
Spontaneous Relaxation in Generalized Oscillator Models with Glassy Dynamics†

F. Ritort*
Departament de Fısica Fonamental, Faculty of Physics, UniVersity of Barcelona, Diagonal 647,
08028 Barcelona, Spain and Department of Physics, UniVersity of California, Berkeley, California 94720

ReceiVed: December 23, 2003; In Final Form: March 1, 2004

In this paper we introduce the generalized oscillator model (GOM) as a family of exactly solvable models
useful to investigate theoretical aspects related to the statistical description of the aging state. GOMs are
defined by a potential functionV(x) and characterized by a zero-temperature relaxation determined by entropy
barriers and partial equilibration. Analytic expressions for the effective temperature can be derived using a
fluctuation theorem valid in the aging regime without the need to solve the dynamical equations for correlations
and responses. Two classes of models are investigated in detail: the homogeneous potential model withV(x)
) (k/2p)x2p (p being a positive integer) and the wedge potential model (V(x) ) k|x| whereV(x) has a singularity
at the ground-state coordinatex ) 0). For the latter, we present some numerical simulations that reinforce the
validity of the main analytical results. GOMs offer a conceptual framework to develop a statistical description
of the spontaneous relaxation process that has been recently proposed4 to be at the root of the intermittency
phenomenon observed in glasses and colloids.

1. Introduction

Non-equilibrium phenomena is a field of research of much
current interest. From turbulence in liquids to heat convection
inside stars, a plethora of systems show a very rich and complex
behavior, rarely describable in terms of few variables.1 The
opposite situation is encountered in equilibrium systems, where
few parameters are needed to characterize the equilibrium state
and its fluctuations. Entropy, a key concept in thermodynamics,
admits a statistical interpretation in terms of the microscopic
motion of molecules. Boltzmann established the bridge linking
the microscopic and the macroscopic worlds, the central result
in his theory being the relationS ) kB log(W) whereW is the
number of configurations available to the system. The extension
of this approach to non-equilibrium systems and the character-
ization of their behavior in terms of a few number of parameters
still represents a major theoretical challenge.

Two categories of non-equilibrium systems have received
considerable attention in past years: systems in steady states
and glassy systems. The first category encompasses all of those
systems driven out of equilibrium to a stationary state by the
action of an external perturbation. The most common example
is a wire of metal with extremes in contact with two thermal
sources at different temperatures. In this case, and if the
temperature difference is not too large, the flow of heat from
the hotter to the colder source is described by the Fourier law.
The second category encompasses all systems that are not in a
stationary state but which properties change very slowly with
time. Structural glasses (such as ordinary window glass) are
prototype examples.

The glass state is characterized by a very slow relaxation
toward equilibrium and by a exceedingly low rate of the energy
released from the system to the bath during the relaxation. A
useful parameter to characterize the glass state is the age of the
glass (also called waiting time in several experimental proto-

cols), which is the time elapsed since the system was prepared
in the non-equilibrium state. In the aging state correlation
functions tend to decay in a time scale that is of the order of
the age of the system. A statistical interpretation of the aging
state has not yet been accomplished; however, our present
understanding might not be far from resolving several of the
most important clues. Recent experiments have observed the
existence of intermittent fluctuations2,3 that could be related to
dissipative processes characteristic of the glass state.4,5 A
thermodynamic description of such processes could provide an
important step in that direction.

Statistical models have been always an important source of
inspiration and ideas to understand the glass transition. Many
types of models have been considered in the past, from
phenomenological two-state systems to spin glasses, passing
through a wide range of family systems such as hard-sphere
liquids, Lennard-Jones systems, lattice models, kinetically
constrained models, among others. Most of these models have
been investigated using approximate methods or numerical
simulations.

To this list we should add exactly solvable models. From a
historic point of view, these have played an important role in
the early days of statistical mechanics. From the urn models
introduced by the Ehrenfests aiming to understand concepts such
as entropy and thermal equilibrium, to the Ising model that
describes phase transitions and critical phenomena, solvable
models offer conceptual frameworks to contrast ideas and check
their consistency by evaluating specific predictions. In this way,
exactly solvable models have also contributed to our current
understanding of glassy systems.

The goal of this paper is to introduce a general family of
exactly solvable models that might help to better understand
the mechanisms behind the slow relaxation observed in glassy
systems. We introduce the generalized oscillator model (GOM)
as a generalized version of a previous model introduced by the
author.6 These share some properties with kinetically constrained
models as statics is trivial but dynamics is not. Therefore they

† Part of the special issue “Hans C. Andersen Festschrift”.
* Corresponding author. E-mail: ritort@ffn.ub.es

6893J. Phys. Chem. B2004,108,6893-6900

10.1021/jp037991y CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/27/2004



belong to a large category of models whose dynamics can be
very rich despite the fact that the energy landscape has trivial
properties. The main objective of this paper is to discuss a
statistical approach to the aging state by emphasizing the
relevance of the concept of effective temperature19 as a useful
way to quantify violations of the fluctuation-dissipation
theorem.7,8 In the framework of the GOM we stress the
relevance of the effective temperature to quantify the spectrum
of intermittent energy fluctuations in the aging regime that have
been experimentally observed.2,3 The link between intermittent
effects in non-equilibrium systems and statistical effective
temperatures has been recently proposed in the framework of
simple models for the glass transition.4,5 The present paper
extends these considerations to the GOM.

