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Abstract

Biomolecules carry out very specialized tasks inside the cell where energies involved are few tens
of kBT , small enough for thermal fluctuations to be relevant in many biomolecular processes. In this
paper I discuss a few concepts and present some experimental results that show how the study of
fluctuation theorems applied to biomolecules contributes to our understanding of the nonequilibrium
thermal behavior of small systems.

1 Biomolecules, molecular demons and statistical physics.

Biophysics is a relatively young discipline that is becoming steadily popular among statistical physi-
cists [1]. Although there are several reasons behind this general upsurge of interest, a very attractive
aspect of biophysics is its strong interdisciplinary character. In recent years biophysics is facing the
dawn of an unprecedented fusion of various knowledges coming from different traditional scientific areas
from physics to chemistry, biology and computer science. At the root of such melting pot there is the
discovery of the molecular structure of the gene by Crick and Watson in 1953. This has established the
basis for a new “solid state” science in biology, a bit akin to the role played in modern solid state and
condensed matter physics by the discovery of the atom one century ago.

The current knowledge about the cell shows it as a very complex organism made out of several
parts that carry out different specialized tasks organized into a modular structure, a bit like a farm
or factory where different sections or departments are in charge of performing different tasks. This
modular organization is extremely complex as it consists of different levels intertwined in a big fuss
yet to be understood. The result of all these interactions is a web of informational flow where actions
at one level trigger responses in another, cell differentiation being a prominent example. Among these
levels of complexity, molecular biophysics is a discipline whose scope is to investigate the structure and
function of biological matter starting from the physico-chemical properties of constituents molecules.
Within this level it is nowadays possible, thanks to the development of nanotechnologies, to exper-
imentally manipulate individual molecules while they carry out specialized molecular functions. In
single-molecule experiments the information that can be gathered is fundamentally kinetic as molecules
can be individually followed in time during a process which often occurs out of equilibrium. The
merge of this knowledge with the static information gained from structural biology studies provides a
promising framework to elucidate the function of many biomolecules.

One of the most crucial aspects of many biomolecules (such as RNA molecules and proteins) is their
capability to function as molecular machines or Maxwell demons that perform specialized molecular
tasks under nonequilibrium conditions [2]. Often the innermost workings of such machines is poorly
understood, however one common aspect is their non-deterministic behavior (contrary to the workings
of macroscopic machines). The surrounding water is the thermal bath by allowing biomolecules to
exchange energy with the molecules of the solvent through the breakage of weak molecular bonds. The
amount of energies typically exchanged during the excursions of the molecular machine correspond to
those delivered in collisions between the molecules of the solvent and the atoms in the biomolecule
that trigger the relevant conformational changes. Considering that each molecule of the solvent carries
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circa 1kBT (kB being the Boltzmann constant and T the temperature of the bath) then the energies
exchanged amount to a few times kBT . This number is roughly equal to the number of weak bonds
that must be broken to trigger the conformational change. For example, during the replication of DNA,
the replication fork advances one base pair (about 1/3 of a nanometer) every time the DNA polymerase
(a molecular machine) adds one nucleotide to the newly synthesized DNA strands. The forces that
keep the polymerase moving during this nonequilibrium process are generated from ATP consumption
during the hydrolysis cycle. Often molecular machines do not act alone but rather a multiplex of
several proteins are involved in the most basic tasks carried out inside the cell. For example, in the
aforementioned case of DNA replication, there is a forerunner of the DNA polymerase, known as the
helicase. The taks of this enzyme is the progressive unwinding of the double helix as the polymerase
advances (see Fig 1). Sustained by ATP consumption the helicase exerts mechanical work upon the
DNA, a by-product of the mechanical torque exerted on the helix and the angle of unwinding required
for the exposure to the polymerase of the successively unwounded base pairs.

Figure 1: The helicase is an enzyme involved in the unwinding of the DNA helix that paves the way for
the replication process carried out by the DNA polymerase. Its behavior is thought to be stochastic and
intermittent.

