (64)

From Eq. (64) we compute the ratio between the transition probabilities to first
order in Ar:

Wele=x) (& =0)(fr =) +f( —x))
o=~ )

(65)

We can now use the Taylor expansions,
U —x*)=Ulx—x") —flx—x)(x —x) + (’)((x’ - x)z) (66)
Ux —x*) = UK — x*) — f(x' —x)(x — x) + o((x’ - x)2> (67)
and subtract both equations to finally obtain
(= 0)(f(xr=x7) +f( —x7) =2(U( —x7) = U(x—x7))  (68)

which yields

We(x —x) . U —x) - Ulx—x) PR
Wx*(xqu)_e p( >

which is the local detailed balance assumption, Eq. (8).
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2. Entropy Production, Work, and Total Dissipation

Let us consider an arbitrary nonequilibrium protocol x*(¢), where v(¢) = x*(¢) is
the velocity of the moving trap. The entropy production for a given path,
I' = {x(s);0 < s < t}, can be computed using Eq. (22),

t OlogPtd | (x
§,(T) = /0 ds () <°gT<>()> (70)
x=x(s)

We now define the variable y(¢) = x(t) — x*(¢). From Eq. (59) we get®

Sp(I) = l/otdsjc(s)f(x(s

1 (1)
_?</y(0 dyf(y) + dsv

) v(s)  (71)

_-AU + —AU+W(I) )

ﬂ\-‘
\_/c\
Er

with

AU = UGl =2 (0) ~ UG(0) - x (0 Wir) = | dsv(s)f(s) (73)

where we used Eq. (58) in the last equality of Eq. (72). AU is the variation of
internal energy between the initial and final positions of the bead and W(T") is the
mechanical work done by the moving trap on the bead. Using the first law,
AU =W — Q, we get

5,r) =2 (74)

and the entropy production is just the heat transferred from the bead to the bath
divided by the temperature of the bath.

The total dissipation S, Eq. (23), can be evaluated by adding the boundary
term, Eq. (24), to the entropy production. For the boundary term we have some
freedom as to which function f we use on the rhs of Eq. (24):

B(T') = log(Px()(x(0))) — log(f(x(1))) (75)

2Note that x, the velocity of the bead, is not well defined in Egs. (70) and (72). However, ds x(s) = dx is.
Yet, we prefer to use the notation in terms of velocities just to make clear the identification between the
time integrals in Egs. (70) and (72) and the discrete time-step sum in Eq. (22).
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Because we want S to be antisymmetric against time reversal, there are two
possible choices for the function f depending on the initial state.

o Nonequilibrium Transient State (NETS). Initially the bead is in
equilibrium and the trap is at rest in a given position x*(0). Suddenly
the trap is set in motion. In this case b(x) = P, (x) and the boundary
term in Eq. (24) reads

B(T) = log(P(x(0))) — log (P, (x(1))) (76)
By inserting Eq. (5§9) we obtain
B(I') = Z (U(x(t) = x*(1)) = U(x(0) = x(0))) = = (77)

and S =S, +B = (Q+ AU)/T = W/T so the work satisfies the none-
quilibrium equality, Eq. (16), and the FT, Eq. (27):

Note that in the reverse process the bead starts in equilibrium at the final
position x*() and the motion of the trap is reversed (x*)%(s) = x*(r — ).
The result Eq. (78), is valid for arbitrary potentials U(x). In general, the
reverse work distribution Pr(W) will differ from the forward distribution
Pr(W). Only for symmetric potentials U(x) = U(—x) are both work
distributions identical [67]. Under this additional assumption, Eq. (78) reads

P(W) = exp (K) (79)

T

Note that this is a particular case of the CFT (Eq. (41)) with AF = 0.

e Nonequilibrium Steady State (NESS). If the initial state is a steady state,
Py, (Co) = P ) (x), then we choose b(x) = Py, (x). The boundary term
reads

B(T) = log (P ) (x(0)) ) — log Py, (x(1))) (80)
Only for harmonic potentials do we exactly know the steady-state
solution, Eq. (60), so we can write down an explicit expression for B:

7AU7vyAf
T KT

B(T) (81)
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where AU is defined in Eq. (73) and = f. ;) (x(¢)) — fi+(0)(x(0)). The total
dissipation is given by

O+AU vwAf W wAf

T I T «T
It is important to stress that Eq. (82) does not satisfy Eqgs. (48) and (49)
because the last boundary term on the rhs of Eq. (82) (vy Af/xT) is not
antisymmetric against time reversal. Van Zon and Cohen [61-63] have
analyzed in much detail work and heat fluctuations in the NESS. They
find that work fluctuations satisfy the exact relation

S=S,+B= (82)

PW) (W 1
Pw) P (71 T (exp(—1]7) - 1)) (83)

where ¢ is the time window over which work is measured and 7 is the
relaxation time of the bead in the trap, T = y/x. Note that the FT (Eq.
(79)) is satisfied in the limit t/r — 0. Corrections to the FT are on the
order of t/r as expected (see discussion in the last part of Section IIL.C.2).
Computations can also be carried out for heat fluctuations. The results are
expressed in terms of the relative fluctuations of the heat, a = S, /(Sp).
The large deviation function f;(a) (Eq. (53)) is given by

}H?Oft(a) =a (0<ac<l)
tlirgloft(a)za—(a—l)z/4 (1<a<3) (84)
i @) =2 (3 <a)

and f;(—a) = —f;(a). Very accurate experiments to test Eqs. (83) and (84)
have been carried out by Garnier and Ciliberto, who measured the Nyquist
noise in an electric resistance [68]. Their results are in very good
agreement with the theoretical predictions, which include corrections in
the convergence of Eq. (84) on the order of 1/t as expected. A few results
are shown in Fig. 4.

3. Transitions Between Steady States

Hatano and Sasa [56] have derived an interesting result for nonequilibrium
transitions between steady states. Despite the generality of the Hatano—Sasa
approach, explicit computations can be worked out only for harmonic traps. In the
present example the system starts in a steady state described by the stationary
distribution of Eq. (60) and is driven away from that steady state by varying the
speed of the trap, v. The stationary distribution can be written in the frame system
that moves solidly with the trap. If we define y(#) = x — x*(¢) then Eq. (60) becomes

T\ 12 /)2
P = () exp<—“(y il ”) (55)
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Note that, when expressed in terms of the reference moving frame, the distribution

in the steady state becomes stationary or time independent. The transition rates in
Eq. (64) can also be expressed in the reference system of the trap:

Wv(y - y,) =

4nTAr /2 v(y —y + (v +x/yy)Ar)?
( y ) xp <_ AT At (86)

where we have used f(x — x*) = f(y) = —ky. The transition rates W,(y — y)
now depend on the velocity of the trap. This shows that, for transitions between
steady states, A = v plays the role of the control parameter, rather than the value
of x*. A path is then defined by the evolution I" = {y(s); 0 < s < ¢}, whereas the
perturbation protocol is specified by the time evolution of the speed of the trap
{v(s);0 <s <t}

The rates W, (y — ¥') satisfy the local detailed balance property (Eq. (47)).
From Egs. (86) and (85), we get (in the limit Az — 0)

= s (87)

:exp(—L(Y/2 ) =Ly —y)) =exp (— (ﬂ - WAf)) (88)

T T T

Note that the exponent on the rhs of Eq. (88) is equal to the boundary term,
Eq. (81). In the reference system of the trap, we can then compute the entropy
production S, and the total dissipation S. From either Eq. (22) or (88) and using
Eqg. (85), we get

Sy(T) = /0 dsy(s) (W)H(Y):—%Jr% A dsv(s)F(s)  (89)

1 (av-taory +2 [Casire) (%0)

T 0

where we integrated by parts in the last step of the derivation. For the boundary
term, Eq. (56), we get

B(T) = log P}y (v(0))) — log (P35, (1)) O1)

- % (AU ~Yapr) + %}?)) (92)
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where we used Eq. (85). By adding Egs. (90) and (92) we obtain the total

dissipation,
S=S,+B= % (A (%) —%/Otds{/(s)F(s)) (93)
=2 [ asito) ) - i) (94)

The quantity S (called Y by Hatano and Sasa) satisfies the nonequilibrium
equality, Eq. (16), and the FT, Eq. (27). Only for time-reversal invariant
protocols, vR(s) = v(t — s), do we have Pr(S) = Pr(S), and the FT, Eq. (49), is
also valid. We emphasize two aspects of Eq. (94).

e Generalized Second Law for Steady-State Transitions. From the
inequality in Eqgs. (18) and (94), we obtain

,Y2 V2

g dsils)F(s) < A(K) (95)

which is reminiscent of the Clausius inequality Q > —T AS, where the
average dissipation rate Py = yv? plays the role of a state function
similar to the equilibrium entropy. In contrast to the Clausius inequality,
the transition now occurs between steady states rather than equilibrium
states [69].

e Noninvariance of Entropy Production Under Galilean Transforma-
tions. In steady states where v =0, S, (Eq. (90)) becomes a boundary
term and S = 0 (Eq. (94)). We saw in Eq. (74) that S;, is equal to the heat
delivered to the environment (and therefore proportional to the time
elapsed 7), whereas now S, is a boundary term that does not grow with z.
This important difference arises from the fact that the entropy production
is not invariant under Galilean transformations. In the reference of the
moving trap, the bath is moving at a given speed, which impedes one from
defining heat in a proper way. To evaluate the entropy production for
transitions between steady states, one has to resort to the description
where x* is the control parameter and x*(f) = [j dsv(s) is the perturbation
protocol. In such a description, Eqgs. (73) and (74) are still valid.

These results have been experimentally tested for trapped beads accelerated
with different velocity protocols [69]. The results are shown in Fig. 5.

B. A Biological System: Pulling Biomolecules

The development of accurate instruments capable of measuring forces in the
piconewton range and extensions on the order of the nanometer give access to a



NONEQUILIBRIUM FLUCTUATIONS IN SMALL SYSTEMS 65

wide range of phenomena in molecular biology and biochemistry, where
nonequilibrium processes that involve small energies on the order of a few kgT
are measurable (see Section II). From this perspective the study of biomolecules
is an excellent playground to explore nonequilibrium fluctuations. The most
successful investigations in this area have been achieved in single molecule
experiments using optical tweezers [70]. In these experiments biomolecules can
be manipulated one at a time by applying mechanical force at their ends. This
allows us to measure small energies under varied conditions, opening new
perspectives in the understanding of fundamental problems in biophysics (e.g.,
the folding of biomolecules) [71-73]. The field of single molecule research is
steadily growing with new molecular systems being explored that show
nonequilibrium behavior characteristic of small systems. The reader interested
in a broader view of the area of single molecule research should have a look at
Ref. 74.

1. Single Molecule Force Experiments

In single molecule force experiments, it is possible to apply force on individual
molecules by grabbing the ends and pulling them apart [75-78]. Examples of
different ways in which mechanical force is applied to single molecules are
shown in Fig. 6. In what follows we will consider single molecule force
experiments using optical tweezers, although everything we say extends to other

Figure 6. Pulling single molecules. (a) Stretching DNA; (b) unzipping DNA; (c) mechanical
unfolding of RNA, and (d) mechanical unfolding of proteins. (See color insert.)
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force techniques (AFM, magnetic tweezers, or biomembrane force probe; see
Ref. 74) In these experiments, the ends of the molecule (e.g., DNA [79]) are
labeled with chemical groups (e.g., biotin or digoxigenin) that can bind
specifically to their complementary molecular partners (e.g., streptavidin or
antidigoxigenin, respectively). Beads are then coated with the complementary
molecules and mixed with the DNA in such a way that a tether connection can be
made between the two beads through specific attachments. One bead is in the
optical trap and used as a force sensor. The other bead is immobilized on the tip
of a micropipette that can be moved by using a piezo-controlled stage to which
the pipette is attached. The experiment consists of measuring force-extension
curves (FECs) by moving the micropipette with respect to the trap position [80].
In this way it is possible to investigate the mechanical and elastic properties of
the DNA molecule [81, 82].

