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Abstract

Nonequilibrium thermodynamics of small systems describes energy exchange processes between a system and its environment
in the low energy range of a few k3T where Brownian fluctuations are dominant. The main goal of this discipline is to identify the
building blocks of a general theory describing energy fluctuations in nonequilibrium processes occurring in systems ranging from
condensed matter physics to biophysics. In this article I discuss some aspects about fluctuation theorems and path thermodynamics
that call for the necessity of a better understanding of large deviations in nonequilibrium statistical physics. I also emphasize how
single molecule experiments are a valuable source of knowledge and information that can greatly contribute to the unveiling of the
most important and relevant questions in this exciting field of research. 7o cite this article: F. Ritort, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La thermodynamique de non-équilibre des petits systemes. La thermodynamique de non-équilibre des petits systeémes décrit
les processus d’échanges d’énergie entre un systeme et son environnement dans le domaine des basses énergies de quelques kg T
ou les fluctuations browniennes sont dominantes. Le but principal de cette discipline est d’identifier les blocs de construction d’une
théorie générale décrivant les fluctuations d’énergie dans les processus de non-équilibre se produisant dans des systemes s’étendant
depuis la physique de la matiere condensée jusqu’a la biophysique. Dans cet article, je discute quelques aspects des théorémes
de fluctuations et de la thermodynamique des chemins qui nécessitent une meilleure compréhension des grandes déviations en
physique statistique de non-équilibre. Je montre aussi comment les expériences sur des molécules individuelles constituent une
précieuse source de connaissance et d’information qui peut contribuer grandement a dévoiler les questions les plus importantes et
pertinentes dans ce passionnant domaine de recherche. Pour citer cet article : F. Ritort, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. Illustration of a molecular machine designed to transform part of the energy available from ATP hydrolysis into mechanical work. The
efficiency of the machine can be defined as the ratio n = W/AG atp < 1 where W is the maximum amount of work that can be obtained divided
by the free energy available from hydrolysis.

1. Motivation

Small systems thermodynamics is a central subject in modern statistical physics. It brings together subjects ap-
parently unrelated, from condensed matter systems to biological molecules. All these systems share the property that
energy fluctuations are much larger than ~+/E (the prediction by the law of large numbers) where E is the average
energy. Large deviations from average values are normally observed in mesoscopic systems where nonequilibrium
fluctuations are governed by a few degrees of freedom. Examples are the Brownian motion of a plastic or silica
bead captured in an optical trap, the unfolding of a biomolecule (e.g. a nucleic acid hairpin or protein) or the local
reorganization of a frozen region containing a few molecules inside an amorphous material.

In this article I will review some common aspects of these systems that call for the necessity of a general theory
capable of describing energy fluctuations in nonequilibrium small systems [1,2]. This necessity is particularly relevant
in the case of biological systems which combine an enormous complexity together with a striking efficiency. Molecular
motors are a good example in this regard. Molecular motors are large macromolecular assemblies that take advantage
of the energy released in many condensation reactions to generate mechanical work (Fig. 1). The precise mechanism
by which molecular motors transform the heat released in the hydrolysis into useful work has yet to be elucidated
(is it a power stroke or a Brownian ratchet mechanism?) [4,3]. Most of the mechanisms underlying biological function
at the molecular level inside the cell operate at high fidelity and efficiency rates under harsh and noisy conditions
(environmental Brownian fluctuations, molecular crowding, etc.). This is a singular aspect of biological systems,
in contrast to what occurs in other areas of physics and chemistry. Less clear is the need and relevance of such
theory to understand old problems in condensed matter physics that have resisted scientific knowledge during many
decades. Particularly remarkable is the case of structural glasses where questions posed almost a century ago remain
yet unanswered. Is the glass transition a purely kinetic phenomenon? Is there instead a thermodynamic underlying
phase transition that is never reached and remains unobservable in laboratory time-scales? What are the cooperatively
rearranging regions (CRRs) that have been hypothesized to govern relaxational processes in the vicinity of the glass
transition region? How can we experimentally observe them in an unambiguous way?

