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Abstract. Two-state models provide phenomenological descriptions of many
different systems, ranging from physics to chemistry and biology. We investigate
work fluctuations in an ensemble of two-state systems driven out of equilibrium
under the action of an external perturbation. We calculate the probability density
PN (W ) that work equal to W is exerted upon the system (of size N) along
a given non-equilibrium trajectory and introduce a trajectory thermodynamics
formalism to quantify work fluctuations in the large-N limit. We then define a
trajectory entropy SN (W ) that counts the number of non-equilibrium trajectories
PN (W ) = exp(SN (W )/kBT ) with work equal to W and characterizes fluctuations
of work trajectories around the most probable value Wmp. A trajectory free
energy FN (W ) can also be defined, which has a minimum at W = W †, this
being the value of the work that has to be efficiently sampled to quantitatively
test the Jarzynski equality. Within this formalism a Lagrange multiplier is also
introduced, the inverse of which plays the role of a trajectory temperature. Our
general solution for PN (W ) exactly satisfies the fluctuation theorem by Crooks
and allows us to investigate heat fluctuations for a protocol that is invariant
under time reversal. The heat distribution is then characterized by a Gaussian
component (describing small and frequent heat exchange events) and exponential
tails (describing the statistics of large deviations and rare events). For the latter,
the width of the exponential tails is related to the aforementioned trajectory
temperature. Finite-size effects to the large-N theory and the recovery of work
distributions for finite N are also discussed. Finally, we pay particular attention
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to the case of magnetic nanoparticle systems under the action of a magnetic field
H where work and heat fluctuations are predicted to be observable in ramping
experiments in micro-SQUIDs.
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1. Introduction

There has been recent interest in the experimental measure of work fluctuations and the
test of the so-called fluctuation theorems. Initially proposed in the context of sheared
systems in a steady state [1], several versions of such theorems have been derived [2].
In particular, specific identities have been obtained in the context of stochastic systems
that show how it is possible to recover the equilibrium free-energy change in a reversible
transformation by exponential averaging over many non-equilibrium trajectories that start
at equilibrium [3]–[5]. Let us consider a system initially in equilibrium in contact with
a thermal bath (at temperature T ) that is submitted to an isothermal perturbation
according to a given protocol. Work fluctuations (WF) refer to the fact that the work W
exerted upon the system depends on the particular non-equilibrium trajectory followed
by the system. As the initial configuration or the trajectory is stochastic, the value of the
work W changes among different trajectories, all generated with the same perturbation
protocol. Transient violations (TV) of the second law refer to the fact that, among all
possible WF, a fraction of them absorb heat from the bath that is transformed into work.
Taken individually, these rare trajectories violate the Clausius inequality, Q ≤ T∆S,
where Q is the heat supplied from the bath to the system and ∆S is the change in the
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entropy, a state function defined through the transformation. In a transformation cycle
∆S = 0 these TV satisfy Q > 0; i.e., they can absorb a net amount of heat from the
bath during the cycle. In terms of the dissipated work Wdis, the Clausius relation can be
expressed in the following form:

Wdis = W − Wrev = T∆S − Q ≥ 0. (1)

In this expression W is the total work exerted upon the system. According to the first
law of thermodynamics (conservation of the energy) W is given by W = ∆E − Q, where
∆E is the change in the internal energy, and Wrev is the reversible work (identical to the
free-energy change ∆F = ∆E − T∆S). Both the heat Q and Wdis (or W ) are trajectory
dependent; however, ∆S and Wrev are both trajectory independent as they are state
functions, only dependent on the initial and final states. The Clausius inequality (1) has
to be understood as a result that is valid after averaging the fluctuating quantities Q and
W over an infinite number of trajectories (in what follows we will denote this average by

(..)). The second law reads Wdis ≥ 0 and TV of the second law refer to the existence of
trajectories where Wdis < 0. From this point of view, TV are just WF characterized by
the fact that Wdis < 0. The interest in studying TV is that these describe large deviations
of the work that have to be sampled in order to recover equilibrium free-energy differences
from non-equilibrium measurements [6].

The steadily increasing development of nanotechnologies during the last decade
has made WF experimentally accessible. Recent experiments on single RNA hairpins
unfolded under the action of mechanical force [7] and micro-sized beads trapped by laser
tweezers and moved through a solvent [8] have provided a first quantitative estimate
of WF and TV. Related measurements include the experimental verification of the
Gallavotti–Cohen fluctuation theorem in Rayleigh–Bernard convection [9] and turbulent
flows [10]. This research is potentially very interesting as it leads to new insights about the
physical processes occurring at the nanoscale, a frontier that marks the onset of complex
organization of matter [11]. A characteristic of WF is that they are quickly suppressed as
the system size or the time window of the measurement increases.

The central quantity describing WF is the work probability distribution PN(W ) (N
stands for the system size), PN(W )dW being the fraction of non-equilibrium trajectories
with work between W and W + dW . The knowledge of this quantity is important for
what it tells us about the mathematical form of the tails of the distribution, relevant
to understanding the importance of large deviations of work values with respect to the
average value. A precise knowledge of the form of the tails in that distribution gives
us hints about how many experiments need to be done in order to recover equilibrium
quantities from non-equilibrium experiments. In this work we investigate an ensemble of
two-level systems as an explicit example where PN(W ) can be analytically computed
in the large-N approach using a path integral method. This approach allows us to
exactly derive several exact results describing work and heat fluctuations in the system
in the large-N limit but also for finite N . The most important result in the paper is
the introduction of a trajectory thermodynamics formalism, the key quantity being the
trajectory entropy SN(W ). This allows us to infer several quantities such as the trajectory
free energy FN(W ) and the trajectory temperature λ(W ), the latter being a Lagrange
multiplier that plays the role of the inverse of a temperature, an intensive variable related
to the statistics of large deviations or tails in the work and heat distributions. Two-state
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models represent a broad category of systems where WF and TV can be predicted to be
experimentally observable, making the present calculations relevant as they might allow a
detailed comparison between theory and experiments. In particular, we propose magnetic
nanoparticles as excellent candidate systems to experimentally test the present theory.

The plan of the paper is as follows. In section 2 we describe the model and the
large-N approach. In section 3 we develop the trajectory thermodynamics formalism that
allows us to reconstruct the work distribution, and define a trajectory entropy SN(W ) =
log(PN(W )) and a trajectory free energy FN(W ). In section 4 we show how the saddle-
point equations derived in section 2 can be numerically solved. The dependence of the
main parameters of the theory (most probable work Wmp, transient violations work W †

and fluctuation-dissipation ratio R) on the field protocol are discussed in section 4.1.
Within the formalism it is then possible to show, section 5, that the entropy per particle
s(w) (w being the work W per particle) exactly satisfies the fluctuation theorem by
Crooks. Moreover, it is possible to infer the shape of the tails in the work distribution
from the sole knowledge of the Lagrange multiplier conjugated to the trajectory entropy,
λ(w), that plays the role of the inverse of a temperature (which we call the trajectory
temperature) in the formalism. In section 6 we study heat fluctuations in the model.
We show the existence of two sectors in the heat distribution that are described by a
Gaussian central part (corresponding to small and most probable deviations) and two
exponential tails (corresponding to large and rare deviations) showing the presence of
intermittent heat fluctuations in the theory. In section 7 we discuss finite-size corrections
to the large-N theory and how PN(W ) for finite N can be reconstructed using the results
from the large-N approach. Particular emphasis is finally placed in section 8 in the case of
magnetic nanoparticle systems where WF are predicted to be experimentally observable
and described by the present theory. Section 9 presents the conclusions.

2. Ensemble of two-state systems: the large-N approach

A broad category of systems can be modelled by an ensemble or collection of independent
two-state systems. These offer realistic descriptions of electronic and optical devices that
can function in two different configurations: atoms in their ground and excited states,
magnetic particles whose magnetic moment can point in two directions, or biomolecules
in their native and unfolded states, among others. Throughout the paper, and in view
of the possible experimental implications, we will adopt the nomenclature of magnetic
systems. A particle i in the ensemble (1 ≤ i ≤ N) has magnetic moment µ and can point
in two directions according to the sign of the spin σi = ±1. A given configuration in the
ensemble is specified by a string of spin values C ≡ {σ1, σ2, . . . , σN}. In the presence of
an external field H , the energy of a configuration C is given by

E(C) = −µHM(C) = −µH
N∑

i=1

σi, (2)

M(C) =
∑N

i=1 σi being the total magnetization of the system. The transition rates
for individual particles will be denoted as pup(H), pdown(H) to indicate the transitions
σ = −1 → σ′ = 1 and σ = 1 → σ′ = −1 respectively. These rates satisfy detailed
balance, therefore pup(H)/pdown(H) = exp(−2βµH), where β = 1/kBT , T being the bath
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temperature and kB the Boltzmann constant. The overall transition rate is given by
ptot(H) = pup(H) + pdown(H). Although it is possible to introduce structural disorder in
the ensemble (e.g. by allowing µ or pup(H) to be a random quenched variable), in the
following analysis we will restrict ourselves to the non-disordered or mono-disperse case.