2. The Generalized Oscillator Model (GOM)

Generalized oscillator models (GOMs) consist of a set of
noninteracting oscillators each described by a continuous
variablexi and the energy function

where V(x) is a real valued potential energy function that
diverges to+∞ in the limit |x| f ∞. For instance, the potential
can be of the typeV(x) ) k/(2p)x2p with p an integer value.
This is called the homogeneous potential model, the casep )
1 corresponding to the harmonic case introduced in ref 6. Here
we will only deal with potential energy functions such that the
partition of an individual oscillator,Z1, remains finite at finite
temperatures,

with â ) 1/kBT, kB being the Boltzmann constant (that we will
set equal to one) andT the temperature of the bath with which
the system is put in contact.

We consider a dynamics where all oscillators are updated in
parallel according to the rule

where theri are uncorrelated Gaussian variables withri ) 0
and variancerirj ) ∆2δij. The updating of all oscillators is
carried out in parallel in a single move. The move is accepted
according to the Metropolis rule. We will focus our analysis
on the zero-temperature dynamics, as this is the case where
relaxation is fully determined by entropic effects. Indeed, atT
) 0 activated jumps over energy barriers are suppressed and
relaxation proceeds only through search of favorable directions
in phase space where the energy decreases. As time goes on,
dynamics slows down as most of the proposed moves tend to
push the system away from the ground state by increasing its
energy. Only those moves that decrease the energy are accepted.
Glassy dynamics in the GOM is then consequence of the quick
decrease with time of the acceptance rate.

The GOM shares with kinetically constrained models9 the
property that, while statics is trivial, dynamics is complicated.
Oscillators in eq 1 are noninteracting and therefore the model
has trivial static properties, theN-oscillator partition function
being given byZN ) (Z1)N. The thermodynamic properties are
then derived by computing the integral in eq 2.

To solve the dynamics of the GOM we have to compute the
probability distribution of energy changesP(∆E). This is defined
as the probability density that in a given move the energy
changes by an amount∆E. In general, this quantity shows a
complicated dependence on theN-oscillator probability density
Pt({xi}) that the system occupies the configuration{xi} at time
t. However, the GOM has the good property that theP(∆E)
depends on a finite number of observables rather than on the
full configurational probability distribution. This property is
characteristic of mean-field systems, the GOM being just another
example. This makes the model amenable of analytical com-
putations and a good laboratory to test many results regarding
the glassy regime. To compute the probabilityP(∆E) we
consider the change of energy in an elementary move,

As dynamics is stochastic, the quantity∆E is a random variable
whose distribution can be reconstructed from the moments

(∆E)k. An explicit calculation of such moments shows that
only the first two moments give a finite contribution in the large
N limit. Therefore, in the thermodynamic limit,P(∆E) is a
Gaussian distribution

with meanM∆E and varianceσ∆E
2 given by

wheref(x) ) (1/N) ∑i)1
N f(xi). At T ) 0 the equations for the

acceptancea (i.e., the fraction of accepted moves) and the energy

per oscillatore ) E/N ) V(x) can be written as

Inserting eq 5 in eqs 8 and 9, we obtain

with Erfc(x) ) (2/xπ)∫x
∞ exp(-u2) du the complementary

error function. These equations are not generally solvable as
they are not closed, and the time evolution for the meanM∆E

and the varianceσ∆E
2 is unknown. Only for some types of

potentialsV(x) can a closed solution be found. Oscillator models
have the interesting property that relaxation atT ) 0 gets
steadily slower as the ground state is approached. In fact, the
ground-state configuration{xi

GS} is characterized by the fact
that the energy (eq 1) is an absolute minimum, thereforexi

GS )

E ) ∑
i)1

N

V(xi) (1)

Z1 ) ∫-∞

∞
exp(-âV(x)) (2)

xi f xi +
ri

xN
(3)

∆E ) ∑
i)1

N [V(xi +
ri

xN
) - V(xi)] ) ∑

k)1

∞ 1

k!Nk/2
∑
i)1

N

V(k)(xi)ri
k (4)

P(∆E) ) (2πσ∆E
2 )-1/2 exp[-

(∆E - M∆E)2

2σ∆E
2 ] (5)

M∆E ) ∆E ) ∆2

2
V′′(x) (6)

σ∆E
2 ) (∆E)2 - (∆E)2 ) ∆2(V′(x))2 (7)

a ) ∫-∞

0
P(y) dy (8)

∂e
∂t

) ∫-∞

0
yP(y) dy (9)