These and other questions point out that our current understanding of nonequilibrium small systems is insufficient.
This paper discusses a few selected results on this topic. We will emphasize how single molecule experiments [5] are
a valuable source of knowledge and information that can greatly contribute to unveil the most important and relevant
questions. Throughout the paper we take kp = 1.

2. Physics and biomolecules

It is a well established fact that the typical amounts of energy obtained from chemical sources (e.g. ATP or GTP
hydrolysis) used by most molecular machines are a few kcal per mol [6] (at T ~ 300K this corresponds to a few
units of kpT, 1kpT =~ 0.6 kcal/mol). Let us consider the example of RNA transcription. The process by which RNA
nucleotides (A,U,G,C) are added to the newly synthesized RNA strand during the transcription process involves the
hydrolysis of the different nucleoside-phosphate complexes as they are added to the 3’ end of the growing chain. The
overall process by which one base is added to the newly synthesized strand is a highly favorable reaction (mainly
driven by the hydrolysis of the pyrophosphate) with AG in the range between 7 and 12 kcal/mol mainly depending
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on the ATP concentration of the environment (e.g. in-vitro versus in-vivo conditions). Effectively this is an irreversible
process that generates an amount of available energy between 10 and 20kp T at room temperature (~300 K, 1kpT =~
0.6 kcal/mol) per base pair added. This energy would be lost to the environment in the form of heat were it not for
the fact that a big part of the energy is used by the RNA polymerase to locally unwind the double DNA helix and pull
apart the two DNA strands to produce a bubble a few bases long of denatured DNA. This bubble is then used by the
DNA/RNA/polymerase ternary complex as a substrate to polymerize the RNA. As transcription proceeds the bubble
moves downstream together with the RNA polymerase and the RNA transcript is synthesized.

For that process to occur the RNA polymerase must move against the Stokes friction produced by water as well as
other roadblocks that hamper its motion. In particular, the RNA polymerase must exert force and torque on the DNA.
Typical forces to unzip DNA are on the order of 15 pN meaning that the minimum mechanical work necessary to
unzip one base pair is around 15 pN times 12 A (the typical extension gained after pulling apart two bases at the fork
of a DNA hairpin), which is equal to 18 pN nm or equivalently 4.4kpT (1kpT ~4.11 pNnm at room temperature).
We can define the efficiency of the RNA motor as the ratio between the mechanical work needed to unzip one base
pair and the amount of energy obtained from hydrolysis upon the addition of a nucleotide (however this is not the
only way to define mechanical efficiencies, e.g. see [7,8]). The efficiency of the transcription process is then about
40 per cent, a quite remarkable feat if we compare this number with the ones obtained in man made machines (cars
have efficiencies below 20 per cent). The motion of a single RNA polymerase has been studied in several prokaryotic
systems using optical and magnetic tweezers [9,10]. In these experiments a DNA/polymerase complex is tethered
between a trapped bead and an streptavidin coated immobilized bead or surface. To initiate transcription nucleotides
are flowed inside the chamber and the elongation of the transcript can be followed in real time while force is applied
on the tether. The extension of the RNA transcript as a function of time reveals a complex intermittent motion of the
polymerase with pauses (temporary stops), arrests (permanent stops) and even backtracking events [11,12].

3. Fluctuation theorems and path thermodynamics
3.1. Fluctuations in nonequilibrium states

A crucial concept in the statistical description of a nonequilibrium small system is that of a trajectory or path.
A path is the time sequence of configurations followed by the system as it is driven to a nonequilibrium state by
the action of an external perturbation. Perturbations are usually described in terms of the control parameter 1. These
are a set of external parameters (e.g. an electric field, magnetic field, optical force, ...) that can be experimentally
controlled and do not fluctuate. Experimentally, control parameters are produced by macroscopic systems that are
used to manipulate the small system under study and which are insensitive to thermal fluctuations (but that produce
other sort of uncontrolled instrumental noises and drift effects).