Let the system be prepared at t = 0 in an equilibrium state at an initial value of the
field H0 = Hi and let us consider an external isothermal perturbation that changes the field
H according to a protocol function H(t). Throughout this paper we will denote this non-
equilibrium process a ramping experiment. If the variation is slow enough then the process
is quasi-static and the system goes through a sequence of equilibrium states. However, if
the rate Ḣ is large compared to the relaxation time of the particle then the magnetization
M =

∑N
i=1 σi does not follow the equilibrium curve Meq(H) = N tanh(βµH). To specify

a trajectory it is then convenient to discretize time in Ns time-steps of duration ∆t each
and take the continuous-time limit ∆t → 0, Ns → ∞ (with the total time t = Ns∆t
fixed) at the end. The perturbation protocol is specified by the sequence of values
{Hk; 1 ≤ k ≤ Ns}, and a trajectory T is defined by the sequence of configurations
T = (Ck; 1 ≤ k ≤ Ns), where Ck = {σk

i ; 1 ≤ i ≤ N} is the configuration at time t = k∆t.
The total work exerted upon the system along a given trajectory is given by [5]

W (T ) = −µ

Ns−1∑
k=0

Mk+1(Hk+1 − Hk), (3)

Mk =
∑N

i=1 σk
i being the magnetization at time-step k. The dissipated work for a given

trajectory is the difference between the total work and the reversible one, Wdis = W−Wrev,
where Wrev = ∆F is the change in equilibrium free energy between the initial and final
values of the field. The free energy is given by F (H) = −NkBT log(2 cosh(βµH)). To
quantify WF we have to compute the probability distribution for the total work measured
over all possible non-equilibrium trajectories,

PN(W ) =
∑
T

p(T )δ(W − W (T )) =
∑
{σk

i }

p(T )δ

(
W + µ

Ns−1∑
k=0

Mk+1(Hk+1 − Hk)

)
, (4)

where p(T ) denotes the probability of a given trajectory. The subindex N in PN(W )
is written to emphasize the dependence of the distribution on the size of the system.
PN(W ) is computed using the Bayes formula p(T ) =

∏Ns−1
k=0 qk({σk+1

i }|{σk
i })p0({σ0

i }),
where qk({σ′}|{σ}) denotes the transition probability to go from {σ} to {σ′} at time-
step k, and p0({σ0

i }) is the initially equilibrated (i.e. Boltzmann–Gibbs) distribution.
Evaluation of the integral (4) requires the following steps: (1) trace out spins in the sum;
(2) insert the factorized expression for p(T ); (3) use the integral representation for the
delta function δ(x) = (1/2π)

∫ ∞
−∞ dλ exp(iλx), and (4) insert the following factor,

1 =
Ns−1∏
k=0

1

2π

∫ ∞

−∞
dγk dMk exp

(
iγk

(
Mk −

N∑
i=1

σk
i

))
. (5)

After some manipulations this leads to the following expression for the work probability
distribution (up to some unimportant multiplicative terms):

PN(W ) ∝
∫

dλ

Ns−1∏
k=0

(dγk dmk) exp(A(w, λ, {γk}, {mk})), (6)
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where A is the saddle-point function, w = W/N, mk = Mk/N (throughout the paper we
will use lower-case letters to refer to intensive quantities). The function a = A/N is given
by

a(w, λ, {γk}, {mk}) = −λ

(
w + µ

Ns−1∑
k=0

mk+1(Hk+1 − Hk)

)
−

Ns∑
k=0

γkmk

+
Ns−1∑
k=0

(
mk + 1

2
log(uk+1) +

1 − mk

2
log(vk+1)

)

+ log(eγ0pup(Hi) + e−γ0pdown(Hi)). (7)

The terms uk, vk are given by

uk+1 = exp(γk+1)(1 − pdown
k ) + exp(−γk+1)p

down
k (8)

vk+1 = exp(γk+1)p
up
k + exp(−γk+1)(1 − pup

k ) (9)

with the boundary condition γNs = 0. The quantities pup(Hi), p
down(Hi) are the transition

rates at time s = 0, and we are assuming that at the initial condition the system is in
thermal equilibrium. In the continuous-time limit (6) becomes a path integral over the
variable λ and the functions γ(t), m(t) with

a(w, λ, γ(s), m(s)) = −λ

(
w + µ

∫ t

0

m(s)Ḣ(s) ds

)

+ 1
2

∫ t

0

(m(s)(2γ̇(s) + c(s)) + d(s)) ds + log(eγ(0)pup(Hi) + e−γ(0)pdown(Hi)),

(10)

where

c(s) = pdown(s)(exp(−2γ(s)) − 1) − pup(s)(exp(2γ(s)) − 1) (11)

d(s) = pdown(s)(exp(−2γ(s)) − 1) + pup(s)(exp(2γ(s)) − 1). (12)

As we are interested in the crossover to the large-N regime we can estimate the integral (6)
by using the saddle-point method. For each value of the work trajectory w the dominant
contribution is given by the solution of the functional equations

δa

δλ
= w + µ

∫ t

0

m(s)Ḣ(s) ds = 0 (13)

δa

δγ(s)
= ṁ(s) + m(s)ptot(s) − (pup(s) − pdown(s)) + m(s)d(s) + c(s) = 0 (14)

δa

δm(s)
= γ̇(s) − λµḢ(s) +

1

2
c(s) = 0 (15)

with the boundary conditions

γ(t) = 0; m(0) = tanh(γ(0) + βµHi). (16)
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Note that the boundary conditions are a bit special as causality is broken. The function
γ(s) has the boundary condition located at the final time s = t while the boundary
condition for m(s) is located at the initial time s = 0. These equations can be numerically
solved in general and analytically solved only partially and for some particular cases
(e.g. in the case where the rate Ḣ is constant). Before presenting detailed numerical
solutions to these equations we should point out several general aspects of such solutions.
At first we note how, for a given value of λ, equation (15) together with the boundary
condition γ(t) = 0 can be solved giving the solution γλ(s), the subindex λ emphasizing
the dependence of this solution on the parameter λ. Inserting this result in (14) and using
the boundary condition (16) we get the solution mλ(s). Finally, insertion of mλ(s) in (13)
gives a value for the work w(λ). This last relation can then be inverted1 to give λ(w), and
from it, the solutions γλ(s), mλ(s) will also depend on the value of w. To better emphasize
this dependence we will denote by λ(w), γw(s), mw(s) the solutions of (13)–(15) for a given
value of w and

s(w) = a(w, λ(w), γw(s), mw(s)) (17)

the corresponding extremal value of a. We will also make explicit the w-dependence in
the time-dependent quantities c(s), d(s) in (11), (12) and denote them by cw(s), dw(s)
respectively. Furthermore, we can define the trajectory entropy SN (W ):

PN(W ) = exp(SN(W )). (18)

In the large-N limit, from (6), (17) we have

s(w) = lim
N→∞

SN (W )

N
with W = Nw, (19)

the function s(w) playing the role of a trajectory entropy per particle that counts the
density of trajectories per particle with work equal to w. This means that, for N finite,
ΦN (w) dw = exp(Ns(w)) dw is approximately proportional to the fraction of trajectories
with work between w and w + dw. From (18), (19) an approximate expression for the
work probability distribution can be written:

PN(w) =
ΦN(w)∫ wmax

wmin
ΦN (w′) dw′ =

exp(Ns(w))∫ wmax

wmin
exp(Ns(w′)) dw′ (20)

where wmin and wmax are the minimum and maximum possible values of the work. Clearly,
from (3) these values are given by wmax = −wmin = µ(Hf − Hi), where Hf = H(t) is the
final value of the magnetic field. The subindex N in PN(w) and ΦN(w) emphasizes the
dependence of these quantities on the size of the system. Finally, we note that, albeit
the solutions (13)–(15) have been obtained using the saddle-point approximation (only
valid for large N), the final result (20) can be very accurate for small values of N . This
result, that at first glance may appear striking, is just a consequence of the non-interacting
character of the Hamiltonian (2). This point is discussed in more detail in section 7. There
we show that, albeit (20) is only approximate for finite N , the cumulants that we can
extract from s(w) are exact for any N . This allows us to exactly reconstruct the finite N
distribution from the sole knowledge of s(w).