∂e
∂t

) - (σ∆E
2

2π )1/2

exp(-
M∆E

2

2σ∆E
2 ) +

M∆E

2
Erfc( M∆E

(2σ∆E
2 )1/2) (10)

a ) 1
2
Erfc( M∆E

(2σ∆E
2 )1/2) (11)
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xGS, with V′(xGS) ) 0. According to eq 7, the value ofσ∆E
2

steadily decreases as the ground state is approached. From eqs
10 and 11 this leads to a quick decrease of the decay rate of the
energy and the acceptance rate. In such conditions the scenario
of partial equilibration (as described in ref 5 and below in section
3) holds. A salient feature of eqs 10 and 11 is the dependence
of the dynamical equations upon the following parameter:

which has the dimensions of an energy (or temperature). Indeed,
at T ) 0 in the large-time limit, the quantityλ vanishes
asymptotically. If we definex ) xM∆E/(4λ) we can then
expand the complementary error function in eqs 10 and 11
aroundx ) ∞,

Substituting this expansion in eq 10, we get for the time
evolution of the energy

This equation can be asymptotically solved for a quite broad
family of models. In general, the asymptotic decay of the energy
can be expressed in terms of the parameterλ (eq 12) by knowing
the analytic behavior ofV(x) in the vicinity of x ) 0. We show
below how the parameterλ in eq 12 plays the role of an effective
temperature that quantifies violations of the fluctuation-
dissipation theorem.8

3. Partial Equilibration

To better understand what partial equilibration means, we
will consider the case of an harmonic wellV(x) ) (1/2)kx2,
where k is the stiffness constant of the well. This case
corresponds to the linear harmonic oscillator introduced in ref
6 and studied in detail in other works.10,11 For the harmonic
case the energy is quadratic in the variablesxi,

Equations 6 and 7 giveM∆E ) k∆2/2, σ∆E
2 ) k2∆2x2 )

2k∆2E/N ) 2k∆2e, wheree ) E/N is the energy per oscillator.
We now follow the discussion presented in ref 11. The constant
energy surface can be represented by an hypersurface centered
around the originxi ) xGS ) 0 (depicted as O) of radiusR )
x2E/k. In Figure 1 we depict a schematic representation of the
motion of a representative configuration{xi

0} (depicted asP)
of energyE in phase space. The smaller dashed circle represents
the region of points accessible from{xi

0} according to the
dynamics (eq 3). All accessible points{xi} satisfy∑i(xi - xi

0)2

) ∆2, i.e., lie at a distance∆ from {xi
0} which is the radius of

the smaller dashed circle. The accessible configurations in a
single move lie in a spherical hypersurface of dimensionN -
2 corresponding to the intersection of the hypersurface of energy
E′ and the smaller spherical hypersurface of radius∆. We call
this region the intersecting regionI as shown in Figure 1. The
final configurations contained inI lie at a distanceR′ )

x2E′/K to the originO. The change in energy associated to
this transition is∆E ) E′ - E. The probability of this jump is
therefore proportional to the surface of the intersecting region,
P(∆E) ∝ CN-2, whereC is the radius of the intersecting region.
The computation ofC is quite straightforward as can be deduced
from the triangle including the pointsP, O as vertexes and
whose three sides areR, R′, ∆. In terms ofR, R′, and∆, the

distanceC is given by the relationR ) xR′2-C2 + x∆2-C2.
Expressed in terms ofE, ∆E, ∆ we have

The surfaceΩ(E, ∆E) corresponding to the regionI of radius
C, relative to the energyE of the reference configuration{xi

0}
is

Using the fact thatE is extensive withN, this expression can
be rewritten as

which is then proportional to the probability distribution eq 5.
This construction then provides a geometric way to determine

the Gaussian distribution (eq 5). From eq 16 we see thatC (and
therefore alsoΩ(E, ∆E) or P(∆E)) has a maximum for∆E )
k∆2/2. The Gaussian distribution is depicted in Figure 2.
Consider now aT ) 0 dynamics where only moves with∆E <
0 are accepted. In this case, as the relative number of
configurations that are accessible fromP goes such asCN-2,
the largest number of accessible configurations lie in the vicinity
of P. Because the radius of the small dashed hypersphere in
Figure 1 is equal to∆ but the radiusR of the hypersurface of
energyE is proportional toN1/2, dynamics constraints the system
to move along the constant energy hypersurface in the thermo-
dynamic limit. The system has then time to diffuse throughout
a given energy shell of finite width before leaving that shell
toward lower energy surfaces. This scenario was called partial
equilibration in ref 5.

