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In this paper we introduce the generalized oscillator model (GOM) as a family of exactly solvable models
useful to investigate theoretical aspects related to the statistical description of the aging state. GOMs are
defined by a potential functiovi(x) and characterized by a zero-temperature relaxation determined by entropy
barriers and partial equilibration. Analytic expressions for the effective temperature can be derived using a
fluctuation theorem valid in the aging regime without the need to solve the dynamical equations for correlations
and responses. Two classes of models are investigated in detail: the homogeneous potential mg@él with

= (kI2p)x? (p being a positive integer) and the wedge potential moded) (= k|x| whereV(x) has a singularity

at the ground-state coordinate= 0). For the latter, we present some numerical simulations that reinforce the
validity of the main analytical results. GOMs offer a conceptual framework to develop a statistical description
of the spontaneous relaxation process that has been recently prbfmbedat the root of the intermittency
phenomenon observed in glasses and colloids.

1. Introduction cols), which is the time elapsed since the system was prepared
N ilibri h is a field of h of h in the non-equilibrium state. In the aging state correlation
on-equilibrium phenomena IS a 1ield of research of muceh ¢, wigns tend to decay in a time scale that is of the order of

current interest. From turbulence in liquids to heat convection the age of the system. A statistical interpretation of the aging
inside §tars, aplethora.of systems show avery rich. and COmplexsta‘re has not yet beén accomplished; however, our present
behav!or, _rarel_y d_escnbable In terms (.)f f_ew variabiethe understanding might not be far from resolving several of the
opposite situation is encountered in equilibrium systems, where most important clues. Recent experiments have observed the
few parameters are needed to characterize the equilibrium Stal&yistence of intermittent fluctuation&that could be related to
and its fluctuations. Entropy, a key concept in thermodynamics, dissipative processes characteristic of the glass State.

adT'tS af statllstlc;al méerlgiretatmn ")[ tglm;]s C(j)ft;hebr?:jlcrols_cgplc thermodynamic description of such processes could provide an
motion of molecules. Boltzmann established the bridge linking important step in that direction.

the microscopic and the macroscopic worlds, the central result L .
Statistical models have been always an important source of

in his theory being the relatio8 = kg log(W) whereW is the LT did d d the al ition. M
number of configurations available to the system. The extension Inspiration and ideas to understand the glass transition. Many
types of models have been considered in the past, from

of this approach to non-equilibrium systems and the character- ; . .
phenomenological two-state systems to spin glasses, passing

ization of their behavior in terms of a few number of parameters h h i £ famil h hard-sph
still represents a major theoretical challenge. through a wide range of family systems such as hard-sphere
liquids, Lennard-Jones systems, lattice models, kinetically

Two categories of non-equilibrium systems have received .
. T . . constrained models, among others. Most of these models have
considerable attention in past years: systems in steady state ; . . . .
; een investigated using approximate methods or numerical
and glassy systems. The first category encompasses all of those

systems driven out of equilibrium to a stationary state by the S|mulat|pn§.

action of an external perturbation. The most common example _ 10 this list we should add exactly solvable models. From a
is a wire of metal with extremes in contact with two thermal Nistoric point of view, these have played an important role in
sources at different temperatures. In this case, and if the € early days of statistical mechanics. From the urn models
temperature difference is not too large, the flow of heat from introduced by the Ehrenfests aiming to understand concepts such
the hotter to the colder source is described by the Fourier law. 8 €ntropy and thermal equilibrium, to the Ising model that

The second category encompasses all systems that are not in §€Scribes phase transitions and critical phenomena, solvable
stationary state but which properties change very slowly with models offer conceptual frameworks to contrast ideas and check

time. Structural glasses (such as ordinary window glass) aretheir consistency by evaluating specific prgdictions. In this way,
prototype examples. exactly solvable models have also contributed to our current

The glass state is characterized by a very slow relaxation understanding of glassy systems.
toward equilibrium and by a exceedingly low rate of the energy ~ The goal of this paper is to introduce a general family of
released from the system to the bath during the relaxation. A €xactly solvable models that might help to better understand
useful parameter to characterize the glass state is the age of théhe mechanisms behind the slow relaxation observed in glassy

glass (also called waiting time in several experimental proto- Systems. We introduce the generalized oscillator model (GOM)
as a generalized version of a previous model introduced by the