Many experiments have been carried out by using this setup: the stretching of
single DNA molecules, the unfolding of RNA molecules or proteins, and the
translocation of molecular motors (Fig. 2). Here we focus our attention on force
experiments where mechanical work can be exerted on the molecule and
nonequilibrium fluctuations are measured. The most successful studies along
this line of research are the stretching of small domain molecules such as RNA
[83] or protein motifs [84]. Small RNA domains consist of a few tens of
nucleotides folded into a secondary structure that is further stabilized by tertiary
interactions. Because an RNA molecule is too small to be manipulated with
micron-sized beads, it has to be inserted between molecular handles. These act
as polymer spacers that avoid nonspecific interactions between the bead and the
molecule as well as the contact between the two beads.

The basic experimental setting is shown in Fig. 7. We also show a typical
FEC for an RNA hairpin and a protein. Initially, the FEC shows an elastic
response due to the stretching of the molecular handles. Then, at a given value
of the force, the molecule under study unfolds and a rip is observed in both force
and extension. The rip corresponds to the unfolding of the small RNA/protein
molecule. The molecule is then repeatedly stretched and relaxed, starting from
the equilibrated native/extended state in the pulling/relaxing process. In the
pulling experiment the molecule is driven out of equilibrium to a NETS by the
action of a time-dependent force. The unfolding/refolding reaction is stochastic,
the dissociation/formation of the molecular bonds that maintain the native
structure of the molecule being determined by the Brownian motion of the
surrounding water molecules [85]. Each time the molecule is pulled, different
unfolding and refolding values of the force are observed (inset of Fig. 7b). The
average value of the force at which the molecule unfolds during the pulling
process increases with the loading rate (roughly proportional to the pulling
speed) in a logarithmic way as expected for a two-state process (see discussion
at the end of Section V.B.1 and Eq. (143)).
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Figure 7. Mechanical unfolding of RNA molecules (a, b) and proteins (c, d) using optical
tweezers. (a) Experimental setup in RNA pulling experiments. (b) Pulling cycles in the homologous
hairpin and force rip distributions during the unfolding and refolding at three pulling speeds.
(c) Equivalent setup in proteins. (d) Force extension curve when pulling the protein RNAseH. Panel
(b) is from Ref. 86. Panels (a) and (d) are a courtesy from C. Cecconi [84]. (See color insert.)

Single molecule pulling experiments can be described with the formalism
developed in Section III.C.1. In the simplest setting the configurational variable
C corresponds to the molecular extension of the complex (handles plus inserted
molecule) and the control parameter A is either the force f measured in the bead
or the molecular extension of the system, x. For small enough systems the
thermodynamic equation of state is dependent on what is the variable that is
externally controlled [87]. In the actual experiments, the assumption that either
the force or the extension is controlled is just an approximation. Neither the
molecular extension nor the force can be really controlled in optical tweezers
[88]. For example, in order to control the force a feedback mechanism must
operate at all times. This feedback mechanism has a time delay response so the
force is never really constant [89, 90]. By assuming that the force is constant,
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we are neglecting some corrections in the analysis.” Under some conditions
these corrections are shown to be unimportant (see below). Let us now consider
that the force acting on the inserted molecule is controlled (the so-called
isotensional ensemble). For a molecule that is repeatedly pulled from a
minimum force value, fin, up to a maximum force, fi.x, the work (Eq. (37))
along a given path is given by

fmax fmax
[yt

Wi (') = = x(f) df (96)

finin of fimin

where the energy function is given by E(x,f) = E(x,0) — fx, E(x,0) being the
energy function of the molecule at zero force. The subindex fin Wy is written to
underline the fact that we are considering the isotensional case where f is the
control parameter. The Jarzynski equality, Eq. (40), and the FT, Eq. (41), hold
with AF equal to the free energy difference between the initial and final
equilibrium states. We assume that the molecule is immersed in water at
constant temperature 7 and pressure p and acted on by a force f. The
thermodynamic free energy F(T,p,f) in this description is the Legendre
transform of the Gibbs free energy at zero force, ambient temperature 7, and
pressure p, G(T,p) [92, 93]:

OF(T,p,f)
of

We are interested in knowing the Gibbs free energy difference at zero force, AG,
rather than the free energy difference AF between the folded state at f;,;, and the
unfolded extended state at fi,,x. We can express Eqgs. (40) and (41) in terms of G
(rather than F) and define the corrected work W;’(F) along a path,

F<T7p7f) = G(Tap) _fx(Tapaf) - X(T7P7f) = (97)

Wi (T) = Wr(') + A(yf) = Wr(T) + (maxfimax = Xminfmin) (98)

where the extensions Xpin, Xmax are now fluctuating quantities evaluated at the
initial and final times along each pulling. The corrected work W]?(F) includes an
additional boundary term and therefore does not satisfy either the JE or the CFT.
If we now consider that x is the control parameter then we can define the
equivalent of Eq. (96) (the so-called isometric ensemble):

Wo(T) = WD) + AGf) = [ f(x) d (99)

Xmin

By using two traps, it is possible to maintain a constant force [91]. This is also possible with
magnetic tweezers. However, because of the low stiffness of the magnetic trap, the spatial resolution
due to thermal fluctuations is limited to a few tens of nanometers.
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where now x is controlled and Xpin, Xmax are fixed by the pulling protocol.
Equations (98) and (99) look identical; however, they refer to different
experimental protocols. Note that the term W (I") appearing in Eq. (99) is now
evaluated between the initial and final forces at fixed initial and final times. Both
works W, and W; satisfy the relations (40) and (41). For a reversible process
where f is controlled we have WJEeV = AF, whereas if x is controlled we have
WiV = AG. In experiments it is customary to use Eq. (99) for the work: first,
because that quantity is more easily recognized as the mechanical work; and
second, because it gives the free energy difference between the folded and the
unfolded states at zero force, a quantity that can be compared with thermal
denaturation experiments.

In general, neither the force nor the molecular extension can be controlled in
the experiments so definitions in Eqs. (96), (98), and (99) result in
approximations to the frue mechanical work that satisfy Egs. (40) and (41).
The control parameter in single molecule experiments using optical tweezers
is the distance between the center of the trap and the immobilized bead [88].
Both the position of the bead in the trap and the extension of the handles are
fluctuating quantities. It has been observed [94-96] that in pulling experiments
the proper work that satisfies the FT includes some corrections to Eqgs. (97) and
(99) mainly due to the effect of the trapped bead. There are two considerations
to take into account when analyzing experimental data.

o W, or W;? Let us suppose that f'is the control parameter. In this case the
JE and CFT, Eqgs. (40) and (41), are valid for the work, Eq. (96). How
large is the error that we make when we apply the JE using W, instead?
This question has been experimentally addressed by Ciliberto and
co-workers [97, 98], who measured the work in an oscillator system with
high precision (within tenths of kg 7). As shown in Eq. (99), the difference
between both works is mainly a boundary term, A(xf). Fluctuations of
this term can be a problem if they are on the same order as fluctuations of
W, itself. For a harmonic oscillator of stiffness constant equal to k, the
variance of fluctuations in fx are equal to k3(x?), that is, approximately on
the order of kgT due to the fluctuation-dissipation relation. Therefore, for
experimental measurements that do not reach such precision, W, or Wy is
equally good.

o The Effect of the Bead or Cantilever. Hummer and Szabo [94] have
analyzed the effect of a force sensor attached to the system (i.e., the bead
in the optical trap or the cantilever in the AFM) in the work
measurements. To this end, we consider a simplified model of the
experimental setup (Fig. 8). In such a model, the molecular system (that
includes the molecule of interest—RNA or protein— and the handles) is
connected to a spring (that models the trapped bead or the AFM



70

FELIX RITORT

N

Figure 8. A molecular system of extension x is connected at its leftmost end to a bead trapped

in an optical well (or to the tip of an AFM cantilever) and at its rightmost end to an immobilized
surface (or a bead fixed to the tip of a micropipette). The position of the bead relative to the center of
the trap, xp, gives a readout of the acting force f = kxp. The control parameter in this setup is
Z = xp + x, whereas both x, and x are fluctuating quantities.

cantilever) and the whole system is embedded in a thermal bath. The total
extension of the molecular system is x but the control parameter is
Z = x + xp where x;, is the position of the bead with respect to the center
of the trap. The total free energy of the system is given by F(x) + %Kxﬁ,
where F(x) is the free energy of the molecular system alone and «x is the
stiffness of the trap. The molecular extension x and the distance x; are
related by the force balance equation,

OF (x)
Ox

f=xx= (100)

where we assume that the bead is locally equilibrated at all values of the
nonequilibrium molecular extension x (this is a good approximation as the
bead relaxes fast enough compared to the typical time for the unfolding/
refolding of the molecule). The mechanical work, Eq. (37), is then given by

Zmax 2
w(T) = / fdz=w,(I)+ A (21() (101)
where we used dz = dxy 4 dx and Eq. (100). The difference between the
proper work W and W, is again a boundary term. Because z is the control
parameter, the JE and the CFT are valid for the work W but not for W,.
Again, the FT will not hold if fluctuations in the boundary term are
important. The variance of these fluctuations is given by

72 kgTx
— ~ <
<6<2K)> Kx"f'K_kBT (102)
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where x, is the stiffness of the molecular system [88, 99]. Usually, x, > «
so fluctuations in the boundary term are again smaller than kg7. In
general, as a rule of thumb, we can say that it does not matter much which
mechanical work we measure if we do not seek free energy estimates with
an accuracy less than kg7. This is true unless the bead (cantilever) does
not equilibrate within the time scales of the experiments. This may be the
case when x is too low and Eq. (100) is not applicable.

2. Free Energy Recovery

As we already emphasized, the JE (Eq. (40)) and the FT (Eq. (41)) can be used to
predict free energy differences. In single molecule experiments it is usually
difficult to pull molecules in a reversible way due to drift effects in the
instrument. It is therefore convenient to devise nonequilibrium methods (such as
the JE or the CFT) to extract equilibrium free energy differences from data
obtained in irreversible processes. The first experimental test of the JE was
carried out by pulling RNA hairpins that are derivatives of the L21 Tetrahymena
ribozyme [100]. In these experiments RNA molecules were pulled at moderate
speed: the average dissipated work in such experiments was less than 6kg7 and
the work distributions turned out to be approximately Gaussian. Recent
experiments have studied RNA molecules that are driven farther away from
equilibrium in the nonlinear regime. In the nonlinear regime the average
dissipated work is nonlinear with the pulling speed [101] and the work
distribution strongly deviates from Gaussian [102]. In addition, these experi-
ments have provided the first experimental test of the CFT (Eq. (41)). These
measurements have also shown the possibility of recovering free energy
differences by using the CFT with larger accuracy than that obtained by using
the JE alone. There are two main predictions of the CFT (Eq. (41)) that have been
scrutinized in these experiments.

e Forward and Reverse Work Distributions Cross at W = AG. In order
to obtain AG we can measure the forward and reverse work distributions,
Pr(W) and Pr(—W), and look at the work value W* where they cross,
Pr(W*) = Pr(—W*). According to Eq. (41), both distributions should
cross at W* = AG independently of how far the system is driven out of
equilibrium (i.e., independently of the pulling speed). Figure 9 shows
experiments on a short canonical RNA hairpin CD4 (i.e., just containing
Watson—Crick complementary base pairs) at three different pulling
speeds, which agree very well with the FT prediction.

o Verification of the CFT. The CFT (Eq. (41)) can be tested by plotting
log(Pr(W)/Pr(—W)) as a function of W. The resulting points should fall
in a straight line of slope 1 (in kg7 units) that intersects the work axis at
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Figure 9. (a) Structure of the homologous CD4 hairpin. (b) FECs at a loading rate of 1.7 pN/s.
(c) Unfolding and refolding work distributions at three loading rates (see inset). The unfolding and
refolding work distributions cross at a value AG independent of the pulling speed as predicted by the
CFT. Data correspond to 100,400 and 700 pulls for the lowest, medium, and highest pulling speeds,
respectively. (d) Test of the CFT at the intermediate loading rate 7.5 pN/s for four different tethers.
The trend of the data is reproducible from tether to tether and consistent with the CFT prediction.
(From Ref. 102.) (See color insert.)