Figure 1. Geometrical construction to computeP(∆E). The thick lines
denote the departing and final energy hypersurfaces centered atO. The
dashed circle indicates the hypersurface accessible from pointP. The
intersecting region between the accessible hypersphere centered atP
and the final hypersurface of energyE′ defines a hypersurfaceI of
radiusC (the radius is represented by a thick line). See the text for a
more detailed explanation.

C2 ) ∆2 - k
8E (2∆E

k
- ∆2)2

(16)

Ω(E, ∆E) ∝ CN-2 ) [∆2 - k
8E (2∆E

k
- ∆2)2](N-2)/2

(17)

Ω(E, ∆E) ∝ exp[-
(∆E - K∆2

2 )2

4(E/N)K∆2 ] (18)

λ )
σ∆E

2

2M∆E
(12)

Erfc(x) )
exp(-x2)

xπx (1 - 1

2x2
+O(1

x4)) (13)

∂e
∂t

) - (σ∆E
2

8π )1/2
exp(-x2)

x2
(14)

E )
k

2
∑
i)1

N

xi
2 (15)
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This derivation can be generalized to the GOM (eq 1) where
the constant energy hypersurface is not necessarily a sphere.
The crucial point in the argument is then the fact that∆ is a
finite quantity while the typical spatial dimensions of the
constant energy hypersurface are of the orderxN. In the
thermodynamic limit the hypersurface is locally a sphere and
the lengthC (eq 16) can be mathematically expressed in terms

of the mean energy curvatureV′′(x) and the modulus of the

energy gradient vector given byV′(x)2. The final result is again
the most general expressions (eqs 5, 6, and 7).

4. The Fluctuation Theorem (FT) and Effective
Temperatures

In the GOM a scenario of partial equilibration takes place in
the constant energy hypersurface. This is exemplified in Figure
1 for the harmonic case where it is shown how the system is
constrained to dwell in the constant energy hypersurface before
moving to lower energy configurations. In this case, because
dynamics is microscopically reversible and ergodic along the
constant energy hypersurface, a quasi-stationary dynamics
emerges with a probabilistic description that can be done in
terms of a microcanonical measure. However, there are impor-
tant differences between this dynamical measure and the usual
microcanonical measure for equilibrium systems. While in the
latter the energy is kept strictly constant and there is no time
dependence of the microstate probability distribution, in the
former the measure is dynamical and time dependent.

A key concept in such description is the notion of configu-
rational entropy (sometimes also called complexity)S(E), which
counts the number of configurations with a given energyE.
This quantity is precisely given byP(∆E) except for the fact
that P(∆E) counts the number of configurations of energyE′
that are accessible from a reference configuration of energyE.
In a microcanonical description of the aging state, the probability
to visit configurations with energyE′ is then proportional to
the number of configurations with that energyΩ(E′),

with ∆E ) E′ - E, E′ being the final energy andE the departure
energy. It is important to emphasize thatP(∆E) in eq 19 (as
well as in eq 5) is a probability rather than a rate. Transition
rates are transition probabilities per unit of time and therefore

have natural dimensions of frequency. We will denote them by
W(∆E). In general we can write

whereτ(E) denotes the average time to escape from a config-
uration of energyE. As these are microscopic transitions, the
elementary escape process can be assumed to be a Poisson
process described by its characteristic timeτ(E). We can now
imagine a situation where, in the largeN limit, the average
escape time is identical at both energiesE, E′ whenever the
energy difference∆E ∼ O(1). In this case, the time scale drops
from the ratio between the forward (E f E′) and reverse (E′ f
E) transitions

Therefore, the ratesW satisfy the same micorcanonical relation
between the forward and the reverse paths as do the transition
probabilitiesP(∆E). Using eq 19 and expanding the term in
the exponential up to the first-order term in∆E we find

where we have defined the time-dependent effective temperature

The effective temperature is a quantity that depends on the age
of the systemtw through the time-dependent value of the energy
E(tw). A remark is now in place. The decomposition (eq 20) is
reminiscent of the rates used in trap models.12 However, there
is an important difference between the GOM and trap models.
In the latter the time scaleτ(E) also depends on the energy of
the trap but, contrarily to the present case, the rate is modified
for energy changes∆E ∼ O(1). Moreover, the partial equilibra-
tion scenario is difficult to visualize due to the absence of a
proper configurational space. Although phenomenological trap
models are very useful models to understand many aspects of
the aging dynamics, several issues still remain controversial,
especially regarding the physical significance of FD viola-
tions.13-15

Relations describing ratios between transition rates for
forward and reverse processes in non-equilibrium systems are
commonly known as fluctuation theorems (FTs). The relations
in eqs 21 and 22 show a strong resemblance with some of these
theorems; however, there are important differences that we want
to highlight. There are two general classes of fluctuation
theorems. In the first class there are the so-called entropy
production FTs in stationary systems, where the relation between
forward and reverse transitions is related to the entropy
production in the asymptotic limit of large times.16 In the second
class there are exact non-equilibrium work relations valid at all
times between the forward and reverse rates whenever the
system is arbitrarily perturbed away from an initial equilibrium
state along both the forward and reverse paths.17,18 The most
important difference between eqs 21 and 22 and these theorems
concerns the fact that the aging state is not in a stationary state

Figure 2. Probability distribution of energy changes for the GOM as
derived from eqs 5 and 18. The major part of energy changes are with
∆E > 0. At T ) 0 the variance of distributionσ∆E

2 decreases relative
to the meanM∆E (i.e., the parameterλ in eq 12 decreases as the ground
state is approached). The fraction of accepted moves (dashed area with
∆E < 0) steadily decreases with time.