T Part of the special issue “Hans C. Andersen Festschrift”. author® These share some properties with kinetically constrained
* Corresponding author. E-mail: ritort@ffn.ub.es models as statics is trivial but dynamics is not. Therefore they
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belong to a large category of models whose dynamics can be To solve the dynamics of the GOM we have to compute the
very rich despite the fact that the energy landscape has trivial probability distribution of energy changB¢AE). This is defined
properties. The main objective of this paper is to discuss a as the probability density that in a given move the energy
statistical approach to the aging state by emphasizing thechanges by an amoumE. In general, this quantity shows a
relevance of the concept of effective temperaties a useful complicated dependence on theoscillator probability density
way to quantify violations of the fluctuatierdissipation A({x}) that the system occupies the configurat{or} at time
theorem’-® In the framework of the GOM we stress the t. However, the GOM has the good property that B{(&AE)
relevance of the effective temperature to quantify the spectrum depends on a finite number of observables rather than on the
of intermittent energy fluctuations in the aging regime that have full configurational probability distribution. This property is
been experimentally observédThe link between intermittent  characteristic of mean-field systems, the GOM being just another
effects in non-equilibrium systems and statistical effective example. This makes the model amenable of analytical com-
temperatures has been recently proposed in the framework ofputations and a good laboratory to test many results regarding
simple models for the glass transitibh.The present paper the glassy regime. To compute the probabilRjAE) we
extends these considerations to the GOM. consider the change of energy in an elementary move,

2. The Generalized Oscillator Model (GOM) N ri 1
VX +—| = V()| = Z
IN EIIND

N
Zv‘”m)rr 4)

. . . AE =
Generalized oscillator models (GOMs) consist of a set of .Z
noninteracting oscillators each described by a continuous

variablex; and the energy function As dynamics is stochastic, the quantt§ is a random variable

N whose distribution can be reconstructed from the moments

E=" V(x) 1) (AE)“. An explicit calculation of such moments shows that
= only the first two moments give a finite contribution in the large
N limit. Therefore, in the thermodynamic IImiR(AE) is a
where V(x) is a real valued potential energy function that Gaussian distribution
diverges toto in the limit [x| — . For instance, the potential

can be of the type/(x) = k/(2p)x?* with p an integer value. i (AE—M AE)z
This is called the homogeneous potential model, the pase P(AE) = (2ndhe) " exp — — (5)
1 corresponding to the harmonic case introduced in ref 6. Here 200g
we will only deal with potential energy functions such that the ) )
partition of an individual oscillator;, remains finite at finite with meanMe and Va”anC@iE given by
temperatures, o pe
N . Mg = E=7V”(x) (6)
a2 =, exppV() (2)
2 _ 2 ARV — A2\ (y))2
with 8 = 1/kgT, kg being the Boltzmann constant (that we will oxe = (AE)” — (AE)" = A%(V'(x)) )
set equal to one) andthe temperature of the bath with which — N )
the system is put in contact. wheref(x) = (1/N) 3=, f(x). At T = 0 the equations for the
We consider a dynamics where all oscillators are updated in @cceptanca (i.e., the fraction of accepted moves) and the energy
parallel according to the rule per oscillatore = E/N = V(x) can be written as
0
T a= [ P(y)d 8
X — % +— (3) JoP) dy (8)
N oe 0
— = P(y) d 9
where ther; are uncorrelated Gaussian variables witl= 0 ot f*°°y ) dy ©

and variancerr; = AZ0j. The updating of all oscillators is
carried out in parallel in a single move. The move is accepte
according to the Metropolis rule. We will focus our analysis (O2 )1,2 [{
AE
e

d Inserting eq 5 in egs 8 and 9, we obtain
2

on the zero-temperature dynamics, as this is the case wheree_ _ Mie + MAEErfC Mae (10)

relaxation is fully determined by entropic effects. Indeedl at ~ dt 2 (202 E)1/2

= 0 activated jumps over energy barriers are suppressed and

2n 20,

relaxation proceeds only through search of favorable directions 1 Mg
in phase space where the energy decreases. As time goes on, a= EErfC —ap (11)
dynamics slows down as most of the proposed moves tend to (2046)

push the system away from the ground state by increasing its "
energy. Only those moves that decrease the energy are acceptedith Erfc(x) = CINESTS exp(-1?) du the complementary
Glassy dynamics in the GOM is then consequence of the quick €rror function. These equations are not generally solvable as
decrease with time of the acceptance rate. they are not closed, and the time evolution for the mklag