W = AG. Of course, this relation can be tested only in the region of work
values along the work axis where both distributions (forward and reverse)
overlap. An overlap between the forward and reverse distributions is
hardly observed if the molecules are pulled too fast or if the number of
pulls is too small. In such cases, other statistical methods (Bennet’s
acceptance ratio or maximum likelihood methods, Section IV.B.3) can be
applied to get reliable estimates of AG. The validity of the CFT has been
tested in the case of the RNA hairpin CD4 previously mentioned and the
three-way junction RNA molecule as well. Figure 9c,d and Fig. 10c show
results for these two molecules.

In general, both the JE and the CFT are only valid in the limit of an infinite
number of pulls. For a finite number of pulls, NV, the estimated value for AG that
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Figure 10. (a) Secondary structure of the three-way junction S15. (b) A few FECs for the wild
type. (c¢) Unfolding/refolding work distributions for the wild type and the mutant. (Inset)
Experimental verification of the validity of the CFT for the mutant, where unfolding and refolding
distributions overlap each other over a limited range of work values. Data correspond to 900 pulls for
the wild type and 1200 pulls for the mutant. (From Ref. 102.) (See color insert.)

is obtained by applying the JE is biased [103]. The free energy estimate Fi* for
a given set, k, of N work values W{‘, Wé‘, e W}f, is defined as

JE RN W
Fi° = —Tlog NZexp(—T> (103)

i=1

The free energy bias is defined by averaging the estimator Fi over an infinite
number of sets,

(1 :
B(N) = lim MZFk — AF (104)

M—o0
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where AF is the true free energy difference. The bias B(N) converges to 0 for
N — oo. However, it is of practical importance to devise methods to estimate
how many pulls are required to obtain the Jarzynski free energy estimate F'F
within a reasonable error far from the true value [101, 104]. The bias is a
complicated mathematical object because the Jarzynski average catches
important contributions from large deviations of the work. As we will see in
Section V.C.2, the bias is a large deviation function that requires specific
mathematical methods to analyze its finite N behavior and large N convergence.
There we prove that, for large N, the bias decreases as 1/N, a result known as the
Woods formula [104]. In the intermediate N regime, the behavior of the bias is
more complicated [105]. Free energy recovery techniques are also used in
numerical simulations to evaluate free energy differences [106-109] and
reconstruct free energy profiles or potentials of mean-field force [110, 111].

3. Efficient Strategies and Numerical Methods

An important question is to understand the optimum nonequilibrium protocol to
recover free energies using the JE given specific constraints in experiments and
simulations. There are several considerations to take into account.

e Faster or Slower Pulls? In single molecule experiments, tethers break
often so it is not possible to repeatedly pull the same tether an arbitrary
number of times. Analogously, in numerical simulations only a finite
amount of computer time is available and only a limited number of paths
can be simulated. Given these limitations, is it better to perform many fast
pulls or a few slower pulls to recover the free energy difference using the
JE? In experiments, drift effects in the instrument always put severe
limitations on the minimum speed at which molecules can be pulled. To
obtain good quality data, it is advisable to carry out pulls as fast as
possible. In numerical simulations, the question about the best strategy for
free energy recovery has been considered in several papers [103,
112-114]. The general conclusion that emerges from these studies is
that, in systems that are driven far away from equilibrium, it is preferable
to carry out many pulls at high speed than a few pulls at slower speeds.
The reason can be intuitively understood. Convergence in the JE is
dominated by the so-called outliers, that is, work values that deviate a lot
from the average work and are smaller than AF. The outliers contribute a
lot to the exponential average, Eq. (40). For higher pulling speeds, we can
perform more pulls so there are more chances to catch a large deviation
event, that is to catch an outlier. At the same time, because at higher
speeds the pulling is more irreversible, the average dissipated work
becomes larger, making the free energy estimate less reliable. However,
the contribution of the outliers required to recover the correct free energy
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is more important than the opposite effect due to the increase of the
average dissipated work. We should mention that periodically oscillating
pulls have also been considered; however, it is unclear whether they lead
to improved free energy estimates [115, 116].

e Forward or Reverse Process? Suppose we want to evaluate the free
energy difference between two states, A and B, by using the JE. Is it better
to estimate AF by carrying out irreversible experiments from A to B, or is
it better to do them from B to A? Intuitively, it seems natural that the less
irreversible process among the two (forward and reverse), which is the
one with smaller dissipated work Wy, is also the most convenient to
consider in order to extract the free energy difference. However, this is not
true. In general, a larger average dissipated work implies a larger work
variance (Eq. (42))—that is, larger fluctuations. The larger the fluctua-
tions, the larger is the probability to catch a large deviation that
contributes to the exponential average. It seems reasonable that if outliers
contribute much more to finding the right free energy than proper tuning
of the average value of the work, then the process that fluctuates more
(i.e., the more dissipative one) is the process that must be sampled to
efficiently recover AF. This result was anticipated in Ref. 117 and
analyzed in more detail in Ref. 118. For Gaussian work distributions, the
minimum number of pulls, N*, required to efficiently recover free energy
differences within 1kgT by using the JE grows exponentially with the
dissipated work along the nonequilibrium process [101]. However, for
general work distributions, the value of N;(R) along the forward (reversed)
process depends on the average dissipated work along the reverse
(forward) process [118]. This implies that

WRE)
N ~ exp <%> (105)

and the process that dissipates most between the forward and the reverse
is the best to efficiently recover AF.

Until now we discussed strategies for recovering free energy differences
using the JE. We might be interested in free energy recovery by combining the
forward and reverse distributions at the same time that we use the CFT. This is
important in both experiments [102] and simulations [119, 120] where it is
convenient and natural to use data from the forward and reverse processes. The
best strategy to efficiently recover free energies using the forward and reverse
processes was proposed by C. Bennett in the context of equilibrium sampling
[121]. The method was later extended by Crooks to the nonequilibrium case
[46] and is known as Bennett’s acceptance ratio method. The basis of the
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method is as follows. Let us multiply both sides of Eq. (41) by the function
gu(W),

w AF
s exp( 3 ) o) = Wi Wyeso(<55) (109
where g, (W) is an arbitrary real function that depends on the parameter L.
Integrating both sides between W = —oo and W = oo gives
w AF
(amew(-T)) =@wien(-55) (07
F

where (---)pg) denote averages over the forward and reverse process,
respectively. Taking the logarithm of both sides, we have

AF

w(W) =z (0) = = (108)

where we have defined

(W) = 10g(<8u(W))R) (109)
o) = (mwyexn(- 7)) (10)

Equation (108) implies that the difference between functions zr and zg must be a
constant over all pt values. The question we would like to answer is the following.
Given a finite number of forward and reverse pulls, what is the optimum choice
for g, (W) that gives the best estimate of Eq. (108) for AF? For a finite number of
experiments Ng, Ng along the forward and reverse process we can write

1 New)

> Aw) (1)

A(w) >F(R) = New)

for any observable A. Equation (107) yields an estimate for AF,

(@r =1 (toe((a W) ~ e (e (- 7)) )) (12

Minimization of the variance,

oir = (AP = AF)?) (113)
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((---) denotes the average over the distributions Pg, Pr) with respect to all
possible functions g, (W) shows [46, 121] that the optimal solution is given by

1
1T+ (Np/Ne) exp(W — )/T)

(W) (114)

and p = AF. The same result has been obtained by Pande and co-workers by
using maximum likelihood methods [122]. In this case, one starts from a whole
set of work data encompassing Nr forward and Ny reversed values. One then
defines the likelihood function of distributing all work values between the
forward and reverse sets. Maximization of the likelihood leads to Bennett’s
acceptance ratio formula. To extract AF it is then customary to plot the
difference on the lhs of Eq. (108), zr (1) — zr(1), as a function of | by using Egs.
(109) and (110). The intersection with the line zg (1) — zp(1) = p gives the best
estimate for AF. An example of this method is shown in Fig. 11. Recently, the
maximum likelihood method has been generalized to predict free energy
estimates between more than two states [123].

V. PATH THERMODYNAMICS

A. The General Approach

The JE (Eq. (40)) indicates a way to recover free energy differences by
measuring the work along all possible paths that start from an equilibrium state.
Its mathematical form reminds one of the partition function in the canonical
ensemble used to compute free energies in statistical mechanics. The formulas
for the two cases are

EC: exp (— @) = exp (— ;) (partition function) (115)
ZF: exp (— @) = exp <— g) (Jarzynski equality)  (116)

where F is the equilibrium free energy of the system at temperature 7. Throughout
this section we take kg = 1. In the canonical ensemble the entropy S(E) is equal
to the logarithm of the density of states with a given energy E. That density is
proportional to the number of configurations with energy equal to E. Therefore,
Eq. (115) becomes

ol ) 2ol 40
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Figure 11. (a) Bias as a function of the number of pulls N for a two-states model. The inset
shows the number of pulls as a function of the dissipated work required to recover the free energy
with an error within 1kg7. (b) Function zg — z¢ for the data shown in Fig. 9c at the two largest
pulling speeds. Panel (a) from (Refs. 3 and 101; panel (b) from the supplementary material in
Ref. 102.) (See color insert.)

where ®(E) = E — TS is the free energy functional. In the large volume limit, the
sum in Eq. (117) is dominated by the value E = E*4, where F(E) is minimum.
The value E® corresponds to the equilibrium energy of the system and ®(E®?) is
the equilibrium free energy. The following relations hold:

F = ®(E%); <Mg_gz)> S 0— <62—(EE)> o % (118)

The equilibrium energy E°? is different from the most probable energy, E™P,
defined by §'(E = E™) = 0. E™ is the average energy we would find if we were
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to randomly select configurations all with identical a priori probability. The
equilibrium energy, rather than the most probable energy, is the thermodynamic
energy for a system in thermal equilibrium.

Proceeding in a similar way for the JE, we can define the path entropy S(W)
as the logarithm of the density of paths with work equal to W, P(W):

P(W) =exp(S(W)) (119)

We can rewrite Eq. (116) in the following way:

exp<_¥> - ;aw(—@) - /dWP(W) exp<— g)
= /dW eXp(S(W) g) = /dW exp(@)

where ®(W) = W — TS(W) is the path free energy. In the large volume limit, the
sum in Eq. (120) is dominated by the work value, WT, where (W) is minimum.
Note that the value W plays the role of the equilibrium energy in the canonical
case, Eq. (118). From Eq. (120) the path free energy <I>(WT) is equal to the free
energy difference AF. The following relations hold:

(120)

AF =o(wh) = wl - 1s(wh) (121)
1

(), ()

At the same time, WJ[ is different from the most probable work, W™, defined as
the work value at which S(W) is maximum:

(o= (B0, ot

The role of W™ and W1 in the case of the JE (Eq. (115)) and E™ and E°Y in the
partition function case (Eq. (116)) appear exchanged. W™P is the work value
typically observed upon repetition of the same experiment a large number of
times. In contrast, in the partition function case (Eq. (115)), E™ is not the typical
energy, the typical energy being E°I. In addition, W! is not the typical work but
the work that must be sampled along paths in order to be able to extract the free
energy difference using the JE. As we have already emphasized, as the system
size increases, less and less paths can sample the region of work values around
wi. Therefore, although both formalisms (partition function and JE) are
mathematically similar, the physical meaning of the quantities wt and E= is
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different. In the large volume limit, E£°9 is almost always observed whereas WJr is
almost never observed.
In general, from the path entropy we can also define a path temperature,

S =MW =

~twh =1 (124)

where A(W) is a Lagrange multiplier that transforms the path entropy S(W) into
the path free energy ®(W), Eq. (121). The mathematical relations between
the new quantities W! and W™P can be graphically represented for a given path
entropy S(W). This is shown in Fig. 12.