1 For that we are assuming that w(λ) is a monotonic function, a result that we have not proven in full generality,
yet it is in accordance with all the cases we analysed.
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The action A = Na in (10) could be used (employing Monte Carlo algorithms) to
generate trajectories according to their probability PN(w).2 Inserting (15) in (10) we get

s(w) = −λw + 1
2

∫ t

0

dw(s) ds + log(eγ(0)pup(Hi) + e−γ(0)pdown(Hi)). (21)

The value w for which s(w) is maximum yields the most probable work (w = wmp) among
all trajectories. This can be evaluated using the equation

s′(w) =
∂a

∂w
= −λ(w), (22)

where we have used the chain rule together with the extremum conditions (13)–(15) as
well as (10). We will see later in section 6 that the Lagrange multiplier λ(w) is related
to the inverse of a new energy scale or temperature that describes the tails of the work
distribution. This quantity is of much current interest as it describes the statistics of rare
events and large deviations of work values from the average which are observable in small
systems. The extremum solution of (22) can then be written as λ(wmp) = 0,

∂s(w)

∂w

∣∣∣∣
w=wmp

= 0 or λ(wmp) = 0. (23)

This solution solves (13)–(15) giving γwmp(s) = cwmp(s) = dwmp(s) = 0. Equations (13),
(14) then give the solution for the most probable trajectory (usually derived using standard
statistical methods),

ṁ(s) = −m(s)ptot(s) + (pup(s) − pdown(s)). (24)

The reversible process is a special case (only valid for slow enough perturbation protocols)
and corresponds to ṁ(s) = 0 or

m(s) = (pup(s) − pdown(s))/ptot(s) = tanh(βµH(s)). (25)

3. Trajectory thermodynamics formalism

From the trajectory entropy s(w) we can construct a trajectory free energy F(w) useful
to predict under which conditions TV are properly sampled and fluctuation theorems can
be quantitatively verified. For this we consider the Jarzynski equality [3],

exp

(
− W

kBT

)
= exp

(
−∆F

kBT

)
, (26)

that we can write as

exp

(
−∆F

kBT

)
=

∫
dW PN(W ) exp

(
− W

kBT

)

=

∫
dW exp

(
− W

kBT
+ SN(W )

)
=

∫
dW exp

(
−FN(W )

kBT

)
, (27)

2 The easiest procedure then would be to start from an initial trajectory γ(s), m(s) (satisfying the boundary
conditions m(0) = tanh(γ(0) + βµHi); γ(t) = 0) and perform successive ‘local’ updates along the trajectory and
accepting the moves according to the change in the action A (by using an algorithm that satisfies detailed balance,
as defined by the action A, and respects the boundary conditions).
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where we used (18) and we have defined the trajectory free energy,

FN(W ) = W − kBTSN(W ). (28)

In the large-N limit, using (19), we can write

exp

(
−∆F

kBT

)
=

∫
dw exp

(
− N

kBT
(w − kBTs(w))

)

=

∫
dw exp

(
−NF(w)

kBT

)
≡ exp

(
−NF(w†)

kBT

)
, (29)

where

F(w) = w − kBTs(w) (30)

is a trajectory free energy (per particle) that depends on the particular value of the work
w. Evaluating the integral (29) by the steepest descent method and using (21) we obtain
the thermodynamic relations

1

kBT
=

∂s(w)

∂w

∣∣∣
w=w†

= −λ(w†) (31)

F(w†) = ∆F/N = wrev = w† − kBTs(w†) = −kBT

2

∫ t

0

dw†(s) ds. (32)

Using the definition (30) together with (23), (31) we have the relations

∂F(w)

∂w

∣∣∣∣
w=wmp

= 1 (33)

∂F(w)

∂w

∣∣∣∣
w=w†

= 0 (34)

i.e. the entropy has a maximum at w = wmp and the free energy has a minimum at
w = w†. These relations bear similarity to those considered in thermodynamics but now
apply to work trajectory values. For the case of the canonical ensemble the quantities
s(w),F(w), w play the role of the standard entropy, free energy and internal energy, while
λ(w) is the intensive variable corresponding to the inverse of a temperature. Actually,
from (22), (31) we can define the trajectory temperature,

T̂ (w) = − 1

kBλ(w)
, (35)

which can be positive or negative depending on the sign of λ(w). The trajectory

temperature satisfies the equality T̂ (w†) = T and, for now, it is just a Lagrange multiplier
devoid of any particular physical meaning. We will see below in section 6 that, under
some conditions, it is possible to endow the trajectory temperature with a physical
interpretation.

A graphical construction of the relations (31), (32) is shown in figure 1. This figure
illustrates how the most important quantities wrev, w

mp, w†, w are related to each other.
In particular, w =

∫
dw wPN(w) is expected to differ from wmp, albeit that difference can

be small for highly symmetric distributions.
The difference between w† and wmp indicates that the average (29) is properly weighed

whenever trajectories with work values around w† are sampled. This result indicates that
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s(w)

F(w)

  (w) 

w w w

w

mp+

k Ts(w )+

w w

w    w

rev

rev

min max

min max

s(w )+
slope=1/k  T

0

slope=1

0
-1/k  T

B

B

B

λ

w

wdis

w+ wrev mpw

Figure 1. Diagrams showing the different relevant quantities in the trajectory
thermodynamics formalism. Upper panel: trajectory entropy s(w) related by (20)
to the density of trajectories with work equal to w. Middle panel: trajectory free
energy F(w) = w− kBTs(w). Lower panel: Lagrange multiplier λ(w). There are
six most relevant work values: wmax and wmin for the maximum and minimum
values of the work; wmp, the most probable work value given by s′(wmp) =
λ(wmp) = 0 or F ′(wmp) = 1; w†, the value of the work that has to be sampled
to recover free energies from non-equilibrium work values using the Jarzynski
equality (26) (this is given by s′(w†) = −λ(w†) = 1/kBT or F ′(w†) = 0);
wrev = F (Hf)−F (Hi), the reversible work; and wdis =

∫ wmax

wmin
(w−wrev)PN (w) dw,

the average dissipated work. They are related by wmin < w† < wmp < wmax while
the second law of thermodynamics imposes wdis ≥ 0.

proper sampling of non-equilibrium work values around w† is required to derive equilibrium
free energies from non-equilibrium measurements by using the Jarzynski equality. A
proper sampling of work values around w† can be guaranteed when, out of the total
number of trajectories, a finite fraction of work trajectory values in the vicinity of w†

is observed. From a practical point of view this means that the histogram of work
values must extend down to w†. If this is not achieved, then the exponential average
performed over a finite number of non-equilibrium experiments has a bias that can be
estimated in some cases [14, 15]. Equations (31), (32) are readily solved at the Gaussian
level (i.e. assuming that PN(w) is exactly a Gaussian or s(w) a quadratic function) giving
w† = wmp−σ2

w/kBT (σ2
w being the variance of the Gaussian work distribution). For quasi-

reversible processes in the linear response regime [15], the fluctuation-dissipation theorem

implies σ2
w � 2kBTwmp

dis , giving w†
dis � −wmp

dis , i.e. trajectories with negative values of the
dissipated work that are of the order (in absolute value) of the average dissipated work
must be sampled to quantitatively verify the validity of the Jarzynski equality. An example
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of such a quasi-reversible process, where PN(wdis) is exactly a Gaussian, is the case of a
Brownian particle subjected to an harmonic potential and dragged in a fluid [8, 16, 17].

4. Numerical solution of the equations

Equations (13)–(15) can be numerically solved in general. We assume Glauber transition
rates given by

pup(H) = ptot(H)q(H); pdown(H) = ptot(H)(1 − q(H)) (36)

with q(H) = (1 + tanh(βµH))/2 and ptot(H) = 1/τrelax(H) = α(H) corresponding to the
inverse of the relaxation time. In this case,

pup(s) = α(H(s))
exp(βµH(s))

2 cosh(βµH(s))
(37)

pdown(s) = α(H(s))
exp(−βµH(s))

2 cosh(βµH(s))
. (38)

Inserting these expressions in (11), (12) we obtain

c(s) = −α(H(s))
sinh(2γ(s) + βµH(s))

cosh(βµH(s))
+ α(H(s)) tanh(βµH(s)) (39)

d(s) = α(H(s))
cosh(2γ(s) + βµH(s))

cosh(βµH(s))
− α(H(s)). (40)

The solution of the equations consists of the following steps:

(1) Solution of γλ(s). With the boundary condition at the final time s = t, γλ(t) = 0,
equation (15) has to be numerically integrated backwards in time. Inserting (37),
(38) in (15) we obtain

γ̇(s) = λµḢ(s) + α(H(s)) sinh(γ(s))(cosh(γ(s)) + sinh(γ(s)) tanh(βµH(s))). (41)

However, a direct numerical integration of this equation leads to divergences and
numerical instabilities. It is then convenient to express (41) in terms of a new variable
ε(s) = 1/cosh(γ(s)) which displays smooth behaviour. Equation (41) becomes

ε̇(s) = −tanh(γ(s))

cosh(s)

(
λµḢ(s)

+ α(H(s)) sinh(γ(s))

(
1

ε(s)
+ sinh(γ(s)) tanh(βµH(s))

))
(42)

with the boundary condition ε(t) = 1. This equation can then be easily numerically
integrated to give γλ(s) for a given value of λ.

(2) Solution of mλ(s). Once the solution of (42) for a given value of λ, γλ(s), is found,
then it is possible to integrate (14) to find mλ(s). Because (14) is linear its solution
can be explicitly written:

mλ(s) = mλ(0) exp

(∫ s

0

A1(u) du

)
+

∫ s

0

du A2(u) exp

(∫ s

u

A1(v) dv

)
(43)
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with the definitions

A1(s) = α(H(s))
sinh(2γλ(s) + βµH(s))

cosh(βµH(s))
(44)

A2(s) = −α(H(s))
cosh(2γλ(s) + βµH(s))

cosh(βµH(s))
(45)

with the initial condition mλ(0) = tanh(γλ(0) + βµHi).

(3) Evaluation of w, s(w),F(w). Once γλ(s), mλ(s) are known then we can evaluate w
using (13), the entropy s(w) using (21) and the free energy F(w) = w − kBTs(w).