The GOM shares with kinetically constrained mo@etse and the variancesz¢ is unknown. Only for some types of
property that, while statics is trivial, dynamics is complicated. potentialsv(x) can a closed solution be found. Oscillator models
Oscillators in eq 1 are noninteracting and therefore the model have the interesting property that relaxationTat= 0 gets
has trivial static properties, ths-oscillator partition function ~ steadily slower as the ground state is approached. In fact, the
being given byZy = (27)N. The thermodynamic properties are  ground-state configuratio{mgs} is characterized by the fact
then derived by computing the integral in eq 2. that the energy (eq 1) is an absolute minimum, theretﬁ?e:
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XCS, with V'(x¢S) = 0. According to eq 7, the value afi

steadily decreases as the ground state is approached. From eqgs

10 and 11 this leads to a quick decrease of the decay rate of the

energy and the acceptance rate. In such conditions the scenario

of partial equilibration (as described in ref 5 and below in section Surface E
3) holds. A salient feature of eqs 10 and 11 is the dependence

of the dynamical equations upon the following parameter:

2
OAE

A= 2M

12)

which has the dimensions of an energy (or temperature). Indeed,
at T = 0 in the large-time limit, the quantityl vanishes

. . I ey Figure 1. Geometrical construction to complWREAE). The thick lines
asymptotically. If we definex = /M,/(41) we can then denote the departing and final energy hypersurfaces cente@drae

expand the complementary error function in egs 10 and 11 gashed circle indicates the hypersurface accessible from Poifite

aroundx = oo, intersecting region between the accessible hypersphere centdfed at
and the final hypersurface of ener@y defines a hypersurfacke of
exp(—xz) 1 1 radiusC (the radius is represented by a thick line). See the text for a
—(1 - —+ (Q( 7
Vrx

—)) (13) more detailed explanation.
¢ \x

o ) o ) ~/2E'/K to the originO. The change in energy associated to
Substituting this expansion in eq 10, we get for the time thjs transition iSAE = E' — E. The probability of this jump is

Erfc(x) =

evolution of the energy therefore proportional to the surface of the intersecting region,
1 P(AE) O CN=2, whereC is the radius of the intersecting region.
de O“ZE exp(—xz) The computation o€ is quite straightforward as can be deduced
5t~ \ar 2 (14) from the triangle including the point®, O as vertexes and

whose three sides aiR R, A. In terms ofR, R, andA, the

This equation can be asymptotically solved for a quite broad distanceC is given by the relatiorR = JR2_CZ + \/AZ_CZ_
family of models. In general, the asymptotic decay of the energy Expressed in terms d&, AE, A we have

can be expressed in terms of the parameteq 12) by knowing

the analytic behavior 0f(x) in the vicinity of x = 0. We show C2=A2— k (ﬁf _ 2)2 (16)

below how the parametérin eq 12 plays the role of an effective 8E\ k

temperature that quantifies violations of the fluctuation

dissipation theorerh. The surfaceQ(E, AE) corresponding to the regidnof radius
C, relative to the energig of the reference configuratiofx’}

3. Partial Equilibration is

To better understand what partial equilibration means, we 7 N-2)/2
will consider the case of an harmonic wal(x) = (1/2)kx, Q(E,AE)0C" %= [Az - 8_kE (%E - Azﬂ( )
where k is the stiffness constant of the well. This case a7

corresponds to the linear harmonic oscillator introduced in ref ) ) ) ) )
6 and studied in detail in other work&!! For the harmonic ~ Using the fact thak is extensive withN, this expression can

case the energy is quadratic in the variables be rewritten as
X ke
E=- Y% (15) (AE 2
22 Q(E, AE) Dexpg — ~—————— (18)
AE/N)KA
Equations 6 and 7 giviae = kA%2, Ohe = kZAZX_2 = which is then proportional to the probability distribution eq 5.
2kAZE/N = 2kA%, wheree = E/N is the energy per oscillator. This construction then provides a geometric way to determine