Despite the enormous complexity of the whole replication process it is however interesting to ask
how each of these individual motors work (e.g. in the case of the helicase) and what is the amount of
energy consumed at periodic time intervals. Surely enough this quantity will strongly fluctuate as the
behavior of these machines is stochastic and ATP consumption is not deterministic. Although energy
consumption is a rather tricky quantity, mechanical work turns out to be experimentally measurable as
single molecule techniques allow us to measure forces (or torques) and distances (or angles). Mechanical
work is also a stochastic quantity so we may ask what is the distribution of the work done by the helicase
and measured along many time intervals of a given duration. For macroscopic machines, if stochasticity
was experimentally observable, we might expect a work distribution dominated by an extremely narrow
Gaussian component as predicted the law of large numbers. However, for small machines the distribution
might be strikingly different as their inner workings is a by-product of progressive evolution after
millions of years. Quite probably, the distribution will be strongly non-Gaussian and intermittent [6],
an economy saving strategy for information transfer [3]. This means that most of the time the helicase
does nothing while jiggling at a fast frequency around its local equilibrium position. However, from
time to time and at a much lower frequency, the helicase hydrolyzes one ATP molecule and makes a
conformation change that triggers the unwinding of an additional base pair.

The discipline that investigates the thermal behavior of small systems under various nonequilibrium
conditions goes under the name of nonequilibrium thermodynamics of small systems [4, 5]. It addresses
the question about the statistical description of energy exchange processes in small nonequilibrium
systems embedded in thermal environments where the relevant exchanged energies are few times (N)
kBT so relative deviations (of order 1/

√
N) are not negligible over timescales relevant to biomolecular

processes. The plan of the paper is as follows. In Sec. 2 I describe few concepts that are central in a
thermodynamic description of nonequilibrium small systems. In Sec. 3 I briefly discuss the usefulness
of fluctuation-theorems to describe energy exchanged fluctuations in nonequilibrium processes. Sec. 4
describes single molecule experiments as a promising route to investigate such fluctuations. Finally I
show some recent results regarding work fluctuations in the mechanical unfolding of RNA molecules
(Sec. 5).
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2 Small systems: heat, work and fluctuations

A central notion in thermodynamics of small systems is the concept of control parameter. This is
akin to the concept of external variable used to define ensembles in statistical mechanics. The main
difference between a thermodynamic description of macroscopic and small systems is that, in the former,
fluctuations are not essential to characterize thermodynamic transformations. When fluctuations are
included it is only by considering small deviations (typically Gaussian distributed) around the average
macroscopic value. Instead, large non-Gaussian deviations are irrelevant as they are extremely unlikely.
For small systems a description in terms of average values does not suffice, in particular when describing
nonequilibrium thermal processes where rare and large deviations often occur. When embedded in a
thermal environment every observable of a small equilibrated system strongly fluctuates. In order
to define an equilibrium state it is then convenient to specify the control parameter. This is a non-
fluctuating quantity that, once fixed, determines the fluctuating spectrum of the other variables. At
difference with macroscopic thermodynamics, many different equilibrium states can exist for small
systems, depending on which parameter is externally controlled.
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Figure 2: Schematic picture of a small spring in contact with a bead held at distance x to the wall. The
force exerted on the bead fluctuates with time (right panel), the spectrum of force-fluctuations being
Gaussian for small deformations of the spring.

In order to better understand the meaning of the control parameter, let us think of the following
Gedanken experiment. In Fig. 2 we show a small bead connected to the extreme of an overdamped
spring whose other extreme is held fixed to a wall. The whole system is embedded in a thermal bath
kept at a given temperature and pressure. However, at difference with macroscopic systems, we will
assume that the spring is small and made out of few hundreds of atoms (e.g. this could be a polymer
made out of few hundreds of monomers). The configuration of the system is then specified by an
internal set of variables {xi} specifying the positions of all atoms of the spring as well as the bead. In
equilibrium, and in absence of any other interaction with the external world, the extension of the spring
will fluctuate around a reference value that we take equal to zero. If we want to pull the spring there
are different ways we can do that. One way would be to pull the bead by moving the distance x(t) in a
controlled way. In this case x is the control parameter and the internal configuration of the spring and
the force acting on the bead will fluctuate (Fig. 2). For arbitrary deformations (described by x) the
average force acting on the bead will satisfy < F >= f(x), f being a given function with f ′(0) = k,
equal to the stiffness of the spring. On the other hand, we could pull the spring by controlling the force
(e.g. by applying a external magnetic field to a magnetized bead). In this case the force would be fixed
but the distance x would fluctuate and satisfy, F = g(< x >) with g another function. In general,
f 6= g so the equilibrium state is different in both protocols (distance or force controlled). Only for
macroscopic systems f = g and both setups are equivalent.