There are infinite ways to generate nonequilibrium states. Particularly important are transient nonequilibrium states.
These are generated by taking a system that is initially equilibrated and driving it out of equilibrium by fast switch-
ing of an external perturbation. Systems embedded in a thermal environment follow different trajectories if the same
experiment is repeated under identical conditions (according to a given protocol). By repeating the same experiment
many times the value of the work W done on the system changes from path to path allowing us to define its prob-
ability distribution, P(W). In macroscopic systems Brownian fluctuations often induce unobservable effects on the
properties of the system (fluctuations in the vicinity of critical points and instabilities in far from equilibrium systems
are exceptions). However, in small systems, Brownian fluctuations can be easily detected and measured with good
accuracy with the aid of recently developed micromanipulation tools.

The second law of thermodynamics puts bounds on the minimum amount of average work performed on the system:
although W may strongly fluctuate from path to path its mean value (averaged over an infinite number of repeated
experiments, i.e. the first moment of P(W)) is always greater than the reversible or quasi-static work, Wiey, which
is also equal to the free energy difference A F between the initial and final equilibrium states. The reversible work
is the value of the work that is obtained for protocols that are adiabatic or quasi-static, i.e. the control parameters
are changed infinitely slowly. The difference between the actual work and the reversible work is called the dissipated
work, Wyiss = W — AF. The second law establishes that in average a positive amount of heat is irreversibly lost to

the environment, Wgjss = 0, where (- - -) stands for the average taken over an infinite number of paths. The amount of
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dissipation in irreversible processes is then related to the asymmetry between the phase space densities obtained when
the process is run forward and backward in time [13].

Several results known under the generic name of fluctuation theorems (FTs) have been recently developed that put
more stringent conditions on the spectrum of work fluctuations in a nonequilibrium experiment, the second law being
just a particular consequence of such results [14-21]. Prominent examples are the nonequilibrium work equality by
Jarzynski [22] and the fluctuation relation by Crooks [23,24] that allow one to recover free energy differences from
measurements of the irreversible work along nonequilibrium processes. These relations have been demonstrated under
a few assumptions and for a large variety of nonequilibrium theories and solvable models (see for instance [25,26]).
They read,

Wdiss w AF
exp(— T ): or exp(—?>=exp<—T) (1)

PF(Wdiss) (Wdiss) PF(W) <W_ AF)
—— " —exp[—=) or ———— =exp| ———— (2)
Pr(—Waiss) T Pr(—W) T

In (2) the Pr (W), Pgr(W) denote the forward and reverse work distributions corresponding to the forward and reverse
processes (time reversed images of each other). The Crooks relation (2) provides a way to determine free energy
differences from measurements of the irreversible work by looking at the work value where forward and reverse work
distributions cross each other. According to (2), PF(W = AF) = Pr(—W = —AF).

The second law of thermodynamics, W > AF, also follows naturally as a particular case of (1) by using the con-
vexity inequality, exp(x) > exp X. Gaussian work distributions exactly satisfy (2) provided the average dissipated work
Wiiss and the variance of the work, UVZV, are identical along the forward and reverse processes and o%, =2kpT Wiiss.
A fluctuation—dissipation parameter R can be introduced to quantify deviations from the Gaussian behavior [27],

2
2kpT Wiiss

For Gaussian work distributions R = 1, corresponding to nonequilibrium processes in the linear regime where the
fluctuation—dissipation theorem holds.