We now follow the discussion presented in ref 11. The constant the Gaussian distribution (eq 5). From eq 16 we seeGHand
energy surface can be represented by an hypersurface centeregherefore als®(E, AE) or P(AE)) has a maximum foAE =

around the origing = x®5 = 0 (depicted as O) of radiuB = kA2/2. The Gaussian distribution is depicted in Figure 2.
~/2E/k. In Figure 1 we depict a schematic representation of the Consider now & = 0 dynamics where only moves witkE <
motion of a representative configurati¢r® (depicted as) 0 are accepted. In this case, as the relative number of

of energyE in phase space. The smaller dashed circle representsconfigurations that are accessible frdtngoes such a€N-2,

the region of points accessible frofix% according to the the largest number of accessible configurations lie in the vicinity
dynamics (eq 3). All accessible poirtg} satisfy ¥i(x — x%)? of P. Because the radius of the small dashed hypersphere in
= A? i.e., lie at a distanca from {x% which is the radius of Figure 1 is equal ta\ but the radiuR of the hypersurface of
the smaller dashed circle. The accessible configurations in aenergyE is proportional td\2, dynamics constraints the system

single move lie in a spherical hypersurface of dimendibr to move along the constant energy hypersurface in the thermo-
2 corresponding to the intersection of the hypersurface of energydynamic limit. The system has then time to diffuse throughout
E' and the smaller spherical hypersurface of radiusVe call a given energy shell of finite width before leaving that shell

this region the intersecting regidras shown in Figure 1. The  toward lower energy surfaces. This scenario was called partial
final configurations contained i lie at a distanceR = equilibration in ref 5.
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! " | - g - | - have natural dimensions of frequency. We will denote them by
: W(AE). In general we can write
0.8 _

P(AE)

(20)

P(AE)

wherez(E) denotes the average time to escape from a config-

- uration of energ)E. As these are microscopic transitions, the
elementary escape process can be assumed to be a Poisson
process described by its characteristic tin(g). We can now
imagine a situation where, in the largé limit, the average
escape time is identical at both energiesE’ whenever the

1 ' 2 energy differencE ~ ()(1). In this case, the time scale drops
from the ratio between the forwaré (—~ E') and reverself’ —

E) transitions

04—

02—

AE

Figure 2. Probability distribution of energy changes for the GOM as
derived from eqs 5 and 18. The major part of energy changes are with

AE > 0. At T = 0 the variance of distributioni decreases relative WAE) = P(AE) (21)

to the mearMxe (i.e., the parametetrin eq 12 decreases as the ground W(—AE) P(—AE)

state is approached). The fraction of accepted moves (dashed area with

AE < 0) steadily decreases with time. Therefore, the rated/ satisfy the same micorcanonical relation

between the forward and the reverse paths as do the transition
This derivation can be generalized to the GOM (eq 1) where probabilitiesP(AE). Using eq 19 and expanding the term in

the constant energy hypersurface is not necessarily a spherethe exponential up to the first-order term AE we find
The crucial point in the argument is then the fact thais a
finite quantity while the typical spatial dimensions of the P(AE)
constant energy hypersurface are of the ordd. In the P(—AE)
thermodynamic limit the hypersurface is locally a sphere and AE
the lengthC (eq 16) can be mathematically expressed in terms ex;{ (22)

FT,
of the mean energy curvatul'(x) and the modulus of the Tert(t)

energy gradient vector given b(x)’. The final resultis again  where we have defined the time-dependent effective temperature
the most general expressions (eqs 5, 6, and 7).
1 (8S(E)

=exp§E) — §E) = ex;{(%)AE] =

Ton(t,)

oE )E—E(tw) (23)

4. The Fluctuation Theorem (FT) and Effective
Temperatures

In the GOM a scenario of partial equilibration takes place in The effective temperature is a quantity that depends on the age
the constant energy hypersurface. This is exemplified in Figure of the systent,, through the time-dependent value of the energy
1 for the harmonic case where it is shown how the system is E(t,). A remark is now in place. The decomposition (eq 20) is
constrained to dwell in the constant energy hypersurface beforereminiscent of the rates used in trap modélslowever, there
moving to lower energy configurations. In this case, because is an important difference between the GOM and trap models.
dynamics is microscopically reversible and ergodic along the In the latter the time scalg(E) also depends on the energy of
constant energy hypersurface, a quasi-stationary dynamicsthe trap but, contrarily to the present case, the rate is modified
emerges with a probabilistic description that can be done in for energy changeAE ~ ¢)(1). Moreover, the partial equilibra-
terms of a microcanonical measure. However, there are impor-tion scenario is difficult to visualize due to the absence of a
tant differences between this dynamical measure and the usuaproper configurational space. Although phenomenological trap
microcanonical measure for equilibrium systems. While in the models are very useful models to understand many aspects of
latter the energy is kept strictly constant and there is no time the aging dynamics, several issues still remain controversial,
dependence of the microstate probability distribution, in the especially regarding the physical significance of FD viola-