(4) Dependence of the numerical algorithm on the sign of λ. We must emphasize that
the solution of the equations previously described only works in a sector of values of λ
of a given sign, λ < 0, and leads to numerical instabilities in the other sector, λ > 0,
indicative that the transformation ε(s) = 1/cosh(γ(s)) is inappropriate for λ > 0. We
have found a simple way out of this problem. It can be easily proven that the solution
of (15) for a given value of λ > 0 is equivalent to the solution of that equation with the
value of λ with its sign reversed (−λ < 0) and for the reversed field protocol Hr(s) =
−H(s) (the subindex r stands for reversed). Equation (15) can then be solved and
the resulting reversed solutions mr(s), γr(s), cr(s), dr(s) give the final solutions for the
original value of λ > 0: m(s) = −mr(s), γ(s) = −γr(s), c(s) = −cr(s), d(s) = dr(s)
(all change sign except d(s)). At first glance, this symmetry property might seem
to be related to the content of the fluctuation theorem. However, this relation is
only apparent because the reversed process in this case does not correspond to the
time-reversal protocol which should be instead Hr(s) = H(t − s) (see the discussion
below in section 5).

For the present numerical analysis, and for the sake of simplicity, we will consider a
particular example where the ramping field H(s) changes from H(0) = Hi to H(t) = Hf

at a constant rate r = Ḣ:

H(s) = Hi + rs, r = Ḣ =
Hf − Hi

t
. (46)

We will also consider ptot(H) = α independent of the field. This is tantamount to
assuming that ptot(H) corresponds to a microscopic attempt frequency or, rather, that
the activation barrier is field independent. We numerically solved the equations in natural
units µ = kBT = 1 and we have chosen α = 1 as the characteristic relaxation timescale
of the system. Results for different values of Hi, Hf have been obtained by doing ramping
experiments at different values of the ramping speed r. In figure 2 we show, in the
particular example Hi = 0, Hf = 1, the results for the magnetization trajectory solutions
mλ(s) and the Lagrange multiplier γλ(s). These are plotted as a function of the time-
dependent field H(s) for different values of λ and for a given value of the ramping speed.
In figures 3, 4 we show several trajectory thermodynamics quantities at different ramping
speeds (r = 0.01, 0.1, 1, 10). In the left panel of figure 3 we plot the magnetization for the
most probable trajectories mλ=0(s) as a function of H(s). In the right panel of figure 3
and in 4 we show the different trajectory thermodynamics quantities as a function of wdis:
the inverse temperature λ(wdis), the trajectory entropy s(wdis) and the trajectory free
energy F(wdis).
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Figure 2. Protocol with Hi = 0,Hf = 1 and ramping speed r = 1. We
consider natural units µ = kBT = 1. Curves correspond to different values of
λ (λ = −5,−2,−1,−0.5,−0.2, 0., 0.2, 0.5, 1, 2, 5 from top to bottom in the upper
and lower panel). Upper panel: magnetization mλ(s) obtained from (43). The
dashed curve is the equilibrium magnetization meq(H) = tanh(H) corresponding
to the reversible ramping experiment r = 0. Lower panel: Lagrange multiplier
γλ(s) obtained from (42). Note the boundary condition γλ(t) = 0 and the
presence of the most probable trajectory γλ=0(s) = 0,∀s.

0 0.2 0.4 0.6 0.8 1
H(s)

0

0.2

0.4

0.6

0.8

m
   

  (
s)

-0.5 0 0.5 1
w

 dis

-5
-4
-3
-2
-1
0
1
2
3
4
5

  (
w

   
)

di
s

λ

λ=
0

0.01 0.1

1

10

0.01

0.1

1

10

w
 dis

w
 dismin
max

Figure 3. Protocol with Hi = 0,Hf = 1 and different ramping speeds r =
0.01, 0.1, 1, 10 (indicated by numbers along the continuous curves in both panels).
We consider natural units µ = kBT = 1. The reversible work is wrev = −0.433 781
and wmax = 1, wmax

dis = wmax−wrev = 1.433 781, wmin
dis = wmin−wrev = −0.566 219.

Left panel: magnetization evolution for the most probable trajectories. The
dashed line corresponds to the reversible trajectory for r → 0. Right panel:
Lagrange multiplier λ(wdis) for different ramping speeds. The intersection of the
different curves with the dashed line λ = 0 gives wmp while the intersection with
λ = −1 gives w†. The intersection of all lines at different speeds around λ = −0.5
is only accidental (looking at a larger resolution or considering other parameters
for the protocol such common crossing does not exist).
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Figure 4. The same parameters and ramping speeds as in figure 3. Narrower
curves correspond to lower ramping speeds. Upper panel: dynamical entropies
s(w) plotted as functions of wdis = w − wrev. According to the trajectory
thermodynamics relations (31), (32) the straight line y(wdis) = wdis/kBT (we
take kBT = 1) is tangent to the curve s(wdis) at wdis = w†

dis = w† − wrev

and crosses the wdis-axis at wdis = 0, s(wdis) = 0. All entropies vanish at
wdis = wmp

dis = wmp − wrev. Lower panel: trajectory free energy F(wdis). It
is identical to the equilibrium free-energy change ∆F = wrev at wdis = w†

dis.
According to the same relations (31), (32) the straight line y(wdis) = wrev + wdis

is tangent to the curve F(wdis) at wdis = wmp
dis = wmp − wrev and crosses the

wdis-axis at wdis = 0,F(wdis) = wrev.

4.1. Average and variance of the work distribution

As has been schematically depicted in figure 1, there are different work quantities that
can be of relevance to characterize work fluctuations. We have already defined the most
probable work wmp and the work w†. Another important quantity is the average work w,

w =

∫ wmax

wmin

wPN(w) dw, (47)

where PN(w) was defined in (4) or in approximate form in (20). In most cases (for instance,
when the work distribution has asymmetric tails) the average work w is different from the
most probable work wmp. w can be lower or higher than the most probable work wmp.
However, in our large-N theory, wmp = w and we will use indistinctly both quantities
in this section. We defer the discussion about finite-size effects in these quantities until
section 7. Another important quantity that characterizes the work distribution is its
variance,

σ2
w = w2 − (w)2 = w2

dis − (wdis)
2. (48)
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The average work w (or wmp) is the most relevant physical quantity that connects with
classical thermodynamics. The second law of thermodynamics establishes that it cannot
be lower than the reversible work, w ≥ wrev. However, it is clear that there can be WF
such that w < wrev. These have been called transient violations (TV) of the second law.
The relevant work value characterizing this sector of trajectories is given by w†. Clearly,
w is always higher than w†. In figure 5 (left panel) we show the dependence of wdis, w

†

with the ramping speed when the field is ramped from Hi = 0 to Hf for different values
of Hf . It is possible to write down explicit analytic expressions for the cumulants of the
distribution PN(w) in the large-N limit. Interestingly, and due to the non-interacting
character of the model (2), the cumulants derived from the large-N approach are exact
at all values of N ; see section 7. In particular, the first moment is given by

wdis = wmp − wrev = 2µ

∫ t

0

ds Ḣ(s)

∫ s

0

du Ḣ(u)
∂q(H)

∂H

∣∣∣∣
H=H(u)

exp

(
−

∫ s

u

dv α(H(v))

)
.

(49)

The expression for the second cumulant or variance can be obtained by expanding the
function s(w) (21) up to second order with λ(w) as the small parameter. Using the result
s′(wmp) = 0 we get

s(w) = s(wmp) +
1

2

(
∂2s(w)

∂w2

)
(w − wmp)2 + O[(w − wmp)3]. (50)

From (20) and (22) we obtain the relation

σ2
w =

1

N

[
∂2s(w)

∂w2

∣∣∣∣
w=wmp

]−1

=
1

N

dw(λ)

dλ

∣∣∣∣
λ=0

. (51)

We do not reproduce the details of this lengthy calculation here; the same results have
been already obtained in a slightly different context in a previous work and in the limit
of large free-energy changes ∆F as compared to kBT [12].

Another interesting aspect of the present theory is that it is possible to expand the
cumulants around the limits r → 0 or ∞. The former is particularly interesting because
it corresponds to the so-called linear-response regime. In [12] this regime was considered
by expanding the average dissipated work up to linear order in the perturbation speed.
By using dimensional arguments and direct comparison with the equivalent expression
derived in the context of mechanical force [12], we can derive the following result:

wdis =
µ∆Mτrelax(Hc = 0)

N
r + O(r2), (52)

where ∆M = Meq(Hf) − Meq(Hi) is the difference between the equilibrium total
magnetizations at the initial and final values of the field whereas τrelax(Hc = 0) =
1/ptot(Hc = 0) is the relaxation time at the critical value of the field where the
configurations σ = +1 and −1 are equiprobable (i.e. at Hc = 0). Equation (52) indicates
that dissipated work is large when the relaxation time is larger as we can expect. The
linear response regime breaks down for large ramping speeds when wdis 	 wrev and the
dissipated work starts to saturate. An interesting quantity quantifying deviations from the
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Figure 5. Ramping experiments with Hi = 0 and different values of Hf as a
function of the ramping speed r. We consider natural units µ = kBT = 1. Left
panel: wdis (continuous curves) and −w†

dis (dashed curves) for different values
of Hf indicated in the figure. The dash–dotted straight line corresponds to the
linear response behaviour wdis = r given by (52). Note that w†

dis is negative so
we changed its sign in order to compare it with wdis. Right panel: fluctuation-
dissipation ratio R as a function of r evaluated at different values of Hf (from
bottom to top, Hf = 1, 2, 3, 4, 5).

linear-response regime is the fluctuation-dissipation ratio R defined by

R =
σ2

W

2kBTWdis

=
Nσ2

w

2kBTwdis
. (53)

In the limit of small r → 0, when wdis ∝ r, then R converges to 1 (in agreement with
the fluctuation-dissipation theorem, a result that in the context of steady-state systems
has been proven in [13]) but deviates from 1 as r increases. In the right panel of figure 5
we show R(r) when the field is ramped from Hi = 0 to Hf at different values of Hf . In
this case the behaviour of both wdis and R is monotonic with r. In figure 6 we show
the same ramping experiments but comparing, for a given ramping speed, the results for
wdis,−w†, R as a function of Hf . For values of Hf small enough the ramping process is well
described by the linear response-approximation discussed in section 3 where w†

dis � −wmp
dis .