Let a system be described by an internal configuration {xi} and a control parameter that we will
denote as x (in general there can be a finite number of control parameters). Let U({xi}, x) describe
the internal energy of the system. Upon variation of x the energy will change,

dU({xi}, x) =
∑

i

( ∂U

∂xi

)

x
dxi +

(∂U

∂x

)

{xi}
dx = dQ + dW (1)

which is the content of the first law of the thermodynamics (i.e. energy conservation). Now let us
consider a process where the spring, initially in thermal equilibrium at x = 0, is pulled by changing
the control parameter according to a perturbation protocol x(t) in a process that lasts for a time tf
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(x(tf ) = xf ). If the speed ẋ is much larger than the relaxation frequency of the system ω = k/γ (γ
being the friction coefficient of the bead), then the system will be driven out-of-equilibrium during the
process. The total work done on the system is given by,

W =

∫ xf

0

F ({xi}, x)dx (2)

where F ({xi}, x) is the fluctuating force acting upon the bead,

F ({xi}, x) =
(∂U

∂x

)

{xi}
. (3)

If we repeat this nonequilibrium experiment many times always starting from the same equilibrated
state at x = 0 and following the same protocol x(t), the system will follow different trajectories (i.e.
the time evolution of {xi} and therefore the force (3) will change from experiment to experiment.
Consequently, the total work (2) will also fluctuate from experiment to experiment. A quantity that
characterizes the nonequilibrium process is the probability distribution P (W ) of work values obtained
along different trajectories. The discussion of some of the mathematical properties of this distribution
is the main subject of concern in this paper, the quantity that characterizes the small system during
the nonequilibrium process and a fingerprint of its nonequilibrium behavior.
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Figure 3: Fluctuations in the work exerted upon a small spring immersed in a thermal bath (left panel).
The continuous black line is the average work for small deformations (k is the stifness of the spring). In
general, the probability distribution of the work exerted upon the system along many repeated experiments
(right panel) will have two sectors characteristic of intermittent behavior: a large Gaussian component
describing small and frequent fluctuations and exponential tails describing large and rare deviations. Only
for linear systems (i.e. for small deformations) fully Gaussian behavior is recovered [6].

3 Free-energy recovery from nonequilibrium experiments

In a nonequilibrium process the second law of thermodynamics [7] establishes that the average work
over all trajectories < W >=

∫

WP (W )dW is larger than the reversible work (equal to the free-energy
difference ∆G between the equilibrium states defined at x = xf and x = 0). If we define Wdis = W−∆G
as the dissipated work along a given trajectory, the second law can be written as,

< W >≥ ∆G → < Wdis >≥ 0 . (4)

The equality occurs only when the perturbation process is carried out infinitely slowly in a quasi-static
process where ẋ → 0. In such a process the system is given enough time to relax to equilibrium at each
value of the control parameter, therefore W = ∆G and P (W ) = δ(W −∆G) or P (Wdis) = δ(Wdis) (this
is true for stochastic but not for deterministic dynamics). Nonequilibrium processes are characterized
by hysteresis phenomena, the average work performed upon the system differs between a given process
and its time-reversed one. Fluctuation theorems assert relations between the entropy production along
a given process (usually termed as forward) and their reversed one [4, 8]. In the aforementioned example
of the spring, let xF (t) stand for the forward protocol that pulls the spring from x = 0 to xF (tf ) = xf .
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The time reversed protocol is then defined by xR(t) = xF (tf − t). Under the assumptions that the
system is microscopically reversible (detailed balance) and that the system starts at equilibrium at
x = 0 in the forward process and at x = xf in the reverse process, the following result has been derived
by Crooks [9]

PF (W )

PR(−W )
= exp

(W − ∆G

kBT

)

, (5)

where PF (W ), PR(−W ) are the work distributions along the forward and reverse processes respectively
(the minus sign in the argument of the reverse work distribution arises from the corresponding reverse
sign of dx in (2)). Eq. (5) has the form of a fluctuation theorem (FT) and quantifies the amount of
hysteresis for arbitrary nonequilibrium protocols. The quasi-static process is a particular case of (5)
where W = ∆G and there is no hysteresis between the forward and the reverse paths.