former the measure is dynamical and time dependent. tions13-15
A key concept in such description is the notion of configu- Relations describing ratios between transition rates for
rational entropy (sometimes also called complexa{g), which forward and reverse processes in non-equilibrium systems are

counts the number of configurations with a given enekgy commonly known as fluctuation theorems (FTs). The relations
This quantity is precisely given bR(AE) except for the fact in egs 21 and 22 show a strong resemblance with some of these
that P(AE) counts the number of configurations of eneigy theorems; however, there are important differences that we want
that are accessible from a reference configuration of enérgy  to highlight. There are two general classes of fluctuation
In a microcanonical description of the aging state, the probability theorems. In the first class there are the so-called entropy
to visit configurations with energf' is then proportional to production FTs in stationary systems, where the relation between

the number of configurations with that ener€yE’), forward and reverse transitions is related to the entropy
production in the asymptotic limit of large timé&&ln the second
P(AE) O Q(E") = expEE")) (19) class there are exact non-equilibrium work relations valid at all

times between the forward and reverse rates whenever the
with AE=FE' — E, E' being the final energy arieithe departure system is arbitrarily perturbed away from an initial equilibrium
energy. It is important to emphasize tHAE) in eq 19 (as state along both the forward and reverse pati&The most
well as in eq 5) is a probability rather than a rate. Transition important difference between egs 21 and 22 and these theorems
rates are transition probabilities per unit of time and therefore concerns the fact that the aging state is not in a stationary state
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(first class) and the system does not start from an initial presence of the bath. The stimulated process, though, is the
equilibrium state (second class). Moreover, the relations in eqsemission and absorption of energy by atoms induced by the

21 and 22 are not valid for energy chang&Ek arbitrarily bath of photons.) For a recent discussion of these ideas, see
separated in time as the effective temperature (eq 23) is agerefs 4 and 5. The existence of these two heat exchange processes
dependent. is at the root of the intermittency phenomenon recently observed

There is another important feature of eq 21 that must be in glasses and colloids®
emphasized. Standard FTs allow for transitions to occur in both  The effective temperature can be computed in the GOM by
directions, and certainly this is what the identity in eq 21 seems using egs 22 and 23. Indeed, from eqgs 22 and 5 we get
to imply. Because no work is exerted upon the system during

the relaxation, the energy change is related to the heat transferred P(AE) _ 2M,eAE (25)
between system and bath. Therefore, eq 21 relates transition P(—AE) a OZAE

rates between identical amounts of heat that are absorbed and

released between the system and bath. However, we face thgnq therefore,

problem that at zero temperature no heat can be absorbed by

the system (i.e., the energy can never increase), and therefore V)2

eq 21 cannot hold. The resolution of this issue concerns the ng(tw) =At,) =( (x) (26)
true meaning of the effective temperature discussed in the next V' (X)

section.

4.1. Spontaneous Relaxation and Effective Temperatures. ~ where is an age-dependent quantity that has been defined in
Developments during recent years in the theory of spin glasseseq 12 and where we have substituted egs 6 and 7. In equilibrium
and glasses have shown that aging systems show violations oft is straightforward to check that eq 26 coincides with the bath
the fluctuation-dissipation theorefthat can be quantified in ~ temperature by integrating by parts twice the integral in the
terms of an effective temperature. This is usually defined in denominator of eq 26,

terms of the fluctuatiordissipation ratio (FDR}? "
V(%)= [ dxV'(x) exp(-BV(x) =

ac(t, t,, w
1 L) (24) B dV() exp-pV) (27)

R(, tW) i, t>1t,

Tt ) =

In the aging regime in a partial equilibration scenario, the

where we assume thdt< t.)/tw ~ (1). In general the effective  effective temperature eq 26 is related to the energy at time
temperature is a quantity that depends on the measuredthrough the relation eq 23.