The path thermodynamics formalism allows us to extract some general
conclusions on the relation between W! and W™P. Let us consider the CFT

w+ Wrev me
,"slopex1/k Ty
0 A s(w)

>l
Wais Dd(W)
Weev N {/
K AW) =1/T(w)
T —

W+ Wiey WP

Figure 12. (Upper panel) Path entropy s(w); (Middle panel) path free-energy
®(w) =w — Ts(w); and (lower panel) Lagrange multiplier A(w) equal to the inverse of the path
temperature 1/7(w). w™ is the most probable work value given by s'(w™) = A(w™) =0 or
@' (w™) = 1; wl is the value of the work that has to be sampled to recover free energies from
nonequilibrium work values using the JE. This is given by s’(wT) =1/T or <I>/(WT) = 0; Wy and
Wais are the reversible and average dissipated work, respectively. (From Ref. 117.)
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(Eq. (41)). In terms of the path entropies for the forward and reverse processes,
Sr(W) and Sg(W), (Eq. (41)) can be written as

_W-AF

Se(W) = Sr(=W) = (Se) (W) + (Sr)'(=W) = (125)

NI —

where we used Eq. (119) and later derived it with respect to W. By inserting
W = Wg and —WRT on the rhs of Eq. (125) and using Eqgs. (122) and (123), we
obtain the following chain of relations:

(5 O]) + (5 (- W) = 7~ (S0 (W) =0 — Wi = —wgr (126)

(55 (- W) + (5 OW) = 7~ (e (W) =0 — wl = —wpr (127)

The rightmost equalities in Eqgs. (126) and (127) imply that the most probable
work along the forward (reverse) process is equal to the work value (WT) that
must be sampled, in a finite number of experiments, along the reverse (forward)
process for the JE to be satisfied. This result has already been discussed in
Section IV.B.3: the process that dissipates most between the forward and the
reverse is the one that samples more efficiently the region of values close to wi.
This conclusion, which may appear counterintuitive, can be rationalized by
noting that larger dissipation implies larger fluctuations and therefore more
chances to get rare paths that sample the vicinity of wT. The symmetries in Egs.
(126) and (127) were originally discussed in Ref. 117 and analyzed in detail for
the case of the gas contained in a piston [118].

We close this section by analyzing the case where the work distribution is
Gaussian. The Gaussian case describes the linear response regime usually (but
not necessarily) characterized by small deviations from equilibrium. Let us
consider the following distribution:

(128)

PW) = (2na}) "/ exp(— %)

where the average value of the work, (W), is just equal to the most probable value
W™ The path entropy is given by S(W) = —(W — W™)?/(262,) + constant, so
Eq. (123) is satisfied. From Eq. (124) we get

2
Sw

W — W

o2

T(W) = ol = wme - (129)
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From Egs. (122) and (129) we get wi = AF — (o3,/2T). Therefore,

2
W(;ll-iss = WT = Weew = WT —AF = 7% (130)
o2
Wcri?fs:me_Wrev :me_AF:2—¥ (131)
leading to the final result Wjiss = =Wyl = —(Wiaiss). Therefore, in order to

recover the free energy using the JE, paths with negative dissipated work and of
magnitude equal to the average dissipated work must be sampled. Sometimes the
paths with negative dissipated work are referred to as transient violations of the
second law. This name has raised strong objections among some physicists. Of
course, the second law remains inviolate. The name just stresses the fact that
paths with negative dissipated work must be experimentally accessible to
efficiently recover free energy differences. Note that, for the specific Gaussian
case, we get (Wyiss) = o3, /2T therefore the fluctuation-dissipation parameter R
(Eq. (42)) is equal to 1 as expected for systems close to equilibrium. The result
R =1 has been shown to be equivalent to the validity of the fluctuation-
dissipation theorem [96].

B. Computation of the Work/Heat Distribution

The JE and the CFT describe relations between work distributions measured in
the NETS. However, they do not imply a specific form of the work distribution.
In small systems, fluctuations of the work relative to the average work are large
so work distributions can strongly deviate from Gaussian distributions and be
highly nontrivial. In contrast, as the system size increases, deviations of the work
respect to the average value start to become rare and exponentially suppressed
with the system size. To better characterize the pattern of nonequilibrium
fluctuations, it seems important to explore analytical methods that allow us to
compute, at least approximately, the shape of the energy distributions (e.g., heat
or work) along nonequilibrium processes. Of course, there is always the
possibility of carrying out exact calculations in specific solvable cases. In
general, however, the exact computation of the work distribution can be a
difficult mathematical problem (solvable examples are given in Refs. 124-128)
that is related to the evaluation of large deviation functions (Section V.C). This
problem has traditionally received a lot of attention by mathematicians and we
foresee it may become a central area of research in statistical physics in the next
few years.

1. An Instructive Example

To put the problem in proper perspective, let us consider an instructive example:
an individual magnetic dipole of moment p subject to a magnetic field H and
embedded in a thermal bath. The dipole can switch between the up and down
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configurations, . The transition rates between the up and down orientations
are of the Kramers type [129, 130],

exp(uH/T)

koyon(H) = kup(H) = kom (132)
by ) = i) = o3 oL (133)

with ko = kyp(H) + kdown(H) independent of H. The rates in Eqs. (132) and
(133) satisty detailed balance (Eq. (8)):

k() _ PHG) _ (20H
Koo ()~ Pi(—p) p< T )

(134)

with P4(—(+)pn) =exp(—(+)uH/T)/ Z, where Z =2cosh(uH/T) is the equili-
brium partition function. In this system there are just two possible configurations:
C = —p, 1. We consider a nonequilibrium protocol where the control parameter H
is varied as a function of time, H(¢). The dynamics of the dipole is a continuous
time Markov process, and a path is specified by the time sequence I' = {p(z)}.
Let us consider the following protocol: the dipole starts in the down state —1
at H = —H,. The field is then ramped from —H, to +H, at a constant speed
r=H, so H(t) = rt (Fig. 13a). The protocol lasts for a time #,,,, = 2Hy/r and
the field stops changing when it has reached the value Hy. The free energy
difference between the initial and final states is 0 because the free energy is an
even function of H. To ensure that the dipole initially points down and that this
is an equilibrium state, we take the limit Hy — oo but we keep the ramping
speed r finite. In this way we generate paths that start at H = —oo at t = —o0
and end up at H = oo at r =o0o0. We can now envision all possible paths
followed by the dipole. The up configuration is statistically preferred for H > 0,

H M
H, u
H*
! time
— H() —H

() (b)

Figure 13. (a) Ramping protocol. The ramping speed is defined by r = 2H,/t where ¢ is the
duration of the ramp. (b) Three examples of paths where the down dipole reverses orientation at
different values of the field, H*. (See color insert.)



84 FELIX RITORT

whereas the down configuration is preferred for H < 0. Therefore, in a typical
path the dipole will stay in the down state until the field is reversed. At some
point, after the field changes sign, the dipole will switch from the down to the up
state and remain in the up state for the rest of the protocol. On average, there
will always be a time lag between the time at which the field changes sign and
the time at which the dipole reverses orientation. In other paths the dipole will
reverse orientation before the field changes sign, that is, when H < 0. These
sorts of paths become more and more rare as the ramping speed increases.
Finally, in the most general case, the dipole can reverse orientation more than
once. The dipole will always start in the down orientation and end in the up
orientation with multiple transitions occurring along the path.
The work along a given path is given by Eq. (37),

W(r) = — / deH(On() = —r / drn(r) (135)
—00 —00

Note that because Ey(n) = E_g(—p), then AE =0 and Q(T') = W(T") so heat
and work distributions are identical in this example. Moreover, due to the time-
reversal symmetry of the ramping protocol, the work distribution P(W) is

identical along the forward and reverse processes. Therefore, we expect that the
JE (Eq. (40)) and the CFT (Eq. (41)) are both satisfied with AF = 0:

o) ((B)r o

The exact computation of P(W) in this simple one-dipole model is already a very
arduous task that, to my knowledge, has not yet been exactly solved.” We can,
however, consider a limiting case and try to elucidate the properties of the work
(heat) distribution. Here we consider the limit of large ramping speed r, where
the dipole executes just one transition from the down to the up orientation. A few
of these paths are depicted in Fig. 13b. This is also called a first-order Markov
process because it only includes transitions that occur in just one direction (from
down to up). In this reduced and oversimplified description, a path is fully
specified by the value of the field H* at which the dipole reverses orientation. The
work along one of these paths is given by

WO=H) = tim [ dHu(H) = (" +Ho)— (Ho— H*))u=2uH" (137)

Hg—»oo _H[)

“An exact solution to this problem has been recently accomplished by E. Subrt and P. Chvosta
[E. Subrt and P. Chvosta, Exact analysis of work fluctuations in two-level systems, J. Stat. Mech.
(2007) P09019].
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According to the second law, (W) = (Q) > 0, which implies that the average
switching field is positive, (H*) > 0 (as expected due to the time lag between the
reversal of the field and the reversal of the dipole). The work distribution is just
given by the switching field distribution p(H*). This is a quantity easy to
compute. The probability that the dipole is in the down state at field H satisfies a
master equation that only includes the death process,

apdown(H) _ _kup(H)

own (F 138
- P2 paown(H) (138)
This equation can be solved exactly:
1 H
Paown (H) = exp (_; / dH kup(H)> (139)

where we have inserted the initial condition pgown (—00) = 1. The integral in the
exponent can easily be evaluated using (Eqgs. (132) and (133). We get

Wl —Tko/2ur
Paown(H) = (1 +exp( £ )> (140)

T

The switching field probability distribution p(H*) is given by p(H*) =
—(Pdaown) (H*). From Eq. (137), we get

ko W\ \ R/ exp(W/2T)
PW)=——1|1 — _— 141

(W) 4pr ( + exp<T>> cosh(W/2T) (141)
and from this result we obtain the path entropy,

S(W) = log(P(W)) = —;—ﬁ:log (exp (g) + 1) W

2T
1 h id + tant
og| cos T constan

It is important to stress that Eq. (141) does not satisfy Eq. (136) except in the
limit » — oo, where this approximation becomes exact. We now compute W™P
and WJr in the large r limit. We obtain, to the leading order,

(142)

S'(W™) =0 — W™ = Tlog (y) + 0(1) (143)

k()T r
swh = % —wl=_Tlog <2“Tr> + 0(1> (144)

0 r
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so the symmetry in Eq. (126) (or Eq. (127)) is satisfied to the leading order (yet it
can be shown how the 1/r corrections appearing in W™ and W' (Egs. (143) and
(144)) are different). We can also compute the leading behavior of the
fluctuation-dissipation parameter R (Eq. (42)) by observing that the average
work (W) is asymptotically equal to the most probable work. The variance of the
work, 6%, is found by expanding S(W) around W™>:

n S//(wmp) o2 .
S(W) = S(W™) + —5 (W — W™)” + (higher order terms)  (145)

1
2 e —
Ow = S//(me) (]46)

A simple computation shows that G%‘, = 2T and, therefore,

2
Cw 1

R = —
2Tvvdiss IOg(ZHr/kOT)

(147)

so R decays logarithmically to zero. The logarithmic increase of the average
work with the ramping speed (Eq. (143)) is just a consequence of the logarithmic
increase of the average value of the switching field (H*) with the ramping speed.
This result has also been predicted for the dependence of the average breakage
force of molecular bonds in single molecule pulling experiments. This
phenomenology, related to the technique commonly known as dynamic force
spectroscopy, allows one to explore free energy landscapes by varying the
pulling speed over several orders of magnitude [131, 132].

2. A Mean-Field Approach

We now focus our attention on an analytical method useful for computing work
distributions, P(W), in mean-field systems. The method has been introduced in
Ref. 117 and developed in full generality by A. Imparato and L. Peliti [133, 134].
This section is a bit technical. The reader not interested in the details can just skip
this section and go to Section V.C.

The idea behind the method is the following. We express the probability
distribution P(W) as a sum over all paths that start from a given initial state.
This sum results in a path integral that can be approximated by its dominant
solution or classical path in the large N limit, N being the number of particles.
The present approach exploits the fact that, as soon as N becomes moderately
large, the contribution to the path integral is very well approximated by the
classical path. In addition, the classical path exactly satisfies the FT. Here we
limit ourselves to show in a very sketchy way how the method applies to solve
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the specific example shown in Section V.B.1. A detailed and more complete
derivation of the method can be found in Refs. 117 and 134.