3.2. Path thermodynamics

One of the consequences of (1) is the possibility to define thermodynamic potentials associated to paths or tra-
jectories [28]. We define the path entropy S(W) as the logarithm of the density of paths with work equal to W,
P(W) =exp(S(W)). Eq. (1) can be rewritten as,

exp(—¥> = Zexp(—@) :/dW P(W)exp(—%)
r
:de exp(S(W) — g) :de exp(—@) 4)

where I" denotes an arbitrary path and @ (W) = W — T S(W) is the path free energy. In the large volume limit the
sum in (4) is dominated by the work value, WT, where & (W) is minimum. We note from (4) that the path free energy
@ (WT) is equal to the free energy difference A F. The following chain of relations hold,

AF=0(W')=w'—Ts(WT) )
(aqb(W)) ZO_)(Z?S(W)) _1 ©
W ) wow W Sy T

At the same time, W is different from the most probable work, W™P defined as the work value at which S(W) is
maximum,

(8S(W)> 0o (8(1)(W)> . -
W )y W )y
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Fig. 2. Upper left panel: Path entropy s(w). Middle left panel: Path free-energy @ (w) = w — T's(w). Lower left panel: Lagrange multiplier
A(w) equal to the inverse of the path temperature 1/7 (w). Figure taken from [28]. (Upper right) Ramping protocol. (Lower right) Three possible
one-transition paths of a dipole. The dipole reverses orientation at different values of the field H*.

The path entropy is associated to a path temperature, T(W),

BW) _wy= L T(W)=T (8)
ow T(W)

where A(W) is a Lagrange multiplier that transforms the path entropy S(W) into the path free energy @ (W). The

mathematical relations between the quantities W' and W™ can be graphically represented for a given path entropy

S(W) (see left panels in Fig. 2). The path thermodynamics formalism allows us to extract some general conclusions

on the relation between W' and W™P. In terms of the path entropies for the forward and reverse processes, Sy (W)

and Sr(W), (2) can be written as,

W —AF , , 1
SF(W) = SR(=W) = ——— = (Sp)'(W) + (Sp)'(=W) = = )

where we used the definition S(W) = log(P (W) and later derived with respect to W. By inserting W = W; and
W= —W; in the rhs of (9) and using (6), (7) we obtain the following chain of relations,

. 1 : m
(SF) (W) + (Sp) (-W}) = = (SR) (~W))=0— W) = —WgP (10)

1 T m
(SF) (=W}, + (Sp) (W) = 7= P (- W) =0~ Wh=—wpP (11)

The rightmost equalities in (10), (11) imply that the most probable work along the forward (reverse) process is equal
to the work value (W) that must be sampled, in a finite number of experiments, along the reverse (forward) process
for the Jarzynski equality to be satisfied. The process among the forward and reverse with largest dissipation is the
one that samples best the region of values in the vicinity of W. This conclusion that may look counterintuitive can
be rationalized by noting that larger dissipation implies also larger fluctuations and therefore more chances to get rare
paths that sample the vicinity of W'. The symmetries (10), (11) were originally discussed in [28] and analyzed in
detail for the case of the gas contained in a piston [29].
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3.3. An example

As an example of the previous set of relations let us consider a magnetic dipole subject to an external field H. The
dipole can take two possible values o with o = %1, the energy of the dipole being E = —uo H. The transition rates
between the up and down orientations are of the Kramers type [32,33],

exp(4)
k_pspu(H)=kyp(H) =ko——F— (12)
ek P 2cosh(4)
—uH
exp(=57)
ko _y(H)=kiown(H) =kg————— (13)
e o 2cosh(4)
with kg = kup(H) + kgown (H ) independent of H. The rates (12), (13) satisfy detailed balance,
kun (H P 2uH
up(H) _ (w) —ex (_M_) (14)
kdown(H) PeA(—p) T

with Pe4(+(—)pn) = exp(—(+)uH/T)/Z where Z =2cosh(uH/T) is the equilibrium partition function. We now
consider a transient nonequilibrium state produced in a ramping experiment where the magnetic field H (¢) is varied at
a constant speed » = H. The system starts from an initially equilibrated state at the initial value of the field, H = — H,
and ends at H = Hy. For simplicity we take the limit Hy — oo by keeping the ramping speed r finite. The work done
by the ramping field on the dipole along a given path is given by,

W(F):—/drH(z)y,(z)=—rfdm(t) (15)

Note that because Ey (i) = E_pg(—p) then AE =0 and Q(I") = W(I") so heat and work are identical quantities in
this example. Moreover, due to the time reversal symmetry of the ramping protocol, the work distribution P(W) is
identical along the forward and reverse processes, Pr(W) = Pr(W).