A straightforward consequence of the Crooks FT is the Jarzynski equality (JE) [10]. By rewriting
(5) and integrating out the distribution PR(−W ) over W it is possible to derive the following expression

〈exp
(

− W

kBT

)

〉F = exp
(

− ∆G

kBT

)

or 〈exp
(

−Wdis

kBT

)

〉F = 1 , (6)

where the average 〈...〉F is taken over all possible work values along the forward process. A consequence
of JE is the second law 〈Wdis〉F ≥ 0 that can be derived by applying Jensen’s inequality (〈exp(x)〉 ≥
exp(〈x〉)). The content of the JE is that, albeit the average dissipated work is positive, tails in the work
distribution that extend to the region Wdis < 0 must exist for the equality to be satisfied. Trajectories
contributing to these tails are often called transient violations of the second law because they violate
the inequality (4) for a single trajectory. It has to be stressed, however, that no violation of the second
law occurs as the content of the inequality only concerns the average value of the work rather the
value of the work of individual trajectories. The validity and consistency of the Crooks FT and the JE
have been recently put under scrutiny [11, 12, 13]. Recently, the experimental validity of such theorem
has been tested in RNA pulling experiments [14] in the far from equilibrium regime and represents an
important step in our understanding of fluctuations in small systems.

Additional interest in the Crooks FT and the JE stems from the fact that these results can be used
to recover equilibrium free-energy differences from nonequilibrium experiments. This has applications
in numerical simulations of molecular reactions which often cannot be investigated using equilibrium
methods [15], or single molecule experiments where free-energy measurements cannot be carried out
reversibly [11, 4]. In fact, rewriting (6) as follows

∆G = −kBT log
(

〈exp(− W

kBT
)〉

)

, (7)

shows that by exponentially averaging the nonequilibrium work it is possible to recover the value of the
reversible work (equal to the free-energy difference). As always there is no free lunch, and the main
disadvantage of (7) lies on the fact that the average 〈...〉 must be taken over an infinite number of
nonequilibrium trajectories. The number of available trajectories is always finite, therefore the risk exists
that some of the trajectories which mostly contribute to the exponential average are not picked out.
Indeed, this is precisely what happens, as the most improbable trajectories that populate the negative
tail of the work distribution are the ones that mostly contribute to (7). How many nonequilibrium
experiments are needed in order to recover the free-energy within a given accuracy is one of the most
useful questions one would like to answer. It can be shown that the exponential average in (7) is a
biased quantity [16, 17], and such number of experiments increases exponentially fast with the average
value of the dissipated work [18]. Nevertheless, the precise value of the prefactor and the factor in the
exponential depend in a complicated way on the left tails of the work distribution.

The Crooks FT can also be used for free-energy recovery by applying the so called crossing meth-
ods [14]. Indeed, from (5) we infer that for W = ∆G both distributions (forward and reverse) cross
each other allowing to extract the value of ∆G,

PF (W ) = PR(−W ) → W = ∆G (8)

Further improvement of the crossing method uses information from both distributions along the whole
work-axis rather than only local behavior around W = ∆G. To this end we consider the two functions

Ω(z) =
NR(−W > z)

NF (W > z)
; Φ(x) = 〈exp

(

− (W − z)

kBT

)

〉F,W>z , (9)
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Figure 4: Crossing methods to determine ∆G from nonequilibrium work measurements.

where NF (W > z), NR(−W > z) indicate the fraction of trajectories with work values larger than z
along the unfolding and refolding paths respectively. The average 〈...〉F,W>z is restricted over the set
of trajectories along the forward process with work larger than z. These functions satisfy the following
properties: a) Ω(z) is a monotonically decreasing function starting at 1 for z � ∆G and decaying
to zero for z � ∆G; b) Φ(z) is a monotonically increasing function starting at 0 for z � ∆G which
saturates for z � ∆G; c) Both functions cross each other at z = ∆G. The two methods are exemplified
in Fig. 4 for the case of Gaussian work distributions (this case corresponds to a bead confined in an
optical trap which is dragged through water [19, 20]).

4 Single molecule force microscopy

As we have seen in the preceding sections, mechanical work plays a central role in a thermodynamic
description of small systems as there are specific relations that quantify their probability distribu-
tions. From the experimental point of view, force microscopies provide tools to manipulate individual
biomolecules by applying mechanical force at their ends. In this way it is possible to exert mechanical
work upon these molecules and, by repeated pullings, to determine experimentally the work probability
distribution in a given nonequilibrium process.

Figure 5: Left panel:Physical principles of the single-beam laser tweezers. The setup consists of a laser
and and an objective (a) which is focused on a spot. A micron-sized bead is pulled towards the region
of maximum light intensity (b). Right panel: Force-extension curve (FEC) in a 24kbp fragment of λ-
DNA (torsionally unconstrained) showing the overstretching transition at 65pN. The dashed line is the
worm-like-chain prediction wich does not include the elastic rigidity of the backbone.