We come back to the original model, Egs. (132) and (133), and include all
possible paths where the dipole reverses orientation more than once. The
problem now gets too complicated, so we modify the original model by
considering an ensemble of noninteracting N identical dipoles. A configuration
in the system is specified by the N-component vector C = {[i = (I;),;<y} With
y; = £u the two possible orientations of each dipole. A path is specified by the
time sequence I' = {}i(s); 0 < s < r}. The energy of the system is given by

E(C) = —hM(C) = —hi , (148)
i=1

where M =), ; is the total magnetization. The equilibrium free energy is
F = —Nlog(2cosh(uH/T)) and the kinetic rules are the same as given in
Egs. (132) and (133) and are identical for each dipole. The work along a given
path is given by Eq. (135),

W() = — /0 tdsH(s)M(s) (149)

so the work probability distribution is given by the path integral,

P(W) = P(I)3(W() - W) = / D[ﬁ]5<w+ / tdsH(s)M(s)) (150)
T

0

where we have to integrate over all paths where [i starts at time O in a given
equilibrium state up to a final time ¢. To solve Eq. (150) we use the integral
representation of the delta function,

d(x) = (1/2n) /'00‘ d)\ exp(—ikx) (151)

—00

We also insert the following factor,

. /%exp (ﬁ/ﬂs) <m(s) _llV,_Z Hi(s)>> (152)

where At is the discretization time step and we have introduced new scalar fields
v(s) and m(s). After some manipulations one gets a closed expression for the
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work distribution P(w) (w = W/N is the work per dipole). We quote the final
result [117]:

Pw) = N / D[y Dlm] exp(Na(w, % v, m) (153)
where N is a normalization constant and a represents an action given by
t
a(w,h,y,m) = 7»<w —|—/ dsH(s)M(s)) (154)
0

+ %/ ds(m(s)(27(s) + c(s)) + d(s))
0
+ log (exp(v(0) ) kup(H;) + exp(—7(0)kgown (H;)) ~ (155)
with
c(s) = kaown (H (s))(exp(—2v(s)) — 1) — kup(H(s))(exp(2v(s)) — 1) ~ (156)
d(s) = kaown(H(s))(exp(=2v(s)) — 1) + kup(H(s))(exp(2v(s)) — 1)  (157)

where the rates ky, and kgown are given in Eqgs. (132) and (133) and we have
assumed an initial equilibrium state at the the initial value of the field, H(0) = H;.
Equation (155) has to be solved together with the boundary conditions:

v(t) =0; m(0) = tanh (V(O) + ufi) (158)

Note that these boundary conditions break causality. The function y has the
boundary at the final time ¢ whereas m has the boundary at the initial time 0.
Causality is broken because by imposing a fixed value of the work w along the
paths we are constraining the time evolution of the system.

To compute P(w) we take the large volume limit N — oo in Eq. (153). For a
given value of w the probability distribution is given by

P(w) x exp(Ns(w)) = exp(Na(w), (W), v,,(s), my(s)) (159)

where s is the path entropy (Eq. (119)) and the functions A(w),v,,(s) and m,,(s)
are solutions of the saddle point equations,

%:W+H/O mW(S)H(S)dS:O (160)
da )
570 = 1ty (5) + 1y (5) (kup (5) 4 kdown(s))
— (kup(s) - kdown(s)) + mw(s)dw(s) + CW(S) -0 (161)
da

= 4,(5) + 20 (s) + 5 eu(s) =0 (162)
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These equations must be solved together with the boundary conditions in
Eq. (158). Note that we use the subindex (or the argument) w in all fields (A, m, y)
to emphasize that there exists a solution of these fields for each value of the work
w. From the entropy s in Eq. (159) we can evaluate the path free energy, the path
temperature, and the values W™ and W' introduced in Section V.A. We
enumerate the different results.

e The Path Entropy s(w). By inserting Eq. (162) into Eq. (155), we get

s(w) = Mw)w +%/()tdw(s) ds

+ log (eXP(Y(O))kuP(Hi) + exp(_Y(O))kdown(Hi))

(163)

From the stationary conditions—Eqs. (160)-(162)—the path entropy in
Eq. (159) satisfies
_ ds(w)  da(w,M(w),v,,(s), m,(s))

= . = A(w) (164)

s'(w)

The most probable work can be determined by finding the extremum of the path
entropy s(w),
s'(W™P) = A(w™) =0 (165)

where we used Eq. (123). The saddle point equations (160)—(162) give
Yoo () = Cymo (8) = dymo (5) = 0 and

ity (§) = —nygm (5) (kup(s) + Kdown(s)) + (kup(s) — Kdown(s)) (166)

which is the solution of the master equation for the magnetization. The stationary
solution of this equation gives the equilibrium solution m®(s) = tanh(pH (s)/T)
corresponding to a quasistationary or reversible process.

e The Path Free Energy. The path free energy f = ®/N (Eq. (121)) is

given by
fT :f(WT) :%:Wrev:WT*TS(WT) :g/o dWT(S)dS (167)
where wi is given by
SOy =l = (168)
and the path temperature (Eq. (124)) satisfies the identity
Tow) = ——: Twh) =7 169)
Yy TS (
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This set of equations can be solved numerically. Figure 14 shows some of the
results.

C. Large Deviation Functions and Tails

A large deviation function P(x) of a function Py (x) is defined if the following
limit exists:

. 1 X
b= i s ) o
From this point of view, the distribution of the entropy production in a NESS,
P(a) (Eq. (55)), where a = S, /(S,), and the work distribution P(W) (Eq. (159)),
define large deviation functions. In the first case, lim,_. f;(a) is the large
deviation function (e.g. Eq. (84)), the average entropy production (S,,) being the
equivalent of L in Eq. (170). In the second case, the path entropy s(w) = S(W)/N
(Egs. (119) and (159)) is a large deviation function, where L in Eq. (170)
corresponds to the size N. Large deviation functions are interesting for several
reasons.

e Nonequilibrium Theory Extensions. By knowing the large deviation
function of an observable (e.g., the velocity or position density) in a
nonequilibrium system, we can characterize the probability of macro-
scopic fluctuations. For example, by knowing the function s(w) we can
determine the probability of macroscopic work fluctuations dW x N,
where N is the size of the system. Large deviations (e.g., in work) may
depend on the particular details (e.g., the rules) of the nonequilibrium
dynamics. In contrast, small deviations (i.e., OW \/N) are usually
insensitive to the microscopic details of the dynamics. Nonequilibrium
systems are nonuniversal and often strongly dependent on the microscopic
details of the system. In this regard, understanding large or macroscopic
deviations may be a first step in establishing a general theory for
nonequilibrium systems.

e Spectrum of Large Deviations. There are few examples where large
deviations can be analytically solved. Over the past years a large amount
of work has been devoted to understanding large deviations in some
statistical models such as exclusion processes. General results include the
additivity principle in spatially extended systems [135-137] and the
existence of exponential tails in the distributions [138]. These general
results and the spectrum of large deviations are partially determined by
the validity of the FT (Eq. (27)), which imposes a specific relation
between the forward and the reverse work/heat distributions. For example,
exponential tails in the work distribution P(W) (Eq. (119)) correspond to
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Figure 14. Various results for the mean-field solution, Egs. (160)—(162), of a dipole in a field
that is ramped from H; = 0 to H; = 1. (a) Fields m, (s) and v, (s) at the ramping speed r = 1. Curves
correspond to different values of A (A= —5,-2,—1,-0.5,-0.2,0,0.2,0.5,1,2,5 from top to
bottom in the upper and lower panel). The dashed line in my(s) is the equilibrium solution
meq(H) = tanh(H) corresponding to the reversible process r — 0. (b) Magnetization m (s) for the
most probable path A = 0. The dashed line corresponds to the reversible trajectory, r — 0. (c)
Lagrange multiplier A(wgis) for three ramping speeds. The intersection of the different curves with
the dashed line A = 0 gives w™ (filled circles) whereas the intersection with A = —1 gives w! (filled
squares). The intersection of all three curves around A = 0.5 is only accidental (looking at a larger
resolution such crossing is not seen). (d) Path entropy and free energy corresponding to the solutions
shown in (b, c) (larger speeds correspond to wider distributions). Path entropies are maximum and
equal to zero at wgt = w™ — wy, (filled circles) whereas path free energies are minimum and equal
to f]L = Wrey at wg;, (filled squares). (From Ref. 117.) (See color insert.)
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a path entropy S(W) that is linear in W. This is the most natural solution of
the FT; see Eq. (125).

e Physical Interpretation of Large Deviations. In small systems, large
deviations are common and have to be considered as important as small
deviations. This means that, in order to understand the nonequilibrium
behavior of small systems, a full treatment of small and large deviations
may be necessary. The latter are described by the shape of the large
deviation function. The physical interpretation of small and large
deviations may be different. For example, if we think of the case of
molecular motors, small deviations (with respect to the average) of the
number of mechanochemical cycles may be responsible for the average
speed of a molecular motor, whereas large deviations may be relevant to
understanding why molecular motors operate so efficiently along the
mechanochemical cycles.

1. Work and Heat Tails

Let us consider the case of a NETS that starts initially in equilibrium and is
driven out of equilibrium by some external driving forces. As we have seen in
Eq. (159), (1/N)log(P(w)) = s(w) is a large deviation function. At the same
time we could also consider the heat distribution P(Q) and evaluate its large
deviation function (1/N)log(P(Q)) = s(q), where ¢ = Q/N. Do we expect s(q)
and s(w) to be identical? Heat and work differ by a boundary term, the energy
difference. Yet the energy difference is extensive with N; therefore, boundary
terms modify the large deviation function so we expect that s(g) and s(w) are
different. An interesting example is the case of the bead in the harmonic trap
discussed in Section IV.A. Whereas the work distribution measured along
arbitrary time intervals is always Gaussian, the heat distribution is characterized
by a Gaussian distribution for small fluctuations 8Q = Q — (Q) o v/#, plus
exponential tails for large deviations 6Q o< t. The difference between the large
deviation function for the heat and the work arises from a boundary term, the
energy difference. Again, in the large ¢ limit, the boundary term is important for
large fluctuations when a = |Q|/(Q) > a* =1 (Eq. (84)). Large deviation
functions always depend on boundary terms and these can never be neglected.

Let us come back now to the example of Section V.B.1, where we considered
work distributions in a system of noninteracting dipoles driven by an externally
varying magnetic field. Again, we will focus the discussion on the particular
case where the initial value of the field is negative and large, H; = —Hy — —o0,
and the field is ramped at speed r until reaching the final value Hy = Hy — oo.
In this case, Q = W for individual paths so both large deviation functions
5(q), s(w) are identical. In what follows we will use heat instead of work for the
arguments of all functions. In addition sg = sg due to the time-reversal
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symmetry of the protocol. Exponential tails are indicated by a path temperature
T(q) (Eq. (124)), which is constant along a finite interval of heat values.

In Section V.B.1 we have evaluated the path entropy s(g) (Eq. (163)) for an
individual dipole (N = 1) in the approximation of a first-order Markov process.
The following result has been obtained (Eq. (142)):

Tk,
s(q) = — 2—M(ilog (exp (;) + 1) + % — log (cosh (%)) + constant  (171)

For |g| — oo, we get

s(q—>oo)=—§—f£p+(9(exp(—%)) (172)
s(g — —o0) = % + O(exp (%)) (173)

The linear dependence of s(g) on ¢ leads to

R 2ur

T(g—o00)=T = I (174)
T(g— —o0)=T" =T (175)
(176)

where we use the notation T and T~ to stress the fact that these path
temperatures are positive and negative, respectively. Both path temperatures are
constant and lead to exponential tails for positive and negative work values. Note
that Eq. (125) reads

) / 1 1 1 1
sta) = s(-a) =L = (@) + () == o m = (1T7)
which is satisfied by (Egs. (174) and (175)) up to 1/r corrections.

Another interesting limit is the quasistatic limit r — 0. Based on the
numerical solution of the saddle point equations (160)—(162), it was suggested
in Ref. 117 that T(q) converged to a constant value over a finite range of work
values. Figure 15a shows the results obtained for the heat distributions, whereas
the path temperature is shown in Fig. 15b. A more detailed analysis [134] has
shown that a plateau is never fully reached for a finite interval of heat values
when r — 0. The presence of a plateau has been interpreted as the occurrence of
a first-order phase transition in the path entropy s(gq) [134].