The exact computation of P (W) in this simple one-dipole model is already a very arduous task. We can, however,
consider a limiting case and try to elucidate the properties of the work (heat) distribution. Here we consider the limit
of large ramping speed r where the dipole executes just one transition from the down to the up orientation. A few of
these paths are depicted in the lower right panel of Fig. 2. In this reduced and oversimplified description a path is fully
specified by the value of the field H* at which the dipole reverses orientation. The work along one of these paths is
given by,

Hy
W(FEH*):—Hlim deL(H)Z((H*+H0)—(H0—H*))M=2MH* (16)

— 00

o e
According to the second law, W = Q > 0, which implies that the average switching field is positive, H* > 0 (as
expected due to the time lag between the reversal of the field and the reversal of the dipole). The work distribution
is just given by the switching field distribution p(H™*). This is a quantity easy to compute. The probability that the

dipole is in the down state at field H satisfies a master equation that only includes a death term,

9Ppdown (H) __ kup(H)

9H Pdown (H) (17)
This equation can be exactly solved to yield,
H Tko
1 2uHN\\ 2
Pdown (H) = exp - dH kyp(H) | = | 1 +exp T (18)
—0o0

Using the relation P(H*) = —(pdown) (H*) and (16) we get,

Ty
P(W)Z%(He"p(g)) o (19)

cosh(%)
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and from this result we obtain the path entropy,

Tk w w w
S(W) = log(P(W)) = —2—/;; log(exp<7) + 1) + 3 10g<cosh(ﬁ>> + constant (20)

It is important to stress that (19) does not satisfy (2) (with Pr(W) = Pr(W)) except in the limit »r — oo where this
approximation becomes exact. We now consider the large r limit. For W™, W' we obtain to the leading order,

2 1

S/ (W) =0 — WmP=Tlog<ﬂ> +o<—> Q1)
koT r

s'(wh) = L Wi =—Tlog(22) 4o (22)
T g koT r

so the symmetry (10) (or (11)) is satisfied to the leading order in r (yet it can be shown that the 1/r corrections appear-
ing in W™P, wT (21), (22) are different). The logarithmic increase of the average work with the ramping speed (21)
is just a consequence of the logarithmic increase of the average value of the switching field H* with the ramping
speed. This result has been also found for the dependence of the average breakage force of molecular bonds in sin-
gle molecule pulling experiments. This phenomenology, related to the technique commonly known as dynamic force
spectroscopy, allows to explore free energy landscapes by varying the pulling speed over several orders of magnitude
[34,35].

3.4. Large work/heat deviations

The work distribution obtained in the previous example (hereafter we use ¢ = Q = W) shows the presence of large
work/heat tails. For |g| — oo we get,

k
5(q — 00) = — 2% +o(exp<—1)) 23)
2ur T
q q
— ==40 — 24
4 01= 2 o{on(2)) o
The linear dependence of s(g) on ¢ leads to
~ . 2ur
T(g—-o0)=T =—— (25)
ko
T(g—>—o0)=T"=T (26)

where we use the notation 77, T~ to stress the fact that these path temperatures are positive and negative respectively.
Both path temperatures are constant and lead to exponential tails for positive and negative work values. Note that
Eq. (9) reads,
5@) = s(-) = L = () () + () (—q) = SRS + Lol 27
T T T T- T

which is satisfied by (25), (26) up to 1/r corrections. Fig. 3 shows the results obtained for the path entropy, free energy
and temperature using a mean-field path integral formalism that includes arbitrary paths with more than one reversal
of the dipole (for details of the computations see [28,30]). A more detailed analysis [31] has shown that a plateau is
never fully reached for a finite interval of heat values when » — 0. The presence of a plateau has been interpreted in
terms of a first order phase transition appearing in the path entropy s(gq) [31].