P(∆E) ∝ Ω(E') ) exp(S(E′)) (19)

W(∆E) )
P(∆E)

τ(E)
(20)

W(∆E)

W(-∆E)
)

P(∆E)

P(-∆E)
(21)

P(∆E)

P(-∆E)
) exp(S(E′) - S(E)) ) exp[(∂S(E)

∂E )∆E] )

exp[ ∆E

Teff
FT(tw)] (22)

1

Teff
FT(tw)

) (∂S(E)
∂E )

E)E(tw)
(23)
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(first class) and the system does not start from an initial
equilibrium state (second class). Moreover, the relations in eqs
21 and 22 are not valid for energy changes∆E arbitrarily
separated in time as the effective temperature (eq 23) is age
dependent.

There is another important feature of eq 21 that must be
emphasized. Standard FTs allow for transitions to occur in both
directions, and certainly this is what the identity in eq 21 seems
to imply. Because no work is exerted upon the system during
the relaxation, the energy change is related to the heat transferred
between system and bath. Therefore, eq 21 relates transition
rates between identical amounts of heat that are absorbed and
released between the system and bath. However, we face the
problem that at zero temperature no heat can be absorbed by
the system (i.e., the energy can never increase), and therefore
eq 21 cannot hold. The resolution of this issue concerns the
true meaning of the effective temperature discussed in the next
section.

4.1. Spontaneous Relaxation and Effective Temperatures.
Developments during recent years in the theory of spin glasses
and glasses have shown that aging systems show violations of
the fluctuation-dissipation theorem8 that can be quantified in
terms of an effective temperature. This is usually defined in
terms of the fluctuation-dissipation ratio (FDR),19

where we assume that (t - tw)/tw ∼ O(1). In general the effective
temperature is a quantity that depends on the measured
observable and the probed frequencyω ∼ 1/(t - tw) relative to
the age,ωtw ) tw/(t - tw). The interesting meaning of eq 24 is
found in the low-frequency regimeωtw , 1 where violations
are expected to be strong. The effective temperature defined in
this way requires the measure of the response function, i.e., the
application of an external perturbation or field that shifts the
energy levels and exerts mechanical work upon the system. In
this case, the exerted work might account for part of the energy
transferred from the system to the bath, making zero-field
transitions with∆E > 0 accessible. Therefore, eqs 21 and 22
have to be understood as the proper way of quantifying forward
and reverse transitions in a configurational space that has been
perturbed by the action of an external field. This establishes a
way to evaluate the effective temperature from the rate of heat
exchange between system and bathwithout the explicit need to
introduce an applied external field. Note that an external field
is usually required to evaluate the response functionR(t, tw).
(In another context, numerical methods to compute the response
function have been recently proposed.20,21)

The existence of the effective temperature is then related to
the presence of a heat exchange process between system and
bath that we call spontaneous, as it is determined by the fact
that the system has been prepared in a non-equilibrium state.
The spontanoeus relaxation is different from the heat exchange
process (that we call stimulated) between system and bath typical
of equilibrium systems. In particular, the stimulated process is
a high-frequency process characterized by a Gaussian distribu-
tion of exchange events, while the spontaneous process is a low-
frequency process that manifests in the form of some tails in
the heat-exhanged distribution, which width is age dependent.
(The words “spontaneous” and “stimulated” make explicit
reference to the problem of light emission by atoms in a bath
of photons. In that case, the spontaneous process is the emission
of radiation by atoms in an excited state independently of the

presence of the bath. The stimulated process, though, is the
emission and absorption of energy by atoms induced by the
bath of photons.) For a recent discussion of these ideas, see
refs 4 and 5. The existence of these two heat exchange processes
is at the root of the intermittency phenomenon recently observed
in glasses and colloids.2,3

The effective temperature can be computed in the GOM by
using eqs 22 and 23. Indeed, from eqs 22 and 5 we get

and therefore,

whereλ is an age-dependent quantity that has been defined in
eq 12 and where we have substituted eqs 6 and 7. In equilibrium
it is straightforward to check that eq 26 coincides with the bath
temperature by integrating by parts twice the integral in the
denominator of eq 26,

In the aging regime in a partial equilibration scenario, the
effective temperature eq 26 is related to the energy at timetw
through the relation eq 23.