An analogy between the different type of work/heat fluctuations and the
emission of light radiation by atoms in a cavity can be established. Atoms can
absorb and reemit photons following two different mechanisms. One type of
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Figure 15. (a) Heat distributions (path entropy s(g) and path free energy f(g)) evaluated at four
ramping speeds r = 0.1,0.5, 1, 10 (from the narrowest to the widest distributions). The dashed line in
the left panel is y(g) = g/T (we take T = 1) and is tangent to s(q) at qu (dots are shown for r = 10).
The dashed line in the right panel corresponds to y(¢) = ¢ and is tangent to the function f(q) at the value
¢™ (dots shown for r = 10). (b) A(g) for the lowest speed r = 0.1. It shows a linear behavior for small
values of g, A(q) = (1/ Gg) (g™ — q) and two plateaus for ¢ > 1 and ¢ < —1. The former contributes
as a Gaussian component to the heat distribution describing the statistics of small deviations with
respect to the most probable value (stimulated sector). The latter gives rise to two exponential tails for
the distribution describing the statistics of rare events (spontaneous sector). (Adapted from Ref. 117.)

radiative mechanism is called stimulated because it depends on the density of
blackbody radiation in the cavity (directly related to the temperature of the
cavity). The other radiative mechanism is called spontaneous and is independent
of the density of radiation in the cavity (i.e., it does not depend on its
temperature). The stimulated process contributes to the absorption and emission
of radiation by atoms. The spontaneous process only contributes to the emitted
radiation. In general, the path entropy s(w) contains two sectors reminiscent of
the stimulated and spontaneous processes in the blackbody radiation.
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e The FDT or Stimulated Sector. This sector is described by Gaussian
work fluctuations (Eq. (128)) leading to s(gq) = —(q—qmp)z/(Zoﬁ)
+constant. Therefore, we get Eq. (129),

_ L q—q™
Mag) = g o (178)

which behaves linearly in g for small deviations around ¢™P. Note that
T(q) satisfies Eq. (177) and, therefore,

2 m
c, =2Tq™ (179)

leading to a fluctuation-dissipation parameter R = 1, a result equivalent to
the validity of the fluctuation-dissipation theorem (FDT). This sector we
call stimulated because work fluctuations (Eq. (179)) depend directly on
the temperature of the bath.

e The Large Deviation or Spontaneous Sector. Under some conditions
this sector is well reproduced by exponential work tails describing large or
macroscopic deviations. In this sector,

1 1 1 1 1 1

g Tq) T T T T (180

The physical interpretation of 7T and T~ is as follows. Because 7~ is
negative, 7~ describes fluctuations where net heat is released to the bath,
whereas T+ is positive and describes fluctuations where net heat is
absorbed from the bath. Equation (180) imposes 7" < |T~|, implying
that large deviations also satisfy the second law: the average net amount
of heat supplied to the bath (o |T|) is always larger than the average net
heat absorbed from the bath (o< |T]). In the previous example Eqs. (174)
and (175), T* converges to the bath temperature whereas 7— diverges to
—oo when r — oo. We call this sector spontaneous because the energy
fluctuations mainly depend on the nonequilibrium protocol (in the current
example, such dependence is contained in the r dependence of T,
Eq. (174)).

2. The Bias as a Large Deviation Function

The bias defined in Eq. (103) is still another example of a large deviation
function. Let us define the variable

X:iz[j;exp(—%) (181)
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where W; — W; — AF stands for the dissipated work. The free energy estimate
in Eq. (103) satisfies the relation

F'® — AF X 1
x:exp<—T>; x:N:NZexp(—Wi) (182)
i=1

where N is the total number of experiments. The N values of W; are extracted
from a distribution P(W) that satisfies the relations

<1>:[mP(W)dW:1; <exp(fW)>:/joexp(fW)P(W)dW:l (183)

oo oo

We follow the same procedure as in Section IV.B.2 and extract N different values
of W; to obtain a single x using Eq. (182). By repeating this procedure a large
number of times, M, we generate the probability distribution of x, which we will
call Py(x), in the limit M — oo. The bias in Eq. (104) is defined by

[ee}

B(N) = —T(log(x)) = —T/ log(x) Py (x) dx (184)

—00

In the following we show that Py(x) defines a large deviation function in the
limit N — co. We write

PN(x):/HdW,-P(Wi)S(x—]lv;exp(—W,»)>
1 oo N

N
=— [ dpexp (WC_EZeXP(_Wi)> [[pw)aw;
2mi —ico Ni:l il (185)
N ico
:ﬁ/ dﬁlexp<Nﬂ,x+Nlog(/dWP(W)exp(—ﬁexp(—W))))
L) —ico
N 00 A ) .
=5 diexp(Ng(fi,x)) ~y-oc exp(Ng(it",x))
T —iso
where in the second line we used the integral representation of the delta function
(Eq. (151)); in the third line we separate the integrals and independently integrate

the contribution of each variable W;; in the last line we apply the saddle point
integration method to the function g(fi, x) defined as

o

el = -+ log( [

—00

expl-iexp(-)) ) (156)
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where [1* is equal to the absolute maximum of g(fi, x),

(Gg(aﬁ;, X)

) =0—x=<exp(—W) > (187)
=i

with
%, exp(—W) exp(—fiexp(—W))P(W) dW
T X p(—fexp(—W))P(W) dW

(188)

The function g(fi,x) evaluated at I = [i* defines a large deviation function
(Eq. (170)):

f@gwmm;gﬁﬂmgwjmﬁmmw (189)

Using Eq. (189), we can write for the bias in Eq. (184) in the large N limit

_pJ dxlog(x) exp(Ng" (x))
[ dx exp(Ng*(x))

B(N) = (190)

The integrals in the numerator and denominator can be estimated by using the
saddle point method again. By expanding g*(x) around the maximum
contribution at x™*, we get, up to second order,

g (x) = g (™) 4 5(g7)" (2™ (x — xm)? (191)

max

To determine x™**, we compute first

) = (agé;l,x))w*w (dﬂ;@) N (@g(gl;,x)>

(192)

where we have used Egs. (186) and (187). The value x™** satisfies
(87) (™) = " (™) = 0 (193)

Inspection of Egs. (187) and (188) shows that x™** = 1. The second term on the
rhs of Eq. (191) is then given by

(194)
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where (- --) denotes the average over the distribution P(W) (Eq. (183)). Using
Eq. (194) and inserting Eq. (191) into Eq. (190), we finally obtain

B(N) = TW(_ZZNW»_HO(A;) (195)

For a Gaussian distribution, we get B(N) = Texp(o3, — 1)/(2N). Equation
(195) was derived in Ref. 104. For intermediate values of N (i.e., for values of N
where B(N) > 1), other approaches are necessary.

VI. GLASSY DYNAMICS

Understanding glassy systems (see Section II.A) is a major goal in modern
condensed matter physics [139-142]. Glasses represent an intermediate state of
matter sharing some properties of solids and liquids. Glasses are produced by fast
cooling of a liquid when the crystallization transition is avoided and the liquid
enters the metastable supercooled region. The relaxation of the glass to the
supercooled state proceeds by reorganization of molecular clusters inside the
liquid, a process that is thermally activated and strongly dependent on the
temperature. The relaxation of the supercooled liquid is a nonequilibrium
process that can be extremely slow leading to aging. The glass analogy is very
fruitful to describe the nonequilibrium behavior of a large variety of systems in
condensed matter physics, all of them showing a related phenomenology.

The nonequilibrium aging state (NEAS, see Section III.A) is a nonstationary
state characterized by slow relaxation and a very low rate of energy dissipation
to the surroundings. Aging systems fail to reach equilibrium unless one waits an
exceedingly large amount of time. For this reason, the NEAS is very different
from either the nonequilibrium transient state (NETS) or the nonequilibrium
steady state (NESS).

What do aging systems have in common with the nonequilibrium behavior
of small systems? Relaxation in aging systems is driven by fluctuations of a
small number of molecules that relax by releasing a small amount of stress
energy to the surroundings. These molecules are grouped into clusters often
called cooperatively rearranging regions (CRRs). A few observations support
this interpretation.

e Experimental Facts. Traditionally, the glass transition has been studied
with bulk methods such as calorimetry or light scattering. These
measurements perform an average over all mesoscopic regions in the
sample but are not suitable to follow the motion of individual clusters of a
few nanometers in extension. The few direct evidences we have on aging
as driven by the rearrangement of small regions comes from AFM
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measurements on glass surfaces, confocal microscopy of colloids, and the
direct observation of molecular motion (NMR and photobleaching tests)
[8]. More indirect evidence is obtained from the heterogeneous character
of the dynamics, that is, the presence of different regions in the system
that show a great disparity of relaxation times [143]. The observation of
strong intermittent signals [144] in Nyquist noise measurements while the
system ages has been interpreted as the result of CRRs, that is, events
corresponding to the rearrangement of molecular clusters. Finally, the
direct measure of a correlation length in colloidal glasses hints at the
existence of CRRs [145]. Future accomplishments in this area are
expected to come from developments in micromanipulation and
nanotechnology applied to direct experimental observation of molecular
clusters.

Numerical Facts. Numerical simulations are a very useful approach to
examine our understanding of the NEAS [146]. Numerical simulations
allow one to measure correlation functions and other observables that are
hardly accessible in experiments. Susceptibilities in glasses are usually
defined in terms of four-point correlation functions (two-point in space
and two-point in time), which give information about how spatially
separated regions are correlated in time [147]. A characteristic quantity is
the typical length of such regions. Numerical simulations of glasses show
that the maximum length of spatially correlated regions is small, just a
few nanometers in molecular glasses or a few radii in colloidal systems.
Its growth in time is also exceedingly slow (logarithmic in time),
suggesting that the correlation length is small for the experimentally
accessible timescales.

Theoretical Facts. There are several aspects that suggest that glassy
dynamics must be understood as a result of the relaxation of CRRs.
Important advances in the understanding of glass phenomena come from
spin glass theory [148, 149]. Historically, this theory was proposed to
study disordered magnetic alloys, which show nonequilibrium phenomena
(e.g., aging) below the spin glass transition temperature. However, it has
been shown later how spin glass theory provides a consistent picture of the
NEAS in structural glass models that do not explicitly contain quenched
disorder in the Hamiltonian [150—153]. Most of the progress in this area
comes from the study of mean-field models, that is, systems with long
range interactions. The success of mean-field theory to reproduce most of
the observed phenomenology in glasses suggests that NEASs are
determined by the relaxation of mean-field-like regions, perhaps the
largest CRRs in the system. Based on this analogy, several mean-field-
based phenomenological approaches have been proposed [154—158].
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In the next sections I briefly discuss some of the theoretical concepts
important to understanding the glass state and nonequilibrium aging dynamics.