Let us finish this section by emphasizing that the dependence R(r) can be quite
complicated and even non-monotonic in some cases. Such behaviour is observed in the
case where the ramping protocol is given by H(s) = HA(1 − 2s/t), i.e. the field starts at
a given value Hi = −HA (HA denotes the field amplitude) and increases until its reversed
value Hf = HA is reached. This case is of much interest regarding heat fluctuations and
is discussed in detail in section 6. In figure 7 we show the behaviour of the average work
w (equal to the average dissipated work as wrev = 0 due to the independence of the free
energy on the sign of HA) and R as a function of the ramping speed for different values
of HA.
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Figure 6. Ramping experiment with Hi = 0 and r = 100 as a function of Hf .
We consider natural units µ = kBT = 1. The average dissipated work wmp

dis

(continuous curve) and R (dashed curve) increase with the field but w†
dis (dotted

line) saturates to a finite value equal to − log(2) (we represent −w†
dis in order to

compare with wmp
dis ).

5. The fluctuation theorem

The saddle-point equations (13)–(15) were derived in the large-N limit. Indeed (20) is
not exact for finite N but has corrections. However, the results obtained for s(w) exactly
satisfy the fluctuation theorem of Crooks [5]. This theorem states the following. Let us
consider a process where the system is perturbed according to a protocol HF(s) during
the time interval [0, t], the system initially being in equilibrium at the value of the field
Hi = HF(0). We will call this the forward (F) process. Let us now consider the reverse
process defined as the time-reversed of the forward process: in this process the system
starts in equilibrium at time s = 0 at the value of the field Hi = HF(t) and the field
is changed according to the protocol HR(s) = HF(t − s). Let the distribution of works
generated in this way be PF(W ), PR(W ) for the forward (F) and reverse (R) processes
respectively. The two distributions satisfy the following relation [5]:

PF(W )

PR(−W )
= exp

(
W − ∆F

kBT

)
= exp

(
Wdis

kBT

)
, (54)

where ∆F = F (Hf) − F (Hi) is the change in the equilibrium free energy. By rewriting
this identity as PR(−W ) = PF(W ) exp(−W+∆F

kBT
) and integrating it between W = −∞ and

∞ we obtain the Jarzynski equality 〈exp(−Wdis/kBT )〉F = 1, where 〈· · ·〉F stands for a
dynamical average over work values obtained along the forward process.

If we now substitute (20) into the relation (54) we obtain

sF(wdis) − sR(−wdis) =
wdis

kBT
, (55)
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Figure 7. Average work w (left) and fluctuation-dissipation ratio R (right) for
the case Hf = −Hi = HA as a function of the ramping speed. We consider
natural units µ = kBT = 1. The different curves correspond to different values of
the amplitude field HA. These are indicated in the plot beside each curve. The
straight dashed line in the left panel corresponds to the linear-response relation
w = 2r in (52). As explained in the last paragraph of section 5, and for this
particular protocol, the relation w† = −wmp is exact for all values of r and HA.
Moreover, for large values of HA the work coincides with the heat exchanged; see
section 6.

where we have taken PF,R(W ) ∝ exp(NsF,R(w)) and we have disregarded the
normalization constant in the distribution (20) as unimportant. Because the quantity
s(w) used in (20) is only exact in the large-N limit one might be tempted to think
that (55) does not hold. To prove the validity of (55) we rewrite (54) in the following
way:

1

N
log(PF(W )) − 1

N
log(PR(−W )) =

Wdis

NkBT
. (56)

In the large-N limit the distributions (20) satisfy

lim
N→∞

1

N
log(PF,R(W )) = sF,R(W ) (57)

and therefore (55) is exact with wrev = limN→∞ ∆F/N . The present approach seems
quite general so the trajectory entropy derived in a large-N theory in any statistical
model (interacting or non-interacting) must verify the relation (55). Another interesting
relation that can be obtained from (55) relates the values of wmp, w† for the forward and
reverse processes. Differentiating (55) respect to w we obtain

s′F(w) + s′R(−w) = λR(−w) − λF(w) =
1

kBT
, (58)

where we used (22). Therefore, the identity s′F(wmp) = λF(wmp) = 0 (23) implies
s′R(−wmp) = λR(−wmp) = 1/kBT . From (31) we then infer that w† for the reverse
process is identical to −wmp for the forward process, and vice versa. This relation is quite
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interesting because it suggests that in order to estimate (e.g. in experiments) the value
of w† for a given non-equilibrium process it is enough to determine wmp for the reversed
process, a quantity that is experimentally accessible.

An interesting case of (54) occurs whenever the forward and reverse processes are
symmetrical mirror images, HF(s) = −HR(s) = −HF(t − s). This can be accomplished
when HA = Hf = −Hi along the forward process and the protocol satisfies H(s) =
−H(t − s). In this case the forward and the reverse work distributions are identical,
Wrev = ∆F = 0 (or w = wdis), and (55) reads

s(w) − s(−w) =
w

kBT
, (59)

where we have used s(w) = sF(w) = sR(w). The validity of (59) can be further
demonstrated by close inspection of equations (13)–(15). Let s(w) be the value of the
dynamical entropy for a given value of the work w associated with the value of the
Lagrange multiplier λ and the magnetization m(s). Then, for the reversed value of the
work −w, it is possible to show that the corresponding solutions are −λ − 1/kBT for the
Lagrange multiplier and −m(t− s) for the magnetization solution. The resulting entropy
is then s(−w) = s(w)−w/kBT , as given in (59). A remarkable consequence of this special
case is the aforementioned fact that w† = −wmp at any ramping speed and for any value
of the amplitude of the field HA. This case was already shown in figure 7. The present
symmetric case is especially interesting because the work done upon the system can be
identified with the heat exchanged between the system and the bath. The conditions
required for such identification are discussed next.

6. Heat fluctuations and tails

Until now we have focused our efforts on investigating work fluctuations. However, in the
same way as the work fluctuates, the heat exchanged between the system and the bath
also does. The validity of the mechanical equivalence of heat (the content of the first law
of thermodynamics) suggests that there should not be an important difference between
heat and work. Heat is more difficult to measure experimentally than work, and this is
the reason why we tend to be more interested in the latter.

A motivation to investigate heat fluctuations has recently arisen in the context of
steady state and ageing systems. In the first case, heat fluctuations were investigated
for the simple model of a bead dragged through a viscous fluid [17]. In the second case
they were studied for the case of a spin-glass model characterized by slow dynamics
and ageing [18]–[20]. In both cases, a Gaussian component was identified in the heat
distributions, together with some exponential tails. For the steady state system these
exponential tails were a consequence of the validity of an asymptotic fluctuation-theorem
for the heat, while in the ageing system the tails were the signature of intermittency effects
that have been experimentally observed in glasses and colloids [21, 22].

The heat along a given trajectory can be inferred using energy conservation, −Q +
W = ∆E. To extract the heat we just need to know the change in energy ∆E between the
final and initial configurations as well as the work W . Here we adopt the sign convention
(contrary to that adopted in section 1) that positive heat corresponds to net heat delivered
by the system on the surroundings. A particular case where work and heat fluctuations
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are identical is the case described in the preceding section, where Hf = −Hi = HA. Due to
time reversal symmetry Wrev = ∆F = 0. Now, if the field amplitude HA is large enough,
the difference in energy ∆E = −µ∆(MH) is practically zero, so Q = W . For example, if
HA = 5, then tanh(5) = 0.999 91 (as always we take β = µ = 1), so the initial equilibrium
magnetization is Meq(HA) = −N . The final magnetization after ramping the field to HA

is again of order N and therefore the fluctuations from trajectory to trajectory in ∆E
are negligible as compared to the total work. In figure 8 we show the trajectory entropy
and free energy for the case HA = 10. We have chosen to represent variables in terms
of heat per particle q = Q/N rather than work, to give a view of what general shape
we can expect from heat distributions. In terms of the heat we expect that the same
mathematical definitions and relations that we defined in the case of work are also valid.
For instance, the heat entropy and the heat free energy are defined in the same way as we
did for their work counterparts just replacing w by q; in particular, F(q) = q − kBTs(q).
Also the equivalent of (22) holds,

∂s(q)

∂q
= −λ(q). (60)

The most probable heat qmp (λ(qmp) = 0) and the quantity q† (λ(qmp) = −1/kBT ) can
also be defined. Moreover, a relation equivalent to (59) is also expected to hold for large
enough values of HA,

s(q) − s(−q) =
q

kBT
. (61)

An interesting aspect of the heat entropy s(q) shown in the left panel of figure 8 is the
presence of quadratic behaviour for small values of q (q � 0) together with a linear
behaviour in the tails (|q| 	 1). These characteristic features of the heat entropy s(q) can
be inferred by looking at λ(q), shown in figure 9. That figure shows that λ(q) is linear with
q for q � 0, giving a quadratic behaviour for s(q) at small values of q. This linear shape
in λ(q) corresponds to a Gaussian distribution for P (q) = exp(s(q)). It also shows that
for a wide range of |q| values there are two plateaus at λ(q) ∼ λ+,−λ− for positive and
negative values of q respectively. These plateaus correspond to the exponential tails in
the distribution. This behaviour is quite generic at all ramping speeds; the distinction in
λ(q) between both plateaus and the linear behaviour at small q becomes more clear as the
ramping speed decreases, i.e. in the low dissipation regime. In such conditions, qmp is not
very large and the linear response approximation holds. The Gaussian sector describes
the statistics of small and most probable fluctuations; the exponential tails describe rare
events and large deviations. In what follows we analyse the Gaussian and exponential
tails in more detail.