5. The Homogeneous Potential Model

An example of the GOM where many quantities can be easily
worked out is the case of an homogeneous potential of the type

with p a positive integer. The probability distribution (eq 5) is
given by

with hk ) x2(k-1). By definition, E ) NVhp ) N(k/2p)hp+1.
Results similar to to eq 29 can then be obtained for the
distribution of changesP(∆hk) for generic observableshk, which
lead to a hierarchy of coupled dynamical equations similar to
eq 10. These equations can then be studied using generating
functional techniques similar to those developed in other
solvable spin-glass models.22 Only for the harmonic casep )
1 is the equation for the energy (eq 10) closed and Markovian
as its time evolution depends only on the energy.

The expression for the effective temperature (eq 26) for the
homogeneous potential model is given by

In the partial equilibration scenario, all observables are functions
of the energyE of the hypersurface over which the system

Teff
FDR(t, tw) ) 1

R(t, tw)

∂C(t, tw)

∂tw
t > tw (24)

P(∆E)

P(-∆E)
) exp(2M∆E∆E

σ∆E
2 ) (25)

Teff
FT(tw) ) λ(tw) )

(V′(x))2

V′′(x)
(26)

V′′(x) ) ∫-∞

∞
dxV′′(x) exp(-âV(x)) )

â∫-∞

∞
dx(V′(x))2 exp(-âV(x)) (27)

Vp(x) ) k
2p

x2p (28)

P(∆E) ) (2πk2∆2h2p)
-1/2 exp(-

(∆E -
k(2p-1)

2
∆2hp)2

2k2∆2h2p
)

(29)

Teff
FT(tw) )

kh2p(tw)

(2p - 1)hp(tw)
(30)
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partially equilibrates. The relation between the value ofTeff
FT(tw)

and the energyE(tw) can be easily derived from eq 23.
Introducing eq 28 in eq 2 we get

yielding the free energyF ) const- NT log(Z1) ) const-
(NT/2p) log(T) and the following expressions for the energy
and entropy,

giving

The casep ) 1 corresponds to the harmonic oscillator and gives
the well-known equipartition relationTeff

FT(tw) ) 2E(tw). As
remarked in the paragraph following eq 14, the dynamical
evolution of the energy can be solved in general by knowing
the relation (eq 34) between the energye) E/N and the effective
temperatureTeff

FT(tw) ) λ(tw). In this case it is possible to derive
the following asymptotic behavior for the energy:

The effective temperatures (eq 30) can be also derived using
the fluctuation-dissipation relation (eq 24) or a set of micro-
canonical relations describing observable changes. The pos-
sibility to obtain the same value of the effective temperature
by using three different approaches (the FDR (eq 24), the FT
(eq 25), and the microcanonical rates for observables) has been
explicitly shown for the harmonic casep ) 1.5 In ref 5 the
main assumption was the validity of the partial equilibration
scenario. Because the partial equilibration scenario also holds
for the GOM, the main conclusions of ref 5 are expected to
hold also for the present more general case.

The procedure to derive the FDR (eq 24) entails the
computation of the correlation and response functions for the
magnetizationM defined asM(t) ) ∑i xi(t)

whereh(tw) is an impulse field coupled to the magnetizationM
at time tw. At T ) 0 the response (eq 37) is finite due to the
shift of the energy levels induced by the field. For the harmonic
casep ) 1, dynamics is closed and a simple expression can be
derived for the effective temperature (eq 24),

wheref(tw) is a function that asymptotically decays as 1/tw. Two

remarkable facts emerge from eq 38: (1) eq 38 depends only
on the agetw at all timest > tw, thereforeTeff

FDR(t, tw) ≡ Teff
FDR(tw)

characterizes the aging state of the system at timetw; and (2)
the second term in the r.h.s of eq 38 is subdominant with respect
to the first term. Using eq 34, this leads toTeff

FDR(tw) f Teff
FT(tw)

f 2e(s), so both the effective temperature derived from the FDR
and the FT coincide.

To obtain the effective temperature it is sometimes useful to
construct the so-called fluctuation-dissipation (FD) plots.8,23-25

The FD plots for the homogeneous model can be worked out
as follows (the same construction holds for the GOM). AsC(tw,

tw) ) x2(tw) ) h2(tw) is time dependent, then it is convenient to
normalize the correlationC(t, tw) by the autocorrelation value
taken at the lowest timeĈ(t, tw) ) C(t, tw)/C(tw, tw) and plotting
the integrated responseø(t, tw) ) ∫tw

t dsR(t, s) as a function of
Ĉ for tw fixed and varyingt. The resulting asymptotic curve is
then expected to have a the form of a straight line,ø̂(Ĉ) ) ø̂0(1
- Ĉ), where ø0 is the equilibrium susceptibility at zero
temperatureø̂0 ∝ â(p-1)/p. These straight FD plots are charac-
teristic of the one-step behavior observed in structural glasses.
Figure 3 shows the resulting FD plot for thep ) 1 case as
obtained from numerical simulations of the model.