A. A Phenomenological Model

To better understand why CRRs are predominantly small, we introduce a simple
phenomenological aging model inspired by mean-field theory [155]. The model
consists of a set of regions or domains of different sizes s. A region of size s is just
a molecular cluster (colloidal cluster), containing s molecules (or s colloidal
particles). The system is prepared in an initial high energy configuration, where
spatially localized regions in the system contain some stress energy. That energy
can be irreversibly released to the environment if a cooperative rearrangement of
that region takes place. The release occurs when some correlated structures are
built inside the region by a cooperative or anchorage mechanism. Anchorage
occurs when all s molecules in that region move to collectively find a transition
state that gives access to the release pathway, that is, a path in configurational
space that activates the rearrangement process. Because the cooperative process
involves s particles, the characteristic time to anchor the transition state is given by

T ™\’ Bs

- o <T0> = exp(T) (196)
where T = 19 exp(B/T) is the activated time required to anchor one molecule, Ty
is a microscopic time, and B is the activation barrier that is equal to the energy of
the transition state. How do CRRs exchange energy with the environment? Once
relaxation starts, regions of all sizes contain some amount of stress energy ready
to be released to the environment in the form of heat. The first time a given region
rearranges it typically releases an amount of heat Q that does not scale with the
size of the region. After the first rearrangement has taken place, the region
immediately equilibrates with its environment. Subsequent rearrangement events
in that same region do not release more stress energy to the environment. These
regions can either absorb or release heat from/to the environment as if they were
thermally equilibrated with the bath, the net average heat exchanged with
the environment being equal to 0. The release of the stored stress energy in the
system proceeds in a hierarchical fashion. At a given age ¢ (the time elapsed after
relaxation starts, also called waiting time), only the CRRs of size s* have some
stress energy Q available to be released to the environment. Smaller regions with
s < s* already released their stress energy sometime in the past, being now in
thermal equilibrium with the environment. Larger regions with s > s* have not
yet had enough time to release their stress energy. Only the CRRs with s in the
vicinity of s* contribute to the overall relaxation of the glass toward the
supercooled state. That size s* depends on the waiting time or time elapsed since
the relaxation started.
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Let n,(¢) be the number of CRRs of size s at time 7. At a given time the
system is made up of nonoverlapping regions in the system that randomly
rearrange according to Eq. (196). After a rearrangement occurs, CRRs
destabilize, probably breaking up into smaller regions. In the simplest
description we can assume that regions can just gain or lose one particle
from the environment with respective (gain,loose) rates k¢, ké with k8 + ki = k.
ks, the rate of rearrangement, is proportional to 1/t,, where T, is given in
Eq. (196). To further simplify the description, we just take k¢ = gk,, k! = Ik;
with g 4+ [ = 1. Consequently, the balance equations involve the following steps:

Dx i ’Dxfl +p7 ,DA‘ +p - DSH (197)

with rates k!, k¢, where D; denotes a region of size s and p denotes a particle (an
individual molecule or a colloidal particle) in the system. The balance equations
for the occupation probabilities read (s > 2),

Ony (1)
ot

= ké+1ns+l (t) + kf_lnsfl(t) - ksns(t) (198)

This set of equations must be solved together with mass conservation
> o2, sns(t) = constant. The equations can be solved numerically for all
parameters of the model. Particularly interesting results are found for g < L
Physically, this means that, after rearranging, regions are more prone to lose
molecules than to capture them, a reasonable assumption if a cooperative
rearrangement leads to a destabilization of the region. A few remarkable results
can be inferred from this simple model.

e Time Dependent Correlation Length. In Fig. 16a we show the time
evolution for ny(7). At any time it displays a well defined time-dependent
cutoff value s*(f) above which ny(r) abruptly drops to zero. The
distribution of the sizes of the CRRs scales like n,(t) = (1/s*)n(s/s*),
where s* is a waiting-time-dependent cutoff size (data not shown). The
NEAS can be parameterized by either the waiting time or the size of the
region s*(z). Relaxation to equilibrium is driven by the growth of s*(¢) and
its eventual convergence to the stationary solution of Eq. (198). The size
s*(t) defines a characteristic growing correlation length, &(7) = (s* (t))l/ d
where d is the dimensionality of the system. Because s*(f) grows
logarithmically in time (Eq. (196)), sizes as small as ~ 10 already require
1033 iteration steps. Small CRRs govern the relaxation of the system even
for exceedingly long times.

e Logarithmic Energy Decay. The release of stress energy to the

environment occurs when the regions of size s* rearrange for the first time.
The advance of the front in n,(t) located at s = s* is the leading source of
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Figure 16. ny(f) (a) and C(t,t +1) (b) for different waiting times ¢ = 10'-10%* for the
numerical solution of Eq. (198) with /=8,¢g =1, and T = 0.45. The relaxation time and the
stretching exponent are very well fitted by t(f) =2.2:%%, B,(f) =0.34+0.45¢%%_ (From Ref. 155.)

energy dissipation. Cooperative rearrangements of regions of size smaller
than s* have already occurred several times in the past and do not yield a net
thermal heat flow to the bath, whereas regions of size larger than s* have not
yet released their stress energy. The supercooled state is reached when the
cutoff size s* saturates to the stationary solution of Eq. (198) and the net
energy flow between the glass and the bath vanishes. The rate of energy
decay in the system is given by the stress energy O released by regions of
size s*(¢) times their number n,- (1) = (1) /s*, divided by the activated time
(Eq. (196)) (equal to the waiting time 7 & exp(Bs*/T)),
a_E ~ Qns* (t ) Q

~ = 1
ot t s*t (199)

Because s*(f) ~ Tlog(t), the energy decays logarithmically with time,
E(1) = 1/log(?).

e Aging. If we assume independent exponential relaxations for the CRRs,
we obtain the following expression for the two-times correlation function:

Clti+1) =S sn(t)exp(~7'/1,) (200)

s>1
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where ¢ denotes the waiting time after the initiation of the relaxation and
T, is given by Eq. (196). In Fig. 16b we show the correlation function,
Eq. (200), for different values of ¢ (empty circles in the figure).
Correlations in Eq. (200) are excellently fitted by a stretched exponential
with a r-dependent stretching exponent f;:

7\ Bs(?)
Clti+1) = C(f') = exp (- (t—f ) (201)

Tt

In Fig. 16b we also show the best fits (continuous lines). Correlation
functions show simple aging and scale like ¢/ with # = exp(s*/T), where
s* is the waiting-time-dependent cutoff size.

Configurational Entropy and Effective Temperature. An important
concept in the glass literature that goes back to Adam and Gibbs in the
1950s [159, 160] is the configurational entropy, also called complexity
and denoted by S, [146]. It is proportional to the logarithm of the number
of cooperative regions with a given free energy F, Q(F):

Se(F) = log((F)) (202)

At a given time ¢ after relaxation starts, the regions of size s* contain a
characteristic free energy F*. Fluctuations in these regions lead to
rearrangements that release a net amount of heat to the environment, Eq.
(199). Local detailed balance implies that, after a rearrangement takes
place, new regions with free energies around F* are generated with
identical probability. Therefore,

W(F — F) Q(F)

W = F) - aF) RS = S(F) (203)

where W(F — F') is the rate of creating a region of free energy F’ after
rearranging a region of free energy F. Note the similarity between Eqs.
(203) and (8). If AF' = F' — F is much smaller than S.(F), we can
expand the difference in the configurational entropy in Eq. (203) and write

with the shorthand notation W(AF) = W(F — F’) and the time-
dependent effective temperature Tegr(F*) defined as

1 08 (F)
Teff(F*) - ( OF )F—F* (205)
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In the present phenomenological model, only regions that have not yet
equilibrated (i.e., of size s > s*(¢)) can release stress energy in the form of
a net amount of heat to the surroundings. This means that only transitions
with AF < 0 contribute to the overall relaxation toward equilibrium.

Therefore, the rate of energy dissipated by the system can be written as

0
d N *
O N lf—ooo X X (x) _ 2Tt (F*) (206)
or ¢t [ dxW(x) t

where we take

W(AF) o exp (ﬁg)) (207)

as the solution of Eq. (204). Identifying Egs. (206) and (199), we get

Tere (F*) = ZS—*Q (208)

The time dependence of s* derived in Eq. (199) shows that the effective
temperature decreases logarithmically in time.

B. Nonequilibrium Temperatures

The concept of a nonequilibrium temperature has stimulated a lot of research
in the area of glasses. This line of research has been promoted by Cugliandolo
and Kurchan in the study of mean-field models of spin glasses [161, 162] that
show violations of the fluctuation-dissipation theorem (FDT) in the NEAS.
The main result in the theory is that two-time correlations C(z,1,) and
responses R(t,t,) satisfy a modified version of the FDT. It is customary to
introduce the effective temperature through the fluctuation-dissipation ratio
(FDR) [163] defined as

Fn) = i (S0 (209)

in the limit where 7 —1t, > t,. In contrast, in the limit 7 —1r, < t,, local
equilibrium holds and Teg(f,,) = T. In general, Teg(t,,) > T, although there are
exceptions to this rule and even negative effective temperatures have been found
[164]. These predictions have been tested in many exactly solvable models and
numerical simulations of glass formers [146]. In what follows we try to
emphasize how the concept of the effective temperature T (#,) contributes to
our understanding of nonequilibrium fluctuations in small systems.
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Particularly illuminating in this direction is the study of mean-field spin
glasses. These models can be analytically solved in the large volume limit. At
the same time, numerical simulations allow one to investigate finite-size effects
in detail. Theoretical calculations in mean-field spin glasses are usually carried
out by first taking the infinite-size limit and later the long-time limit. Due to the
infinite range nature of the interactions, this order of limits introduces
pathologies in the dynamical solutions and excludes a large spectrum of
fluctuations that are relevant in real systems. The infinite-size limit in mean-
field models, albeit physically dubious, is mathematically convenient. Because
analytical computations for finite-size systems are not available, we can resort
to numerical simulations in order to understand the role of finite-size effects in
the NEAS. A spin glass model that has been extensively studied is the random
orthogonal model (ROM) [165], a variant of the Sherrington—Kirkpatrick model
[166], known to reproduce the ideal mode coupling theory [167]. The model is
defined in terms of the following energy function:

H= _Z‘IUGiGj (210)
(i)

where the ; are N Ising spin variables (¢ = £1) and J;; is a random N x N
symmetric orthogonal matrix with zero diagonal elements. In the limit N — oo,
this model has the same thermodynamic properties as the random-energy model
of Derrida [168, 169] or the p-spin model [170] in the large p limit [171, 172].
The ROM shows a dynamical transition at a characteristic temperature Ty, (that
corresponds to the mode coupling temperature Tyct in mode coupling theories
for the glass transition [173]). Below that temperature, ergodicity is broken and
the phase space splits up into disconnected regions that are separated by infinitely
high energy barriers. For finite N, the dynamics is different and the dynamical
transition is smeared out. The scenario is then much reminiscent of the
phenomenological model we discussed in Section VI.A. Different sets of spins
collectively relax in finite time scales, each one representing a CRR. There are
two important and useful concepts in this regard.

o The Free Energy Landscape. An interesting approach to identify CRRs
in glassy systems is the study of the topological properties of the potential
energy landscape [174]. The slow dynamics observed in glassy systems in
the NEAS is attributed to the presence of minima, maxima, and saddles in
the potential energy surface. Pathways connecting minima are often
separated by large energy barriers that slow down the relaxation. Stillinger
and Weber have proposed identifying phase space regions with the
so-called inherent structure (IS) [175, 176]. The inherent structure of a
region in phase space is the configuration that can be reached by energy
minimization starting from any configuration contained in the region.



106

FELIX RITORT

Inherent structures are used as labels for regions in phase space. Figure 17
(left panel) shows a schematic representation of this concept. Figure 17
(right panel) shows the relaxation of the energy of the inherent structure
energy starting from a high energy initial nonequilibrium state [177-179].
Inherent structures are a useful way to keep track of all cooperative
rearrangements that occur during the aging process [180].

FD Plots. Numerical tests of the validity of the FDR (Eq. (209)) use
fluctuation-dissipation plots (FD plots) to represent the integrated
response as a function of the correlation. The integrated version of
relation (209) is expressed in terms of the susceptibility,

x(t, 1) = /ldt’R(t, ) (211)

By introducing Eq. (211) into Eq. (209), we obtain

o) = [t ()~ ) @12

where we have approximated T () by Ter(f,). By measuring the
susceptibility and the correlation function for a fixed value of ¢, and
plotting one with respect to the other, the slope of the curve . with respect
to C gives the effective temperature. This result follows naturally from
Eq. (212) if we take C(t,¢) time independent (which is the case for spin
systems). If not, proper normalization of the susceptibility and correla-
tions by C(r,t) is required and a similar result is obtained [181]. A
numerical test of these relations in the ROM is shown in Fig. 18. We stress
that these results have been obtained in finite-size systems. As the system
becomes larger, the time scales required to see rearrangement events
become prohibitively longer and the relaxation of the system toward
equilibrium drastically slows down.

C. Intermittency

Indirect evidence of nonequilibrium fluctuations due to CRRs in structural
glasses has been obtained in Nyquist noise experiments by Ciliberto and
co-workers. In these experiments a polycarbonate glass is placed inside the plates
of a condenser and quenched at temperatures below the glass transition
temperature. Voltage fluctuations are then recorded as a function of time during
the relaxation process and the effective temperature is measured:

SZ ((Dv tw)

= R(Z(w,0)) (213)

Tefi (0, 1,,)
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where R(Z(w, t,,)) is the real part of the impedance of the system and Sz (®, 7,,) is
the noise spectrum of the impedance that can be measured from the voltage noise
[144].