The path entropy s(w) contains two fluctuation sectors [2] (see also [36] for a discussion of these sectors in the
context of oscillator models for glassy dynamics):

— The FDT or stimulated sector: This sector is described by Gaussian work fluctuations leading to s(q) = —(g —
g™P)2/ (2%2) + constant. Therefore we get, from (8), L(g) = #q) =— q_aqz u showing a linear dependence in g for

q
small deviations around ¢™P. Note that T (¢) satisfies (27) and therefore qu =2T¢™P, leading to a fluctuation-
dissipation parameter R = 1 (3). This sector we call stimulated because the magnitude of heat fluctuations is

governed by the temperature of the bath.
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Fig. 3. (A) Heat distributions (path entropy s(g) and path free energy f(g)) evaluated at four values of increasing ramping speeds (from the most
narrower to the most wider distributions). The dashed line in the left panel is y(q) =¢/T (we take T = 1) and is tangent to s(g) at q% (filled dots
shown for the largest ramping speed). The dashed line in the right panel corresponds to y(g) = ¢ and is tangent to the function f(g) at the value
q™P (filled dots are shown for the largest speed). (B) A(g) for the lowest speed. It shows a linear behavior for small values of ¢ (dotted line). Figure
adapted from [28].

— The large deviation or spontaneous sector: Under some conditions this sector is well reproduced by exponential
tails in the work distribution describing large or macroscopic deviations. In this sector,
1 1 1 1 1 1

LIS U L I S 28
fa@ Feq T 15 T- T 2%

The physical interpretation of 7T, T~ is as follows. Because T~ < 0 then T~ describes fluctuations (correspond-
ing to g positive and large (25)) where net heat is released from the system to the bath, whereas 77 > 0 describes
fluctuations (corresponding to g negative and large (26)) where the system absorbs a net amount of heat from
the bath. Eq. (28) imposes T+ < |T~| implying that large deviations also satisfy the second law: the average
net amount of heat supplied to the bath (o< |[T|) is always larger that the average net heat absorbed from the
bath (o< TT). In the previous example (25), (26), T converges to the bath temperature whereas T~ diverges
to —oo when r — co. We call this sector spontaneous because the energy fluctuations mainly depend on the
nonequilibrium protocol (in the present example, such dependence is contained in the r-dependence of 7, (25)).

4. Free energy recovery in single molecule experiments

Single molecule force experiments [5] using optical tweezers have provided some of the first experimental tests
of fluctuation theorems. The basis of single force measurements is to use a local probe (a cantilever in AFM, a glass
bead in optical tweezers, a magnetic bead in magnetic tweezers, etc.) to detect forces in the pN range. The sensitivity
in force and extension of these probes is limited by Brownian fluctuations which put upper bounds to the resolution
of the instrument. In general, force and extension sensitivity are determined by the magnitude of the fluctuations
Af ~ JkgTk and Ax ~ /kgT/k where k is the effective stiffness or rigidity of the probe (a combination the stiffness
of the probe and the stiffness of the molecular system that is manipulated). A large value of k implies high spatial
resolution but low force resolution (a good example is the AFM which due to its high spatial resolution is also used
as an imaging tool) whereas at low k values we have low spatial but high force resolution (e.g. magnetic tweezers). In
general, Af Ax ~ kpT and accuracies in both quantities appear to be complementary, a sort of uncertainty principle.
Optical tweezers offer a good balance between both limiting cases with Af and Ax both reasonably small (in the
0.1 pN and 1 A ranges respectively).