6. The Wedge Potential Model

An interesting example of the GOM is the case where the
first derivative of the potentialV′(x) is not continuous at the
ground-state configurationx ) 0. In this case the eqs 6 and 7
need to be reconsidered. The classical example for a potential
of this type is the wedge potential model defined by

This potential is depicted in Figure 4. The statics for this model
is straightforward and the partition function is given byZ1 )
2/(âk). The internal energy and entropy are given by eqs 32
and 33, with p ) 1/2. At equilibrium the one-oscillator
probability densityqeq(x) is given by

To solve the off-equilibrium dynamics of this model, we proceed
similarly as was done in section 2 for a general functionV(x).
The main difference now is that the potential (eq 39) is not

Z1 ) ∫-∞

∞
exp(-âVp(x)) ) (2p

âk)1/2p ∫-∞

∞
dy exp(-y2p) (31)

E )∂âF
∂â

) NT
2p

(32)

S) -∂F
∂T

) N
2p

+
N log(T)

2p
)

N log(E)
2p

+ const (33)

1

Teff
FT(tw)

) (∂S(E)
∂E )

E)E(tw)
) N

2pE(tw)
(34)

e(t) ∼ 1

(log(t))p
+ (subleading logarithmic corrections)

(35)

C(t, tw) )
1

N
∑
i)1

N

xi(t)xi(tw) (36)

R(t, tw) )
δx(t)

δh(tw)
(37)

Teff
FDR(t, tw) ) 2e(tw) + 1

f(tw)

∂e(tw)

∂tw
(38)

Figure 3. FD plot for the harmonic model (p ) 1) obtained from
Monte Carlo simulations atT ) 0 with N ) 1000 oscillators,k ) ∆ )
1, magnetic field intensity equal to 0.01 andtw ) 1, 10, 100 (circles,
triangles up, and stars, respectively). It representsø̂(Ĉ) and the straight
line is the theoretical asymptotic prediction for large values oftw. Data
were averaged over 200 dynamical histories.

V(x) ) k|x| (39)

qeq(x) ) kâ
2

exp(-âk|x|) (40)
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differentiable atx ) 0. While the expression forσ∆E
2 is well

defined,(V′(x))2 ) k2 is continuous for allx), the expression

for M∆E is not because the second derivativeV′′(x) is discon-
tinuous atx ) 0. The expression, however, can be guessed by
noticing thatV′′(x) ) aδ(x) and using the relation

From eqs 6 and 7, this gives

whereqt(x) is the one-oscillator probability density,

The result of eq 42 together with the relation

gives the final probability distribution

This result can be alternatively derived doing a more elaborated
but better controlled calculation that we do not consider
interesting enough to reproduce here in detail. The effective
temperature (eq 24) can be obtained using the FT (eqs 25,26):

Using the thermodynamic relation of eq 32 withp ) 1/2, we
gete ) E/N ) k|x| ) T. If we now assume that eq 40 holds in
the aging regime by replacingâ with âeff(tw) ) 1/Teff(tw) then,
in a partial equilibration scenario, we get

which givesqtw(0) ) (kâeff(tw))/2 ) k/(2e(tw)). Substituting this
last result in eq 46 we obtain

which coincides with the result derived using the thermodynamic
relations of eqs 23 and 33, withp ) 1/2. Finally, we mention

that the asymptotic decay for the energy derived for the
homogeneous potential model (eq 35) also holds in the wedge
model, substitutingp ) 1/2, i.e.,e(t) ∼ 1/xlog(t). In Figures 5,
6, and 7 we show some numerical results for the wedge model
obtained by doing Monte Carlo calculations. These have been
done at zero temperature forN ) 1000 oscillators with
parametersk ) ∆ ) 1 and starting from a random initial
configuration with initial coordinatesxi chosen from a Gaussian
distribution of zero mean and unit variance. These simulations
are useful to verify the main predictions. Figure 5 shows the
time decay of the energy for the wedge model compared to the
harmonic model. Figure 6 is a test of the main result (eq 45).
The energy change distributions have been evaluated at three
different waiting timestw ) 10, 100, and 1000 and fitted to a
Gaussian distribution of variancek2∆2 ) 1 where the mean
qtw(0) is the fitting parameter. This value is then compared with
the value of the energye(tw) to check the identity (eq 48). The
results are shown in Table 1. Figure 7 shows the one-oscillator

Figure 4. Wedge potential model (eq 39) withk ) 1. It can be seen
as a special case of the homogeneous model of section 5 withp ) 1/2.