observable and the probed frequercy- 1/(t — ty) relative to
the agewty = tw/(t — tu). The interesting meaning of eq 24 is 5. The Homogeneous Potential Model

found in the low-frequency regimet,, < 1 where violations An example of the GOM where many quantities can be easil
are expected to be strong. The effective temperature defined in P va : y
worked out is the case of an homogeneous potential of the type

this way requires the measure of the response function, i.e., the
application of an external perturbation or field that shifts the K -
energy levels and exerts mechanical work upon the system. In Vp(X) = Z)X ? (28)
this case, the exerted work might account for part of the energy

transferred from the system to the bath, making zero-field with p a positive integer. The probability distribution (eq 5) is
transitions withAE > O accessible. Therefore, eqs 21 and 22 given by

have to be understood as the proper way of quantifying forward

and reverse transitions in a configurational space that has been AE — k(2p—1)Azh 2
perturbed by the action of an external field. This establishes a _ 2 P
: P(AE) = (27kA%h,,) Y2 ex
way to evaluate the effective temperature from the rate of heat 2p 2ACA%h
2p

exchange between system and baitinout the explicit need to

introduce an applied external fieldNote that an external field (29)

is usually required to evaluate the response funcR(n ty,). _

(In another context, numerical methods to compute the responsewith he = x*“%. By definition, E = NV, = N(k/2p)hps1.

function have been recently proposéd) Results similar to to eq 29 can then be obtained for the
The existence of the effective temperature is then related to distribution of changeB(Ah,) for generic observabldg, which

the presence of a heat exchange process between system arlgad to a hierarchy of coupled dynamical equations similar to

bath that we call spontaneous, as it is determined by the facted 10. These equations can then be studied using generating

that the system has been prepared in a non-equilibrium state functional techniques similar to those developed in other

The spontanoeus relaxation is different from the heat exchangesolvable spin-glass modet3Only for the harmonic casp =

process (that we call stimulated) between system and bath typicall is the equation for the energy (eq 10) closed and Markovian

of equilibrium systems. In particular, the stimulated process is as its time evolution depends only on the energy.

a high-frequency process characterized by a Gaussian distribu- The expression for the effective temperature (eq 26) for the

tion of exchange events, while the spontaneous process is a lowhomogeneous potential model is given by

frequency process that manifests in the form of some tails in

the heat-exhanged distribution, which width is age dependent. -I-FT(t ) = kth(tw) (30)

(The words “spontaneous” and “stimulated” make explicit W (2p — hy(t,)

reference to the problem of light emission by atoms in a bath

of photons. In that case, the spontaneous process is the emissiom the partial equilibration scenario, all observables are functions

of radiation by atoms in an excited state independently of the of the energyE of the hypersurface over which the system
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partially equilibrates. The relation between the valu@igt,) Al 70 )L S S B S B
and the energyE(t,) can be easily derived from eq 23. X 0.9 -
Introducing eq 28 in eq 2 we get 0.8} A O o ﬁ
~ 0 2 12p 00 07? ~_
a=[lencpe =) [ dyeney?) (@) o6l %, © ;
0.5F ok .
yielding the free energy¥ = const— NT log(<;) = const— 0'4“_ * i
(NT/2p) log(T) and the following expressions for the energy N
and entropy, 0.3r i
0.2 .
E =8§—ﬂF = ';'—; (32) 0.1- i
PN IS S S S T I T AT SIS N Y
00 0.1 02 03 04 05 0.6 0.7 0.8 09 1
Nlo N log(E A
—% = Zﬁ + Zg(T) = Zg( ) + const  (33) C
P P P Figure 3. FD plot for the harmonic modelp(= 1) obtained from
ivin Monte Carlo simulations &t = 0 with N = 1000 oscillatorsk = A =
giving 1, magnetic field intensity equal to 0.01 atd= 1, 10, 100 (circles,
IS(E) triangles up, and stars, respectively). It represg(@3 and the straight
1 = (_) = N (34) line is the theoretical asymptotic prediction for large value,oData
ng(tw) oE Je=ew,) 2pE(t,) were averaged over 200 dynamical histories.

remarkable facts emerge from eq 38: (1) eg 38 depends only

on the age,, at all timest > t,,, thereforeT 2 (t, ty) = Too (tw)

characterizes the aging state of the system at timand (2)

the second term in the r.h.s of eq 38 is subdominant with respect

to the first term. Using eq 34, this leads g} (tw) — To(tw)

— 2e(9), so both the effective temperature derived from the FDR

and the FT coincide.