Experimental data shows a strong variation of the effective temperature with
the waiting time by several orders of magnitude. The voltage signal is also
intermittent with strong voltage spikes at random times. The distribution of the

(a) 0.5 T
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03

Xzrc

02

0.1

(b)
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Figure 18. (a) Response versus the dynamical structure factor for the binary mixture Lennard-
Jones particles system in a quench from the initial temperature 7; = 0.8 to a final temperature
Tt = 0.25 and two waiting times #,, = 1024 (square) and #, = 16384 (circle). Dashed lines have
slope 1/T¢ while thick lines have slope 1/Te(t,,). ( From Ref. 182.) (b) Integrated response function
as a function of IS correlation, that is the correlation between different IS configurations for the
ROM. The dashed line has slope 7t = 5.0, where 7% is the final quench temperature, whereas the full
lines are the prediction from Eq. (205) and F* = Fis(T,,) : Tetr(2'") ~ 0.694, Tegr (2') ~ 0.634, and
Tesr(2'°) =~ 0.608. The dot-dash line is Tos(t,,) for £, = 2! drawn for comparison. (From Ref. 178.)
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times between spikes follows a power law characteristic of trap models. These
results point to the fact that the observed voltage spikes correspond to CRRs
occurring in the polycarbonate sample. Finally, the probability distribution
function (PDF) of the voltage signal strongly depends on the cooling rate in the
glass, suggesting that relaxational pathways in glasses are very sensitive to
temperature changes. A related effect that goes under the name of the Kovacs
effect has been also observed in calorimetry experiments, numerical simula-
tions, and exactly solvable models [183-185].

A physical interpretation of the intermittency found in aging systems has been
put forward based on exactly solvable models of glasses [186—188]. According to
this, energy relaxation in glassy systems follows two different mechanisms (see
Section V.C.1): stimulated relaxation and spontaneous relaxation. In the NEAS,
the system does not do work but exchanges heat with the environment. Contrary to
what was done in previous sections, here we adopt the following convention:
0 > 0 (Q < 0) denotes heat absorbed (released) by the system from (to) the
environment. In the NEAS, AE = Q: the energy released by the system is
dissipated in the form of heat. In the phenomenological model put forward in
Section VLA, different CRRs can exchange (absorb or release) heat to the
environment. The regions that cooperatively rearrange for the first time release
stress energy to the environment and contribute to the net energy dissipation of the
glass. We call this mechanism spontaneous relaxation. Regions that have already
rearranged for the first time can absorb or release energy from/to the bath several
times but do not contribute to the net heat exchanged between the system and the
bath. We call this mechanism stimulated relaxation. There are several aspects
worth mentioning.

e Heat Distribution. The distribution of heat exchanges Q = E(t,,) — E(¢)
for the stimulated process is a Gaussian distribution with zero mean and
finite variance. This process corresponds to the heat exchange distribution
of the system in equilibrium at the quenching temperature. In contrast, in
the spontaneous process a net amount of heat is released to the bath.
Spontaneous heat arises from the fact that the system has been prepared in
a nonequilibrium high energy state. Let us consider a glass that has been
quenched at temperature 7 for an age t,,. During aging, CRRs that release
stress energy (in the form of heat Q < 0) to the environment satisfy the

relation (204):
&Q)) = exp< Q > (214)

PSP(_Q Teff(F*)
Therefore, as in the phenomenological model (Eq. (207)), we expect
P®(Q) x exp (L) for Q<0 (215)
ZTeff(F*)
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Note that Tgr (F*) depends on the age of the system through the value of the
typical free energy of the CRRs that release their stress energy at f,,, F*(t,,).
This relation has been tested numerically in the ROM (Eq. (210)) by
carrying out aging simulations at different temperatures and small sizes N
[186] (see next item).

Numerical Tests. How do we measure the heat distribution (Eq. (215)) in
numerical simulations of NEAS? A powerful procedure that uses the
concept of inherent structures goes as follows. The heat exchanged
during the time interval [t,,#] (f > f,) has to be averaged over many
aging paths (ideally an infinite number of paths). Along each aging
path many rearrangement events occur between 7, and ¢. Most of them
are stimulated, a few of them are spontaneous. In fact, because the
spontaneous process gets contributions only from those cooperative
regions that rearrange for the first time, its PDF signal gets masked by
the much larger one coming from the stimulated component where
rearrangement events from a single region contribute more than once. To
better disentangle both processes, we measure, for a given aging path, the
heat exchange corresponding to the first rearrangement event observed
after f,,. To identify a rearrangement event, we keep track of the IS
corresponding to the run time configuration. Following the IS is an
indirect way of catching rearranging events due to CRRs. Only when the
system changes IS do we know that a cooperative rearrangement event has
taken place. Rearrangement events take place at different times ¢ after ¢,
therefore, the heat distribution P**(Q) is measured along a heterogeneous
set of time intervals. The results for the heat distributions at various ages
t, are shown in Fig. 19. We notice the presence of two well defined
contributions to the heat PDFs: a Gaussian central component plus
additional exponential tails at large and negative values of Q. The
Gaussian component corresponds to the stimulated process; however, its
mean is different from zero. The reason for this apparent discrepancy lies
in the numerical procedure used to measure the heat PDF: the average
stimulated heat is not equal to the net exchanged heat (which should be
equal to 0) because different aging paths contribute to the heat exchange
along different time intervals. The Gaussian component should be equal to
the heat PDF for the system in thermal equilibrium at the same
temperature and therefore independent of t,. Indeed, the variance of the
Gaussian distribution is found to be independent of ¢, [186].

Spontaneous Events Release Stress Energy. One striking aspect of the
spontaneous process is that, according to Eq. (214), the probability of heat
absorption (Q > 0) should be much larger than the probability of heat
release (Q < 0). However, this is not observed in the numerical results of
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Figure 19. Heat exchange PDFs for T = 0.3 (a), T = 0.2 (b), and T = 0.1 (c). Circles are for
t,, = 2! and asterisks for #, = 2'5. The continuous lines are Gaussian fits to the stimulated sector;
the dashed lines are the exponential fits to the spontaneous sector. (From Ref. 186.)

Fig. 19, where the exponential tail is restricted to the region Q < 0. Why
are spontaneous events not observed for Q > 0? The reason is that
spontaneous events can only release and not absorb energy from the
environment; see Eq. (215). This is in line with the argumentation put
forward in Section VI.A, where the first time that cooperative regions
release the stress energy, it gets irreversibly lost as heat in the
environment. As the number of stressed regions monotonically decreases
as a function of time, the weight of the heat exponential tails decreases
with the age of the system as observed in Fig. 19. The idea that only
energy decreasing events contribute to the effective temperature
(Eq. (215)) makes it possible to define a time-dependent configurational
entropy [189].

e Zero-Temperature Relaxation. This interpretation rationalizes the aging
behavior found in exactly solvable entropy barrier models that relax to the
ground state and show aging at zero temperature [190, 191]. At T = 0, the
stimulated process is suppressed (microscopic reversibility, Eq. (8), does
not hold), and Eq. (204) holds by replacing the free energy of a CRR by
its energy, F = E. In these models a region corresponds to just a
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configuration in phase space and relaxation occurs through spontaneous
rearrangements, where configurations are visited only once. In entropic
barrier models the effective temperature (Eq. (205)) still governs aging at
T = 0. Because the energy is a monotonically decreasing quantity for all
aging paths, Eq. (204) does not strictly hold as W(AE > 0) = 0. Yet, the
effective temperature obtained from Eq. (204) has been shown to coincide
with that derived from the FDR (Eq. (209)) [187, 188].

VII. CONCLUSIONS AND OUTLOOK

We have presented a general overview of several topics related to the
nonequilibrium behavior of small systems: from fluctuations in mesoscopic
systems such as small beads in optical traps up to molecular machines and
biomolecules. The main common theme is that, under appropriate conditions,
physical systems exchange small amounts of energy with the environment,
leading to large fluctuations and strong deviations from the average behavior. We
call such systems small because their properties and behavior are markedly
different from macroscopic systems. We started our discussion by stressing the
similarities between colloidal systems and molecular machines: intermittency
and nonequilibrium behavior are common aspects there. We then discussed
fluctuation theorems (FTs) in detail and focused our discussion on two well
studied systems: the bead in a trap and single molecule force experiments.
Experimental results in such systems show the presence of large tails in heat and
work distributions in marked contrast to Gaussian distributions, characteristic of
macroscopic systems. Such behavior can be rationalized by introducing a path
formalism that quantifies work/heat distributions. Finally, we revised some of the
main concepts in glassy dynamics where small energy fluctuations appear as an
essential underlying ingredient of the observed slow relaxation. Yet, we still lack
a clear understanding of the right theory that unifies all phenomena, and a clear
and direct observation of the postulated small and cooperatively rearranging
regions remains an experimental challenge. We envision three future lines of
research.

e Developments in FTs. FTs are simple results that provide a new view to
better understanding issues related to irreversibility and the second law of
thermodynamics. The main assumption of FTs is microscopic reversibility
or local equilibrium, an assumption that has received some criticism
[192-194]. Establishing limitations on the validity of FTs is the next task
for the future. At present, no experimental result contradicts any of the
FTs, mainly because the underlying assumptions are respected in the
experiments or because current techniques are not accurate enough to
detect systematic discrepancies. Under some experimental conditions, we
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might discover that microscopic reversibility breaks down. We then might
need a more refined and fundamental description of the relevant degrees
of freedom in the system. Validation of FTs under different and far from
equilibrium conditions will be useful to test the main assumptions.

e Large Deviation Functions. The presence of large tails can be
investigated in statistical mechanics theories by exact analytical solutions
of simple models, by introducing simplified theoretical approaches or
even by designing smart and efficient algorithms. In all cases, we expect
to obtain a good theoretical understanding of the relation between large
deviations and nonequilibrium processes. Ultimately, this understanding
can be very important in biological systems where nonequilibrium
fluctuations and biological function may have gone hand in hand during
biological evolution on Earth over the past 4.5 billion years. A very
promising line of research in this area will be the study of molecular
motors, where the large efficiency observed at the level of a single
mechanochemical cycle might be due to a very specific adaptation of
the molecular structure of the enzyme to the aqueous environment. This
fact may have important implications at the level of single molecules and
larger cellular structures.

e Glassy Systems. We still need to have direct and clear experimental
evidence of the existence of the cooperatively rearranging regions,
responsible for most of the observed nonequilibrium relaxational proper-
ties in glasses. However, the direct observation of these regions will not be
enough. It will also be necessary to have a clear idea of how to identify
them in order to extract useful statistical information that can be
interpreted in the framework of a predictive theory. Numerical simulations
will be very helpful in this regard. If the concept of nonequilibrium
temperature has to survive the time then it will be necessary also to
provide accurate experimental measurements at the level of what we can
now get from numerical simulations.

Since the discovery of Brownian motion in 1827 by the biologist Robert
Brown and the later development of the theory for Brownian motion in 1905,
science has witnessed an unprecedented convergence of physics toward
biology. This was anticipated several decades ago by Erwin Schrodinger, who
in his famous 1944 monograph entitled What Is Life? [195] wrote when talking
about the motion of a clock: “The true physical picture includes the possibility
that even a regularly going clock should all at once invert its motion and,
working backward, rewind its own spring—at the expense of the heat of the
environment. The event is just ‘still a little less likely’ than a ‘Brownian fit’ of a
clock without driving mechanism.” Biological systems seem to have exploited
thermal fluctuations to build new molecular designs and structures that
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efficiently operate out of equilibrium at the molecular and cellular levels
[196-199]. The synergy between structure and function is most strong in living
systems where nonequilibrium fluctuations are at the root of their amazing and
rich behavior.

VIII. LIST OF ABBREVIATIONS

CFT Crooks fluctuation theorem

CRRs Cooperatively rearranging regions

JE Jarzynski equality

FDR Fluctuation-dssipation ratio

FDT Fluctuation-dissipation theorem

FEC Force-extension curve

FT Fluctuation theorem

IS Inherent structure

NEAS Nonequilibrium aging state

NESS Nonequilibrium steady state

NETS Nonequilibrium transient state

PDF Probability distribution function

ROM Random orthogonal model
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