There are several kinds of force microscopies, the most well known are atomic force microscopy,
magnetic and optical tweezers. The latter are particularly suitable as the range of forces they can exert
are in the range 1-100pN relevant to many weak interactions participating in biomolecular processes.
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Laser tweezers (see Fig. 5) use the principle of conservation of light momentum to exert forces on small
micron-sized polystyrene beads due to light deflection of the beam as it changes medium between water
and the bead [21]. In this way a bead is trapped into the focus of the laser, the configuration of minimal
energy. When the bead deviates from the focus a restoring force acts upon the bead, the principle being
the same by which a dielectric substance inside a capacitor is drawn inwards by the action of the electric
field. To a very good approximation the trap potential is harmonic, therefore the restoring force acting
on the bead is linear with the deviation of the bead from the center of the trap. Calibration of the
optical trap allows to determine the force acting on the bead by reading the deviation of the bead from
the center of the trap, inasmuch as the position of the needle in a manometer indicates the value of
pressure of a fluid or a gas. A typical value of the trap stiffness is 0.1pN/nm. In general, it is more
convenient to use dual-beam optical tweezers which do not need continuous calibration as the force can
be determined by the total amount of light collected by two photodetectors sitting at opposite sides of
the beams (see Fig. 6). Experiments use micron-sized glass chambers filled with water and two beads.
Molecules are chemically labeled at their ends and polystyrene beads are chemically coated to stick to
the ends of the labeled molecule. In this way a tether can be made between the two beads. One bead
is held fixed by air suction on the tip of a glass micro-pipette, the other is trapped in the focus of the
laser and used to measure the force applied to the molecule. A frame-grabber and a light-lever then
measure the extension of the molecule with a precision down to the nanometer range.

Figure 6: Upper panel: Experimental setup for dual laser tweezers in RNA pulling experiments. Lower
panel: FEC for a small RNA hairpin showing the rip in the force indicating the unfolding of the molecule.
Experiments have been done in [26] (left panel) and later compared with theoretical models [28](right
panel).

The outcome of these experiments are the so called force-extension curves (FECs) where the force
acting on the molecule is represented as a function of the end-to-end distance between the two beads.
In this way it has been possible to experimentally check that DNA behaves as some polymer theories
predict [22]. At small forces (below 1pN) the polymer behaves like a Hookean entropic spring as
described by the freely jointed chain model [23]. At larger forces deviations occur and the FEC is well
described by the worm-like chain model. Above 5pN enthalpic contributions due to the finite rigidity
of the sugar-phosphate backbone start to be important. Finally, at 65pN a force plateau is observed
characteristic of a transition between the B-DNA form and a stretched new form of DNA (termed as
S-DNA) [24, 25] (see Fig. 5). FECs provide insight into the inner-workings of biomolecules. A case
of much interest regards the unfolding of RNA molecules or proteins under the action of mechanical
force. Under physiological conditions these molecules are in a folded or native, functionally active,
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conformation. Upon heating or chemical treatment they denaturate and degrade into an extended,
functionally inactive, conformation. The thermodynamic stability of the native state is determined by
the free-energy difference ∆G between the two conformations. Upon the action of mechanical force RNA
hairpins denature as revealed by the presence of a rip in the FEC [26], see Fig. 6. These experiments
allow us to obtain estimates of ∆G by measuring the mechanical work exerted upon the molecule across
the transition. In addition, hopping effects between the folded and the unfolded conformations also yield
valuable information about the kinetics of unfolding in the presence of force [27], a process thought
to be relevant during the synthesis of proteins (in the translation-elongation process) in the ribosome.
Because of the short extension of the unfolded hairpins (few tens of nanometers) as compared to the size
of the beads, the experimental setup in RNA pulling experiments is a bit more elaborated than when
pulling DNA (see Fig. 6). To harness the RNA molecule two RNA/DNA hybrid handles (typically a
few hundred nanometers long) are attached to its ends. These handles act as transducers of the force
and have direct influence on the unfolding kinetics of the RNA molecule. A proper inclusion of all
the elements in the experimental setup (such as the bead in the trap and the handles) and the correct
identification of the control parameter are required to extract information about the RNA molecule
(e.g. the value of ∆G or the kinetic rates) [28].
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Figure 7: Left panel: Pulling curves in the S15 three-way junction exhibit the strong work fluctuations
observed (measured by the gray area under the FEC). Right panel: Drift effects in the quasi-reversible
unfolding of a short RNA hairpin. For sake of clarity the second pulling cycle has been shifted 10pN
upwards.