Optical tweezers are based on the optical gradient force discovered by Ashkin in 1970. By focusing an infrared
laser beam (to avoid heating effects in water) and using a water or oil immersed objective with high numerical aperture
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Fig. 4. Three RNA molecules: CD4, a canonical hairpin (left); S15, a three way junction (center); and a subunit of ribosomal RNA in E. coli (right).
FTs have been tested in the first two molecules.

(in the range 1.2-1.4) it is possible to trap micron sized beads having an index of refraction higher than that of water
(e.g. of polystyrene or silica beads). In order to reduce the scattering force along the optical axis it is useful to build
optical tweezers with counter propagating laser beams. In this setup it is then possible to use objectives with numerical
aperture in the lower range (~1.2) and, at the same time, collect all the deflected light by the bead. This allows to
measure the transverse and axial components of the force acting on the bead by using position sensitive detectors
located at opposite sides of each laser beam.

Over the past years RNA has been investigated using optical tweezers. There are several reasons that make RNA
a good model system to investigate nonequilibrium fluctuations in small systems. RNA is a very important player in
molecular biology that shows biological functions in between those attributed to DNA and proteins. For the biophysi-
cist and the statistical physicist RNA is also a fascinating molecule. Primarily found in nature in single stranded form,
RNA folds into a three dimensional structure mainly stabilized by stacking interactions and hydrogen bonds between
complementary bases (A-U,G-C). Full complementarity between different RNA segments is often impossible so, at
difference with DNA, RNA structure also includes mismatches between bases as well other structural defects (bulges,
loops, junctions, .. .). In addition to Watson-Crick base pairing, RNA forms a compact structure through specific inter-
actions mediated by magnesium ions that bring together distal RNA segments. A few structures where FT's have been
tested are shown in Fig. 4. Another aspect that makes RNA particularly interesting, at difference with proteins, is its
modular structure (Fig. 4). This fact makes RNA particularly suited to investigate questions related to the folding of
biomolecules. How does RNA fold? Does folding occur majoritarily in one big step where all domains are simultane-
ously stabilized and the entropy of formation is suddenly released as heat to the environment? Or, instead, does folding
occur in a series of steps, where at each step a few kcal per mol are dissipated to the environment? Understanding the
process by which molecules dissipate energy while they fold may shed light on the physical mechanisms behind the
selection of specific molecular structures during evolution.

RNA molecules can be manipulated using optical tweezers and the folding/unfolding kinetics investigated under
mechanical force [37]. From the force extension curves it is then possible to measure the work done upon/by the mole-
cule by/on the instrument [38]. In order to pull RNA molecules it is useful to insert them between double stranded
DNA/RNA hybrid handles that provide the necessary space between the micron sized beads to carry out the manipu-
lation (Fig. 5A). The whole molecular construct (RNA plus handles) can be synthesized using standard gene cloning



F. Ritort/ C. R. Physique 8 (2007) 528-539 537

T ——T T
A B) nocea e B
F = 20+ Unfolding o
t1 e ]
Handle A Z 15 -
X RNA S "
Handle B 8 0 Folding I
l 5 10 -
5r T
Work integration] range
- Folded state <————————1 ]
o 1 L ML L s | L
. = 340 360 380
(C) micropipette (D) Extension (nanometers)
oy T T T T T . I: T T T T 4- T x T " T ¥ T i T ]
B} 0.2r Unfolding :\‘ : W15pNs |1~ 3F O average &
~ — — Refolding | ; \ 7.5 pNis & 0 mol 1 O 1
=¥ 21 mol 2 F -]
= 0.15F ! 20 N N X mol 3 o ]
2 o &‘" 1F mal 4 1
3 AR S oh SR T ]
0.1r !z 1 . XS0
a d 1 Tt ol o o” ]
0.05F 7] {1 & 2f ol 1
X ’/ !:; ‘ ' %g v ,>,< X
Sy N, A ]
oL . 9 . d Il I R 4 @ I ) 1 " L . 1
95 100 105 W/él'or s 120 106 108 110 112 114
B W/kBT