To obtain the effective temperature it is sometimes useful to

. _ ) construct the so-called fluctuatiewlissipation (FD) plot§:23-25

+ (subleading logarithmic corrections) The FD plots for the homogeneous model can be worked out
(35) as follows (the same construction holds for the GOM) G,

tw) = xz(tw) = hy(tw) is time dependent, then it is convenient to
normalize the correlatiol(t, t,) by the autocorrelation value
taken at the lowest timée(t, t) = C(t tw)/C(tw, tw) and plotting
the integrated respongét, t,) = f dsRt, s) as a function of
C for t,, fixed and varying. The resultlng asymptotic curve is
ﬁhen expected to have a the form of a straight Ij{&) = (1

The case = 1 corresponds to the harmonic oscillator and gives
the well-known equipartition relatiolbg(ts) = 2E(ty). As
remarked in the paragraph following eq 14, the dynamical
evolution of the energy can be solved in general by knowing
the relation (eq 34) between the eneegy E/N and the effective
temperaturd@i(ty) = A(ty). In this case it is possible to derive
the following asymptotic behavior for the energy:

1
t) ~
0 (log(®))”

The effective temperatures (eq 30) can be also derived using
the fluctuation-dissipation relation (eq 24) or a set of micro-
canonical relations describing observable changes. The pos-
sibility to obtain the same value of the effective temperature -
by using three different approaches (the FDR (eq 24), the FT
(eq 25), and the microcanonical rates for observables) has bee

— C), where yo is the equilibrium susceptibility at zero

explicitly shown for the harmonic cagg= 15 In ref 5 the
picrty e temperatureyo 0 S~V These straight FD plots are charac-

main assumption was the validity of the partial equilibration teristic of th tep behavi b d in structural ol
scenario. Because the partial equilibration scenario also holds enstic ot the one-step behavior observed in structural glasses.

for the GOM, the main conclusions of ref 5 are expected to Flgu_re 3 shows the Tesu't_'”g FD plot for dpe= 1 case as
hold also for the present more general case. obtained from numerical simulations of the model.
The procedure to derl\{e the FDR (eq 24) gntalls the 6. The Wedge Potential Model
computation of the correlation and response functions for the
magnetizatiorM defined asM(t) = > xi(t) An interesting example of the GOM is the case where the
first derivative of the potential/(x) is not continuous at the

_ N ground-state configuration = 0. In this case the eqs 6 and 7
Ct, ty) = N X (0% (tw) (36) need to be reconsidered. The classical example for a potential
= of this type is the wedge potential model defined by
OX(t) V(X) = k|x 39
Rt =20 @7) 09 = kix (39)
b This potential is depicted in Figure 4. The statics for this model

is straightforward and the partition function is given By =
2/(BK). The internal energy and entropy are given by eqs 32
and 33, withp = 1/2. At equilibrium the one-oscillator
probability densityg®4x) is given by

whereh(t,) is an impulse field coupled to the magnetizatdn

at timet,. At T = 0 the response (eq 37) is finite due to the
shift of the energy levels induced by the field. For the harmonic
casep = 1, dynamics is closed and a simple expression can be
derived for the effective temperature (eq 24),

1 oe(ty)
f(tW) Bt To solve the off-equilibrium dynamics of this model, we proceed
similarly as was done in section 2 for a general functgk).
wheref(ty) is a function that asymptotically decays ak,1Two The main difference now is that the potential (eq 39) is not

9 = eXIO( BKIX|) (40)

ToeR(t, 1) = 2e(t,) + (38)
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Figure 4. Wedge potential model (eq 39) with= 1. It can be seen
as a special case of the homogeneous model of section pwitih/2.

differentiable atx = 0. While the expression fors; is well

defined, (V'(X))* = k2 is continuous for alk), the expression
for Mag is not because the second derivatWgx) is discon-
tinuous atx = 0. The expression, however, can be guessed by
noticing thatV''(x) = ad(x) and using the relation

Jo v =a= V(o) = V(—w) =2k  (41)
From eqgs 6 and 7, this gives
M, = kA% (x) = kA%g(0) (42)
whereq(X) is the one-oscillator probability density,
1 N
() = N o(x = (1)) (43)
&
The result of eq 42 together with the relation
2= A2 (44)

gives the final probability distribution

(AE — kA%g,(0))
2KPA? 1 (43)

This result can be alternatively derived doing a more elaborated
but better controlled calculation that we do not consider
interesting enough to reproduce here in detail. The effective
temperature (eq 24) can be obtained using the FT (eqs 25,26)