Picking up the threads of our main theme, RNA molecules are specially suitable to measure work
fluctuations. The reason lies in their modular structure where large RNA molecules are made out
of different motifs or units that unfold sequentially upon pulling [29]. The value of ∆G for each
structural motifs is typically a few tens of kBT and each one usually dissipates a few kBT when
unfolded irreversibly. This quantity is small enough for work fluctuations, as determined by the value
of the force at which the rip occurs, to be experimentally observable. In Fig. 7 we show work fluctuations
as measured from the area below the FEC 1.

5 Predicting unfolding free-energies of RNA motifs from irre-

versible measurements of mechanical work.

As we already said, pulling experiments allow us to extract information about the unfolding chemical
reaction both of thermodynamic character (the value of ∆G) and kinetic (the reaction rate). Here

1Strictly speaking the work in RNA pulling experiments is not determined by (2) with x equal to the end-to-end distance
but rather by the distance of the micro-pipette to the center of the trap, yet this difference is too small as compared to other
sources of experimental error to be significant
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we want to discuss more about how to extract the value of ∆G in RNA molecules. Traditionally,
∆G is extracted from calorimetry experiments by integrating the specific heat as a function of the
temperature across the melting transition. However, in contrast to proteins, some RNA molecules melt
at temperatures above the boiling point of water, precluding the use of calorimetry measurements. It is
therefore convenient to find new routes to extract the free-energy of the folded state for such molecules.
As we have said, the measure of the reversible work across the transition in pulling experiments would
be a direct measurement of ∆G. Unfortunately, in most interesting cases (e.g. RNA molecules with
tertiary interactions induced in presence of Mg2+ ions), the unfolding reaction is so slow that it cannot
be carried out reversibly at the available lowest pulling speeds (largely limited by the presence of strong
drift effects in the laser tweezers machine, see Fig. 7). Therefore, other strategies must be envisaged.
Of great utility is the use of the Crooks FT discussed in Sec. 3. In this case, one can use data from
nonequilibrium pulls to infer the value of ∆G by looking at the value of the work where the unfolding
and refolding distributions cross each other. In Fig. 8 we show some experimental data obtained in
[14] for a small RNA hairpin in the absence of magnesium showing that the crossing between both
distributions does not depend on the pulling speed as predicted. The value obtained in this way is
also in agreement with estimates obtained by the Mfold program for the free-energy of the secondary
structure of such motif and for the same buffer conditions.
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Figure 8: Crossing methods applied to unfolding and refolding curves to a small hairpin pulled at different
loading rates (1.5(blue),7.5(green),20.0(red)pN/s). All curves cross at a value around W ∼ 135kBT which
allows us to extract the value of ∆G. Results obtained from [14]. At the lowest loading rate (blue) the
quality of the data gets worse due to drift effects.

6 Conclusions

The use of single molecule techniques allows us to investigate the nonequilibrium behavior of biomolecules
[4]. Such study reveals the presence of strong thermal fluctuations due to the smallness of the typical
energies associated to the physical interactions in biomolecules (of the order of few tens of kBT ). These
energies are small enough for large deviations respect to the average value be experimentally observable
and important in the timescales relevant to many biomolecular processes [5]. Weak molecular bonds
(Van der Waals non-specific binding, hydrogen bonds or hydrophobic interactions) are the leading in-
teractions responsible of many such processes. They are behind molecular recognition and drive the
transfer of information between biomolecules. It is not a casualty that weak interactions, which induce
strong energy fluctuations, dominate the inner workings of life processes at the molecular level. It is
quite likely that the large and intermittent fluctuations characteristic of biomolecules play an important
role in the way molecular evolution has reached such exquisite degree of complexity. This facilitates
that large groups of weakly interacting biomolecules cooperate and carry out very specialized tasks.

Establishing the nature of work and heat fluctuations in biomolecules seems therefore relevant to
understand the principles underlying the organization of biological matter at the nanoscale. Statistical
physics provides concepts and tools to address such questions and fluctuation theorems appear as a
good playground to elucidate many aspects concerning thermal fluctuations in nonequilibrium small
systems. Here we have reviewed a few ideas and experiments in this exciting field of research which
combines knowledge coming from different areas of expertise, ranging from physics to chemistry and
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biology. Sure enough we will see exciting scientific developments in the future that will help us to better
understand the nonequilibrium thermal behavior of small systems.
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