In the region where both q, qmp are not too large we have

s(q) = − 1

Nσ2
q

(q − qmp)2 q, qmp 
 1. (62)

Substituting this relation in (61) we get

s(q) − s(−q) =
2qmp

Nσ2
q

q =
q

kBT
, (63)

J. Stat. Mech.: Theor. Exp. (2004) P10016 (stacks.iop.org/JSTAT/2004/P10016) 20

http://stacks.iop.org/JSTAT/2004/P10016


JS
TAT

(2004)
P

10016

Work and heat fluctuations in two-state systems: a trajectory thermodynamics formalism

-20 -15 -10 -5 0 5 10 15
q

-20

-15

-10

-5

0
s(q)

-15 -10 -5 0 5 10 15 20
q

0

5

10

15

20

25

30

F(q)

Figure 8. Trajectory entropy s(q) and trajectory free energy F(q) for the case
Hf = −Hi = 10 at ramping speeds r = 0.1, 0.5, 1, 10, 100 (from the most narrow
to the most wide distributions). The dashed line in the left panel is y(q) = q/kBT
(we take kBT = 1) and is tangent to s(q) at a value q†. The dashed line in the
right panel corresponds to y(q) = q and is tangent to F(q) at the value qmp. Both
qmp, q† depend on the ramping speed.

implying

Nσ2
q

2qmpkBT
= 1. (64)

This result shows that the fluctuation-dissipation ratio (53) is equal to 1 if heat fluctuations
are restricted to the sector of q small. Small fluctuations are a key assumption of linear-
response theory which also leads to (64).

This quadratic behaviour then goes over straight lines in the most negative and
positive sectors of q,

s(q) = C − λ+q q 	 1 (65)

s(q) = C + λ−q q 
 −1 (66)

where C is a constant and λ+, λ− correspond to the values of λ(q) in the plateaus shown
in figure 9. Note that the constant C in (65), (66) is the same in both sectors. In fact,
the relation (61) imposes such a constraint between the positive and negative tails in the
probability distributions. Substituting (65), (66) into (61) we obtain

λ− − λ+ =
1

kBT
, (67)

meaning that the width of the tails is larger for negative values of q than for positive
values. This can be interpreted by saying that, despite the fact that the average heat q
is positive, rare fluctuation events occur as often for q < 0 (i.e. when the system adsorbs
heat from the surroundings) as they do for q > 0 (when the system delivers heat to the
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Figure 9. λ(q) for the same parameters as in figure 8 for the case r = 0.1.
We note the presence of a linear behaviour for λ(q) for small values of q,
λ(q) = (2/Nσ2

q )(q − qmp) (qmp = 0.207, Nσ2
q = 0.83) and two plateaus for q 	 1

and q 
 −1 (λ+ = 4.95/kBT, λ− = 5.95/kBT ). The former gives rise to the
Gaussian component in the heat distribution describing the statistics of most
probable values. The latter gives rise to two exponential tails for the distribution
describing the statistics of rare events.

surroundings). The shape of the heat distribution P (q) = exp(s(q)) is then dominated by
a central Gaussian distribution with exponential tails at its extremes. These features are
illustrated in figure 10. In the quasi-reversible limit, r → 0, the height of the two plateaus
grows (to the leading order) like 1/2rkBT ; the difference between them is given by (67).

What is the physical interpretation of the plateaus observed in figure 9? As we already
mentioned in (35), the values of the two plateaus, λ− and λ+, allow us to characterize the
non-equilibrium process by two temperatures,

T− =
1

kλ−
; T+ = − 1

kλ+
(68)

with T− > 0, T+ < 0. The fact that these two temperatures emerge in the quasi-reversible
limit suggests a possible physical interpretation. As we already emphasized, the plateaus
observed are related to the presence of exponential tails in the work (heat) distributions.
Interestingly, a link between the presence of exponential tails in heat distributions
and effective temperatures (describing violations of the fluctuation-dissipation theorem;
see [37] for reviews) has been recently found in the context of glassy systems in the ageing
regime [18]. In that context, the value of the effective temperature has been related to
the width of the exponential tail in the heat distribution, and interpreted in terms of a
microcanonical protomeasure that is self-generated by the dynamics. This suggests that
λ− and λ+ could be the fingerprint of the emergence of a dynamical measure in the quasi-
reversible limit. This conclusion is also consistent with the fact that ageing systems are
characterized by a low-entropy production [38], reinforcing the idea that the concept of the
effective temperature can be partially rescued in low-dissipation non-equilibrium regimes.
Given the extreme simplicity of the model under study one may wonder whether this
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Figure 10. Heat entropy s(q) for the case Hf = −Hi = 10 at ramping
speed r = 0.1. Main figure: the sector of small or most probable fluctuations
q ∼ 0 can be well fitted to the Gaussian (62) (dashed curve) with parameters
qmp = 0.207, Nσ2

q = 0.83 satisfying (64). The tails extend beyond the
Gaussian central part and are of exponential type as described in (65), (66)
with λ− = 5.95/kBT, λ+ = 4.95/kBT,C = 9.16. These exponential tails
describe the statistics of large deviations or rare events. Inset: heat-distribution
P (q) = exp(s(q)) (dots) and the Gaussian fit (the dashed curve of the main
figure) showing that the small q sector of fluctuations (those that are frequently
observable) is very well fitted by a Gaussian despite the fact that rare-event
tails are big and observable only when plotting s(q) or the distribution P (q) in
logarithmic scale.

conclusion is valid in general for non-equilibrium systems in asymptotically low dissipation
regimes.

Finally we want to mention that if the amplitude field HA is not large enough, then
there may be contributions to the heat distribution coming out from the fluctuations in
the difference in energy between the initial and final configurations. The effect of the
value of HA on the value of the average work and the fluctuation-dissipation ratio have
been already shown in figure 7; in particular, non-monotonic behaviour is observed for R.

7. Finite-size effects

The method we have developed in this paper allowed us to calculate PN(w) in the large-N
limit. However, due to the non-interacting character of the model, all cumulants of the
distribution obtained in the large-N limit are also exact for finite N . The proof is quite
straightforward. Let us define the generation function of all cumulants of the distribution
PN(W ) in (4),

gN(x) = log(exp(xW )) = log

(∫
dW exp(xW )PN(W )

)
. (69)
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Cumulants of PN(W ) are obtained using the following formula:

cN(k) =
∂kgN(x)

∂xk

∣∣∣∣
x=0

, (70)

k being a positive integer. Using the non-interacting character of the model, then we can
write

W =

N∑
i=1

wi → gN(x) = Ng1(x) → cN(k) = Nc1(k) (71)

and therefore all cumulants of the distribution are independent of the size of the system
(except by a multiplicative constant equal to N). This implies that the expression given
for wdis in (49) and R in (53) are independent of N . Therefore, the results we obtained
in the large-N limit are exact for any finite value of N .

However, albeit cumulants do not depend on N , the shape of the distribution PN(w)
in (20) depends on the size N and only in the large-N limit does the approximate
distribution (20) become exact. For instance, the value of wmp depends on N and
converges to wdis for large enough values of N . In practice, already for N = 5–10
convergence of the approximate distribution (20) to the exact result is excellent. In order
to compare the approximate distributions we obtain from our theory with the exact ones
at finite N we have done numerical simulations of the model. The simulation procedure
is described below in section 8. In figure 11 we show the distributions we have obtained
for N = 10 compared to the numerical simulations at different ramping speeds. The
agreement between theory (continuous lines) and simulations (symbols) is good, although
it worsens progressively as the ramping speed increases and the system is strongly driven
out of equilibrium. An important feature of the distributions is observed for large r and
small N : the presence of a finite fraction of trajectories that dissipate a maximum amount
of work equal to wmax = µ(Hf − Hi). For these trajectories the ramping speed is so high
and the size so small that no change in the initial configuration occurs along the trajectory.
We will call these trapped trajectories. The fraction of trapped trajectories contributes
with a term δ(w − wmax) to the work distribution,

PN(w) = P̃N(w) + α(N)δ(w − wmax), (72)

where P̃N(w) is a continuous function and α(N) is a size-dependent constant that decreases
with N and asymptotically vanishes in the large-N limit. The delta function in (72) is a
small -N contribution that is not captured by the present large-N theory. Nevertheless,
it might be analytically derived using the approach described below in section 7.1.