∫-∞

∞
dxV′′(x) ) a ) V′(∞) - V′(-∞) ) 2k (41)

M∆E ) k∆2δ(x) ) k∆2qt(0) (42)

qt(x) )
1

N
∑
i)1

N

δ(x - xi(t)) (43)

σ∆E
2 ) k2∆2 (44)

P(∆E) ) (2πk2∆2)-1/2 exp[-
(∆E - k∆2qt(0))2

2k2∆2 ] (45)

Teff
FT(tw) ) k

2qtw
(0)

(46)

qtw
(x) )

kâeff(tw)

2
exp(-âeff(tw)k|x|) (47)

Teff
FT(tw) ) k

2qtw
(0)

) e(tw) (48)

Figure 5. Monte Carlo studies of the harmonic model (continuous
line) and the wedge model (dashed line). Simulations have been done
at T ) 0 with N ) 1000 oscillators andk ) ∆ ) 1. Main: Energy
decaye(t) in both models. Inset:e(t) multiplied by (log(t))1/p (harmonic
model withp ) 1, wedge model withp ) 1/2) as a function of log(t).
In the larget limit, both curves converge to a constant value.

Figure 6. Probability distributionP(∆E) (eq 45) for the wedge model
numerically evaluated atT ) 0, N ) 1000,k ) ∆ ) 1 for tw ) 10,
100, 1000 (circles, triangles up and stars respectively). The continuous
lines are the fitted Gaussians withM∆E ) qtw(0) as fitting parameter.
The effective temperature (eq 46) is then compared with that obtained
from the energy in Table 1.

Figure 7. One-oscillator probability distributionqtw(x). The same
parameters and symbols as in Figure 6. Note the presence of the
exponential tails in the distribution as expected from (47).
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probability density in the aging regimeqtw(x) at three different
waiting times compared to the expected result (eq 47).

7. Conclusions

In this paper we have introduced a new family of exactly
solvable models characterized by zero-temperature relaxation
determined by entropy barriers and partial equilibration. Gen-
eralized oscillator models (GOMs) offer a conceptual framework
to develop a statistical description of the aging state. The
interesting property of this class of models stems from the
validity of the partial equilibration scenario:5 dynamics is ergodic
and microscopically reversible when the system is constrained
to move along the constant energy hypersurface. We have then
computed the probability distribution of energy changesP(∆E)
that characterizes the spontaneous relaxation process at zero
temperature. The spontaneous process is not thermally activated
but determined by the fact that the system has been prepared in
a non-equilibrium aging state. Using a fluctuation theorem for
the aging state, it is then possible to derive analytic expressions
for the effective temperature (eq 26) without the need to solve
the dynamical equations for correlations and responses (eq 24).
The quantitative description of the spontaneous process in terms
of a fluctuation theorem valid in the aging state has been recently
proposed4 to be at the root of the intermittency phenomenon
observed in glasses and colloids.2,3

Two classes of models have been studied in detail. The
homogeneous potential model in section 5 and the wedge
potential model in section 6. Particularly interesting is the latter
where the first derivative of the potential is singular at the
ground-state configuration. In this case, the effective temperature
(eq 46) depends on the value of the one-oscillator probability
distribution at the value of the singularity of the potential. The
present studies can be extended to other interesting potential
functions, and some results will be presented in the future.

A salient feature of the GOM is the Gaussian shape of the
distributionP(∆E) in largeN limit. This is a direct consequence
of the dynamics of the model (eq 3) which is of the mean-field
type, as oscillator correlations do not enter the analytical
expression ofP(∆E). In this regard, the validity of the partial
equilibration scenario in the GOM is a consequence of the mean-
field character of the dynamics. The extension of these ideas to
non mean-field dynamical models is an open problem. Never-
theless, despite the fact that the present ideas have been derived
from the study of mean-field systems, we do not foresee

conceptual limitations in their adaptation to spatially correlated
dynamics. A conceptual description of the aging state in terms
of heat exchange processes4,5 could be achieved in terms of a
spatially fluctuating effective temperature that would describe
local fluctuations in the rate of energy relaxation in the system.
At difference with bath temperatures, effective temperatures
should be considered as fluctuating intensive variables, as they
describe energy exchange processes, either heat releasing or
work releasing (through mechanical stresses), occurring over
nanoscale spatial regions where energies are not macroscopic
but of the order of fewkBT. It would be very interesting to
explore the possible connection between these ideas and the
existence of spatial heterogeneities that have received consider-
able attention during the past years (see for instance refs 26
and 27). Establishing a thermodynamic description of these
heterogeneous excitations is probably an important step toward
their understanding.
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TABLE 1: Effective Temperature in the Wedge Model (eq
48) Obtained in Two Independent Ways

tw Teff
FT(tw) ) e(tw) a Teff

FT(tw) ) k/(2qtw(0)) b

10 0.335 0.28
100 0.180 0.178
1000 0.132 0.136

a Second column: from the value of the energye(tw) shown in Figure
6. b Third column: from the value ofqtw(0) obtained by fitting eq 45
to the numerical distributionP(∆E) shown in Figure 5.c Both values
asymptotically coincide for large values oftw.
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