Fig. 5. (A) Experimental setup in RNA force pulling experiments. (B) Force-extension curves in the canonical hairpin CD4 showing the work
integration range. (C) Unfolding/refolding work distributions measured at three pulling speeds. (D) Verification of the Crooks FT. Results taken
from [39].

and PCR techniques. In such experiments RNA molecules can be repeatedly pulled and relaxed to produce unfolding
and refolding force-extension curves such as those shown in Fig. 5B for the canonical hairpin CD4. By measuring the
area under the curve it is then possible to estimate the work done on/by the molecule along each unfolding/refolding
path. Work distributions for different molecules and different speeds are shown in Fig. 5C and the test of the FT
in Fig. 5D. As predicted by the FT (3), work distributions cross at the same value of the work for all three pulling
speeds. From this value we can extract the free energy of formation of the hairpin, AF, after subtracting the elastic
contributions due to the handles and the ssSRNA. The canonical hairpin does not show too irreversible behavior at the
pulling speeds investigated (around 100 nm/s) and dissipated work values are not big (around 6kpT at 500 nm/s). In
contrast, the force—extension curves for the three way junction S15 shown in Fig. 6 show strong irreversibility effects
(e.g. hysteresis) as expected for a larger molecule. S15 unfolds in a cooperative way but refolds less cooperatively and
over longer timescales. The amount of dissipated work is much larger (around 50kp T for the unfolding and around 20
kpT during the refolding). The FT has been experimentally verified in the case of a mutant of S15 (differing from the
wild type in a single base pair) that folds faster than the wild type. Forward and reverse distributions cross at values of
AF that differ in 3kpT which is equal to the difference in free energy of formation between the mutant and the wild

type.
5. Conclusions

The experimental and theoretical study of nonequilibrium small systems offers exciting possibilities for the sta-
tistical physicist and the biophysicist. This discipline aims to describe the novel properties observed in biomolecules
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Fig. 6. (Left) Force-extension curves in the three way junction S15 (wild type). (Right) Work distributions measured for the wild type and a mutant
differing in one base pair swap (GC — CG) located in the stem just below the junction. In the inset we show the experimental verification of the
Crooks FT. Results taken from [39].

and molecular machines operating far from equilibrium, such as the folding of a nucleic acid or a protein or the
translocation motion of a molecular motor.

We are just starting to take a glance at how these small objects exchange energy with their environment. It is a well
known fact in molecular biology and biochemistry that biological function at the molecular level is tightly related to
structure. It might not be surprising that the link between molecular structure and biological function is encoded in
the low frequency region of the spectrum of nonequilibrium energy fluctuations (the spectrum of energy fluctuations
extending far at the most extreme tails of the distribution). It is difficult to imagine how biomolecular processes, often
carrying a lot of information, can operate solely from high frequency events describing the motion of a few number
of atoms. Rather, these should somehow rely on the low frequency cooperative motion between different and distant
parts of the molecule. In other words, nonequilibrium fluctuations that drive biological function must be encoded
in the tails of the energy exchange distribution, what we have called the spontaneous sector here and in previous
works (see [2] for a review). Investigating the spontaneous sector of fluctuations in nonequilibrium systems calls for a
deeper theoretical understanding of large deviation functions in nonequilibrium systems (see for instance [40]) as well
as more systematic and accurate experiments identifying sources of large energy fluctuations in biological systems.

We are at the dawn of an interdisciplinary scientific discipline that will bring together scientists with expertises
coming from very different branches of knowledge. This merging process might culminate with the future engineering
of artificial mesoscopic structures capable of reproducing and even improving the behavior of the biological ones.
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