In figure 12 we show the effect of the size on the distributions at a moderate ramping
speed. For N = 1 the agreement is not good, although the behaviour of the left tails
is reasonably well reproduced. However, already for N = 5 the agreement has improved
considerably. We conclude that it is between N = 1 and 5 that finite-size effects are
important. In figure 13 we confirm this strong small -N dependence by plotting the most
probable work as obtained from the numerical simulations as a function of r for different
sizes N = 1, 2, 5, 20.
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Figure 11. Distributions PN (w) for the case Hf = −Hi = 10 and N = 10 at
different ramping speeds (indicated along each curve). The continuous lines are
the results obtained from the present theory using (20). The symbols are results
obtained from numerical simulations of the model for 104 trajectories. The right
panel is the same figure but in logarithmic scale. For the largest ramping speed
r = 100 there is a finite fraction of trajectories (about 37% of the total number of
trajectories) where the spins have no time to relax. These trajectories contribute
with a singular term at w = wmax = 20 to the distribution PN=10(w) as described
in (72). It cannot be captured by the present large-N theory so we did not include
it in the histogram obtained from the numerical simulations.
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Figure 12. The same as in figure 11 but showing the dependence of PN (w) with
N at r = 1. The agreement is not good for N = 1 in the central region of
the distribution but is reasonably good for the left tail of the distribution (see
the right plot in logarithmic scale). The agreement improves noticeably beyond
N � 5.
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Figure 13. The same parameters as in figure 11 but now showing the dependence
of the most probable work value wmp with N . The different symbols in the
points correspond to different sizes as indicated in the legend of the figure. The
continuous dashed curve is wmp as derived from the theory in the large-N limit
(where wmp = wdis, the latter being independent of N). In the linear-response
regime, r 
 1, data have converged to the theory for all sizes. Although finite-
size effects are large for N = 1, 2 and r 	 1, already for N = 5 the simulations
have converged to the theory at all ramping speeds. Data for N = 2 have been
connected by a dotted line to emphasize the sharp increase of wmp around r � 5.
This sharp increase originates from the presence of two separated peaks in the
work distribution whose heights coincide at a given value of the ramping speed
around r � 5.

7.1. Reconstructing P1(w) from the large-N theory

A crucial aspect of the present model is that it is non-interacting. Therefore, if we were to
know the work probability distribution for N = 1 (a single spin) then we could reconstruct

the general distribution PN (w). In fact, let P̂N(s) denote the Laplace transform of PN(w),

P̂N(s) =

∫ ∞

0

exp(−Ws)PN(W ) dW. (73)

Using the result W =
∑N

i=1 wi we can write

P̂N(s) = (P̂1(s))
N , (74)

allowing us to reconstruct PN(w) from the sole knowledge of P1(w). Although the
analytical computation of P1(w) might be possible by using other approaches, throughout
this paper we have considered a thermodynamic approach where the large-N theory has
been taken as an approximation to finite N . This approach turns out to give exact
results for all cumulants of the distribution, thereby suggesting that the reconstruction of
P1(w) from PN (w) might be possible. One could naively think that this is possible just
using (74) together with the knowledge of PN(w). Unfortunately, this is not the case,
as the knowledge of PN(w) is only approximate, as we showed in the previous section.
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There is, however, a possible strategy to reconstruct P1(w) that is based on the fact that
cumulants are exactly known. Let us define the following function:

h(x) = lim
N→∞

gN(x)

N
, (75)

where gN(x) was defined in (69). In the large-N limit we can solve h(x) by applying the
saddle-point approximation,

h(x) = lim
N→∞

1

N
log(exp(xW ))

= lim
N→∞

1

N
log

(∫
dW exp(xW ) exp(Ns(w))

)
= xw(x) + s(w(x)), (76)

where w(x) is the solution of the equation

ds(w)

dw

∣∣∣∣
w=w(x)

= −x. (77)

For a given value of w, (22) shows that x = λ(w). For instance, for x = 0,−1/kBT we get
w = wmp, w† respectively. Therefore, we can express h(x) in terms of w rather than x:

h(w) = wλ(w) + s(w). (78)

By inserting (71) in (75) we get g1(w) = h(w), and therefore∫
dw′ exp(λ(w)(w′ − w))P1(w

′) = exp(s(w)). (79)

Formally, this integral equation is closed and provides an exact solution for P1(w) in terms
of the entropy s(w). Unfortunately we have been unable to solve it in full generality (as
detailed knowledge of the solution in (77) is required). Yet, for P1(w) it still holds that
there are exponential tails identical to those we already derived for PN(w) in the large-N
limit. To show this result we use (22) and rewrite (79) as follows:

∫
dw′ exp

(
−s(w) − ∂s(w)

∂w
(w′ − w)

)
P1(w

′) = 1. (80)

Let us now suppose now that λ(ω) is approximately constant (equal to λ̂) showing a
plateau over a given region of work values. From (22) then s(w′) � s(w)+(∂s(w)/∂w)(w′−
w), and

P1(w
′) ∝ exp(s(w′)) = C exp(λ̂w′), (81)

where C is a constant. This shows that the width of the exponential tail for P1(w) (and,

by extension, for PN(w) at any value of N) is equal to λ̂.
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8. The case of magnetic nanoparticles

In this section we discuss a system where the previous theory could be experimentally
tested. We focus our attention on thermally activated magnetic nanoparticle systems [23].
These systems have the great advantage that the dynamics is invariant under time-
reversal of the magnetic field H → −H . Also many magnetic field cycles can be
experimentally realized in micro-SQUID machines allowing one to experimentally extract
the work distribution with good precision. The main experimental limitation to observe
WF though is the quite large value of the magnetic moment of the nanoparticle. Transition
rates are described by the Brown–Neel formula,

τrelax(H) = τ0 exp

(
B(H)

kBT

)
, (82)

where τ0 is a microscopic time describing relaxation within a state and B(H) is a field
dependent barrier. We consider two cases: (A) paramagnetic molecular clusters where
the energy barrier is nearly field independent B(H) = B0 (this case could also describe
specific ferro and ferrimagnetic nanoparticles where the anisotropy contribution to the
zero-field barrier is negligible; for a discussion see [24]); (B) ferromagnetic nanoparticles
with axial anisotropy where B(H) depends on the intensity of the external field projected
on the easy magnetization axis as described by the Stoner–Wohlfarth expression B(H) =
B0(1−|H/Hc|)α, where Hc is the field required to suppress the barrier and α is an exponent
in the range 1.5–2. Recent experiments have demonstrated how the height of the barrier
B0 can be considerably reduced by applying a transverse field, making it possible to
observe magnetization reversible transitions (also called telegraph noise measurements) in
single Co nanoparticles at low temperatures [25, 26].

As we already discussed in section 5, in a magnetic system a time-reversal invariant
protocol can be accomplished by switching the magnetic field H from −HA to HA (HA

being the amplitude of the field), the free energy and the rates being an even function of H .
Under such conditions work and heat are equivalent if HA induces a magnetization close
to its saturation value. From the experimental point of view, it is relevant to understand
under which conditions large deviations from the most probable work are observable.
By large deviations we understand work (heat) fluctuations corresponding to work (heat)
values around w† (q†). A useful quantity that tell us how difficult it is to sample that region
of work values is the ratio Ω describing the fraction of trajectories that transiently violate
the second law, w ≤ 0. This fraction is given by the integrated fluctuation theorem [2, 5].
This is obtained by rewriting (54):

PN(−W ) = PN (W ) exp

(
−W − ∆F

kBT

)
= exp

(
−Wdis

kBT

)
, (83)

where we have taken PN (W ) = PF(W ) = PR(W ). Integrating this expression from W = 0
up to W = ∞, we obtain

Ω =
N (w < 0)

N (w > 0)
=

〈
exp

(
−Nw

kBT

)〉
w>0

, (84)
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where N (w < 0),N (w > 0) are the fraction of trajectories for which the total work is
negative and positive respectively,

N (w < 0) =

∫ 0

−∞
dW P (W ); N (w > 0) =

∫ ∞

0

dW P (W ), (85)

and the average on the rhs of (84) is restricted to the subset of trajectories for which
w > 0. Quite generally, we expect that Ω is a non-universal function dependent on all
cumulants of s(w), yet its exponential dependence in N assures that, in the regime where
TV are observable, Ω is approximately described by the value of the average total work
divided by the bath temperature W/kBT , which is approximately given by Nwmp/kBT .
In ramping experiments one can measure magnetization curves (i.e. M versus H curves).
The experimental measure of Ω would be straightforward by repeatedly measuring the
magnetization curves of individual nanoparticles over many cycles. According to (84), to
evaluate Ω we just require to count the fraction of trajectories where the area under the
curve of magnetization is positive (or negative).

We choose Glauber rates as these have been experimentally demonstrated to describe
very well the relaxation of single magnetic moments [27, 28]. These are given by (36),
where τrelax(H) is given by (82). We consider ramping experiments [29] where N particles
are subject to the action of a field that is switched from H = −HA up to H = HA at
a constant speed Ḣ . We generate individual trajectories according to the Glauber rates
by starting from initial configurations with M = Meq(HA) and repeating the ramping

protocol many times; each time the total work (3) is computed, W = −µ
∫ HA

−HA
M(H) dH .