_k
20, (0)

P(AE) = (27k?A?) 2 exp[

Toi(ty) = (46)

Using the thermodynamic relation of eq 32 with= 1/2, we

gete= E/N = k|x] = T. If we now assume that eq 40 holds in
the aging regime by replacingwith Ses(tw) = 1/Tes(tw) then,
in a partial equilibration scenario, we get

kﬂeﬁ(tw)
2

(%) = eXP(Per(tu)KIX)) (47)

which givesq,(0) = (KfBeri(tw))/2 = ki(2¢e(tw)). Substituting this
last result in eq 46 we obtain

Kk _

20, (0) (48)

Ter(ta) = e(ty)

which coincides with the result derived using the thermodynamic
relations of egs 23 and 33, wifh= 1/2. Finally, we mention
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Figure 5. Monte Carlo studies of the harmonic model (continuous

line) and the wedge model (dashed line). Simulations have been done

at T = 0 with N = 1000 oscillators an& = A = 1. Main: Energy

decaye(t) in both models. Insete(t) multiplied by (log€))* (harmonic

model withp = 1, wedge model witlp = 1/2) as a function of log}.

In the larget limit, both curves converge to a constant value.

0.5 T T T T

Figure 6. Probability distributiorP(AE) (eq 45) for the wedge model
numerically evaluated & = 0, N = 1000,k = A = 1 for t, = 10,

100, 1000 (circles, triangles up and stars respectively). The continuous
lines are the fitted Gaussians wilihye = ¢,,(0) as fitting parameter.
The effective temperature (eq 46) is then compared with that obtained
from the energy in Table 1.

Figure 7. One-oscillator probability distributiory,(x). The same

parameters and symbols as in Figure 6. Note the presence of the
exponential tails in the distribution as expected from (47).

that the asymptotic decay for the energy derived for the
homogeneous potential model (eq 35) also holds in the wedge
model, substitutingg = 1/2, i.e.,e(t) ~ 1/4/log(t). In Figures 5,

6, and 7 we show some numerical results for the wedge model
obtained by doing Monte Carlo calculations. These have been
done at zero temperature fdd = 1000 oscillators with
parametersk = A = 1 and starting from a random initial
configuration with initial coordinates chosen from a Gaussian
distribution of zero mean and unit variance. These simulations
are useful to verify the main predictions. Figure 5 shows the
time decay of the energy for the wedge model compared to the
harmonic model. Figure 6 is a test of the main result (eq 45).
The energy change distributions have been evaluated at three
different waiting times,, = 10, 100, and 1000 and fitted to a
Gaussian distribution of variand€A? = 1 where the mean
0:,(0) is the fitting parameter. This value is then compared with
the value of the energg(ty) to check the identity (eq 48). The
results are shown in Table 1. Figure 7 shows the one-oscillator
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TABLE 1: Effective Temperature in the Wedge Model (eq conceptual limitations in their adaptation to spatially correlated

48) Obtained in Two Independent Ways dynamics. A conceptual description of the aging state in terms
tw TEH () = eftw) 2 TEH(tw) = K/(20,(0)) of heat exchange proces‘ifsésould be achieved in terms of a

10 0.335 028 spatially quc’Fuatlr_]g effective temperature tha_lt W_ould describe

100 0.180 0.178 local fluctuations in the rate of energy relaxation in the system.

1000 0.132 0.136 At difference with bath temperatures, effective temperatures

2 Second column: from the value of the enesfi) shown in Figure should be considered as fluctuating intensive variables, as they

6.5 Third column: from the value ofi(0) obtained by fitting eq 45 describe energy exchange processes, either heat releasing or

to the numerical distributioP(AE) shown in Figure 5¢ Both values work releasing _(throu_gh mechanical Stresses), occurring over
asymptotically coincide for large values f nanoscale spatial regions where energies are not macroscopic

but of the order of fewkgT. It would be very interesting to
probability density in the aging reging,(x) at three different explore the possible connection between these ideas and the

waiting times compared to the expected result (eq 47). existence of spatial heterogeneities that have received consider-
able attention during the past years (see for instance refs 26
7. Conclusions and 27). Establishing a thermodynamic description of these

heterogeneous excitations is probably an important step toward

In this paper we have introduced a new family of exactly their understanding

solvable models characterized by zero-temperature relaxation
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