If Hsw is the field at which the magnetization of a given particle switches for the first
time then, for a given trajectory, some of the particles will switch state at a value of the
field Hsw < 0, while others will switch at Hsw > 0. For fast ramping speeds the dynamics
is well described by a first-order Markov process [30] and the dissipated work for that
trajectory will be identical to the value 2Hsw averaged over all particles. In general, for
lower ramping speeds, the relation between the dissipated work and the value of Hsw is
more complicated. To estimate Ω we generate trajectories and evaluate the fraction of
them with W > 0 and W < 0. We chose to do numerical simulations rather than applying
the large-N theory to give a more clear picture about which results can we expect from a
finite number of ramping experiments (around 10 000). In the main panel of figure 14 we
plot the value of Ω (84) as obtained for different ramping protocols in cases (A) and (B).
All points scatter around a generic (but non-universal) curve useful to predict in which
regime TV are expected to be observable. An important advantage of the time-reversal
symmetry property H → −H of magnetic nanoparticle systems, as compared to other
systems [7, 8], is the feasibility of performing many ramping cycles in a single experiment
making TV observable for Ω values as low as 10−4. According to figure 14, TV should be
observable for work values as large as 20kBT .

9. Conclusions

Two-state systems provide a simple conceptual framework to analyse work fluctua-
tions (WF) and transient violations (TV) of the second law. These non-equilibrium effects
are expected to be relevant and observable for nanosized objects when the energies in-
volved are several times kBT , kB being the Boltzmann constant and T the temperature of
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Figure 14. Application of the theory to magnetic nanoparticles for a case where
wrev = 0 and w � q. Main panel: Ω (84) as a function of W/kBT for cases (A)
and (B). Number of particles range from N = 1 up to 20 for both cases. Case
(A) corresponds to nanoparticles (open symbols) with µ = 300 µB, T = 200 K,
HA = 2 T, τ0 = 10−7 s, B0 = 2300 K at ramping speeds r = 1 mT s−1 (circles),
10 mT s−1 (triangles up). Case (B) corresponds to ferromagnetic particles (filled
symbols) with µ = 500 µB, T = 40 K, HA = 238 mT, Hc = 119 mT, B0 = 500 K,
τ0 = 10−5 s, α = 1.5 and ramping speeds of 0.01 (circles), 0.1 (triangles up),
1 (diamonds) T s−1 (continuous, dashed and dotted curves respectively). The
continuous curve is the prediction for a Gaussian work distribution (see the
discussion at the end of section 3) in the linear-response regime σ2

w = 2kBTwdis

(R = 1 in (53)). Insets: both are for ferromagnetic nanoparticles (case (B))
with the same parameters as in the main panel. Inset (a) shows hysteresis cycles
for N = 100 ferromagnetic nanoparticles at the three ramping speeds (larger
hysteresis for higher speeds). Inset (b) shows dissipated work distributions at
ramping speeds 0.1 T s−1 for N = 1, 5, 10, 20 particles (larger sizes correspond to
narrower distributions).

the bath. These have been already observed in the unfolding of small RNA hairpins [7] as
well as in polystyrene beads dragged through a solvent [8]. Related measurements include
the experimental test of the Gallavotti–Cohen fluctuation theorem in Rayleigh–Bernard
convection [9] and turbulent flows [10]. Other experiments include the observation of
gravitatory potential energy fluctuations in driven granular media [31]. The scientific dis-
cipline behind all such rich phenomenology deserves to be called thermodynamics of small
systems. It deals with the thermal behaviour of non-equilibrium small systems where the
typical energies are few times kBT . The statistics of energy exchange processes between
the system and the thermal environment is described by frequent Gaussian distributed
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events plus rare events corresponding to large statistical deviations from the average value.
The theoretical and experimental study of these fluctuations could be of relevance to un-
derstanding issues related to the organization and function of biological matter in the
nanoscale [32].

In this paper we studied WF in two-state systems. This case is particularly relevant for
two reasons. First, it is the simplest example of a non-linear system describing thermally
activated processes. This inherent simplicity has indeed motivated several studies of
this model in the context of glassy dynamics (e.g. in [33]). Second, the non-interacting
character of the energy function makes the model exactly solvable. The model being non-
interacting, one may wonder how relevant this model is for describing the non-equilibrium
behaviour observed in real systems (e.g. in [9, 10]) characterized by spatial correlations.
Our answer risks being somewhat superficial; however, we believe that by studying the
complex behaviour of such systems we can learn under which conditions the observed
non-equilibrium behaviour must be interpreted as a necessary result of a complicated
underlying structure. Even more important, this study paves the way to consider this
phenomenology in more complex interacting systems.

The main results of our study can be summarized as follows. We have introduced a
trajectory thermodynamics formalism with the specific aim to quantify WF in such model.
We have shown how to define a trajectory entropy s(w) that characterizes WF around
the most probable value wmp, and a trajectory free energy F(w) whose minimum value at
w = w† specifies the value of the work that needs to be efficiently sampled to quantitatively
test the Jarzynski equality. The theory requires the introduction of a Lagrange multiplier
λ(w), its inverse playing the role of a temperature in the trajectory thermodynamics
formalism. Analytical expressions for the trajectory potentials s(w),F(w) have been also
derived. In general, both values wmp and w† are of the same magnitude but opposite
sign, meaning that large deviations of WF need to be sampled to recover equilibrium free
energies from non-equilibrium measurements, e.g. by using the Jarzynski equality.

We have then carried out a systematic study of WF in the framework of the large-N
theory. Several results are worth mentioning. First of all, we have found an analytical
expression for the trajectory entropy that satisfies the fluctuation theorem by Crooks [5]
that relates forward and reverse processes. An important result is that the value of the
work w† that has to be sampled in order to test the Jarzynski equality is equal to the
most probable value of the work (with a minus sign) for the reverse process. Intuitively
this means that the forward and reverse distributions must overlap each other in order to
get good estimates of the work using the Jarzynski equality, a result that was emphasized
a long time ago by Bennett [34]. Furthermore, if both forward and reverse processes are
symmetric mirror images then wrev = 0 and w† = −wmp independently of how far the
system is driven out of equilibrium. This last case is particularly interesting as the total
work practically coincides with the heat. The fluctuation theorem by Crooks is then also
applicable to the heat in that limit, a result that is quite reminiscent of a heat fluctuation
theorem recently derived [17, 35]. For the heat distribution, we find that it is described
by a central Gaussian distribution describing local equilibrium, i.e. with R = 1, and long
exponential tails with widths described by the Lagrange multiplier λ(w), which plays the
role of the inverse of a temperature. Strictly speaking, because the temperature must
be a positive quantity, only the tails in the negative sector q 
 −1 where λ is negative
admit such an interpretation (i.e. in the sector of WF dominated by TV). It has not
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escaped our attention that this temperature could be related to other non-equilibrium
temperatures that have been defined in other contexts [36, 37], such as steady-state [39]
or ageing systems [18].

Our study raises the following question: to what extent are work and heat fluctuations
equivalent? We already emphasized in section 6 that work and heat should be equivalent;
at least this is the underlying content of the first law of thermodynamics. However,
from the perspective provided by the present analysis, some important differences can be
underlined. Exponential tails are more often observed in the heat rather than in the work.
Such a result has been explicitly shown in the case of a bead dragged through a fluid [17]
where the work is clearly Gaussian distributed while the heat displays exponential tails.
However, in that case the origin of this difference lies in the fact that the motion for
the bead is described by a stochastic linear equation which in general might not be the
case. The difference between heat and work has its root at the true microscopic definition
of these quantities. Heat is identical to work when the final energy of the system is
constrained be identical to the initial value (i.e. Q = W if ∆E = 0; for the heat we adopt
the sign convention of section 6). The simplest interpretation is that exponential tails in
the work distribution are always present if the model is non-linear by definition (which is
not the case for the aforementioned case of the bead dragged through the fluid). However,
work distributions always tend to be masked by a Gaussian contribution arising from the
Gaussian fluctuations that characterize the initial equilibrium state. Therefore, only when
thermal fluctuations in the initial and final states are negligible as compared to the total
amount of work along the trajectory are the measured work distributions paralleled by
the heat distributions, and tails can be observed. This explains the qualitative difference
observed between the functions λ(w) in figure 9 and the right panel in figure 3. In the
latter, Gaussian fluctuations in the energy of the initial and final configurations tend to
mask the presence of the exponential tails.

We also studied finite-size effects to test how good the large-N theory is and provided a
strategy to re-derive the finite-N work distribution from the large-N result. An important
conclusion is that the large-N theory accounts for the existence of exponential tails also
at finite N , the value of the widths λ+, λ− (corresponding to the plateaus in λ(w)) being
independent of N . In addition, we applied the theory to magnetic nanoparticle systems
which provide an experimental realization of two-state systems. We studied under which
conditions the theory can be experimentally tested. Our results suggest that WF and TV
should be observable whenever average work values are not much larger than 20kBT . It is
realistic to say that we are currently at the limit of the resolution of current micro-SQUID
devices for the detection of single small magnetic moments (around a few hundreds of µB).
Surely, we will see developments in the near future and experimental measurements of WF
in magnetic systems, as well as the test of the present theory, will become possible.
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