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Abstract.  The remarkable accuracy and versatility of single-molecule 
techniques make new measurements that are not feasible in bulk assays possible. 
Among these, the precise estimation of folding free energies using fluctuation 
theorems in nonequilibrium pulling experiments has become a benchmark in 
modern biophysics. In practice, the use of fluctuation relations to determine 
free energies requires a thorough evaluation of the usually large energetic 
contributions caused by the elastic deformation of the dierent elements of 
the experimental setup (such as the optical trap, the molecular linkers and 
the stretched-unfolded polymer). We review and describe how to optimally 
estimate such elastic energy contributions to extract folding free energies, using 
DNA and RNA hairpins as model systems pulled by laser optical tweezers. The 
methodology is generally applicable to other force-spectroscopy techniques and 
molecular systems.
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1.  Introduction

Predicting free-energy dierences is a central problem in molecular biophysics. Protein 
folding [1], DNA hybridization [2], ligand binding and CRISPR–Cas9 RNA editing 
[3, 4] are molecular reactions whose fate is determined by the free-energy dierence 
between reactants and products. Finding methods to extract free-energy, enthalpy and 
entropy dierences is an essential task in biochemistry, where most of these quanti-
ties are measured by employing bulk techniques such as calorimetry, UV absorbance, 
fluorescence and surface plasmon resonance, among others [5]. Bulk methods yield 
results that are incoherent temporal averages over a large population of molecules 
that are in dierent states. The signal is masked by the dominant species and reac-
tions, limiting the capability of detecting rare non-native states and reaction pathways. 
Moreover, bulk molecular transformations often exhibit strong hysteresis eects render-
ing equilibrium dierences inaccessible.

By monitoring molecules one at a time, techniques such as single-molecule 
fluorescence [6], single-molecule translocation across nanopores [7] and single-molecule 
force spectroscopy [8] overcome the previous limitations and therefore have become key 
experimental tools in many laboratories worldwide. In particular, force-spectroscopy 
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techniques using atomic-force microscopy, magnetic tweezers, acoustic-force spectr
oscopy and laser optical tweezers (LOTs) have been extremely fruitful, revolutionizing 
biophysics over the last three decades3.

The main advantage of force-measuring techniques (as compared to fluorescence and 
other non-invasive optical technologies) lies in the possibility of measuring force and 
displacement simultaneously, giving direct access to mechanical work measurements in 
single-molecule pulling experiments. Similarly to bulk assays, pulling experiments are 
often carried out under irreversible conditions, in principle providing bounds (rather 
than direct estimates) of equilibrium free-energy dierences. The development of the 
non-equilibrium thermodynamics of small systems (also known as stochastic thermo-
dynamics) [10–13] during the past three decades has provided the theoretical con-
cepts and methods needed to extract free-energy dierences from repeated irreversible 
work measurements. Exact results such as the Jarzynski equality [14] and the Crooks 
fluctuation theorem [15] are now commonly employed to extract free-energy dierences 
from single-molecule pulling experiments [16–21]. A particularly useful application is 
the measurement of the folding free energy of nucleic acids and proteins (∆G0), which 
is equal to the free energy dierence between the folded structure and the unstructured 
random coil in the solvent. This quantity can be obtained from pulling experiments by 
measuring the free energy dierence (∆G) between the folded- and unfolded-stretched 
states of the considered experimental system taken at two force values, and by deriving 
from it the value of ∆G0. However, a general problem in the manipulation of small sys-
tems using single-molecule techniques is that we cannot abstract away certain comp
onents or parts—generally known as instrumental artifacts—of the full experimental 
system. Hence, the quantity that can be obtained from pulling experiments using non-
equilibrium thermodynamics is not ∆G0 directly. It is instead the free energy dierence 
∆G between the folded- and unfolded-stretched states of the entire considered exper
imental system taken at two force values. In order to retrieve the ‘bare’ molecular 
properties such as the value of ∆G0 in a single molecule, we therefore need to infer 
from ∆G contributions due to the experimental setup (e.g. the optical trap in LOTs 
or cantilever in AFM and the linkers used to manipulate the molecule under study). 
These so-called stretching corrections play a crucial role because their contribution to 
the total free energy dierence ∆G is much larger than the free energy one wants to 
extract ∆G0, making the accurate estimation of the latter a dicult task. Although 
there are several studies on the influence of the instrumental artifacts on the folding 
kinetics in single-molecule experiments [22–29], their influence regarding the determi-
nation of the folding free energies at zero force has, to the best of our knowledge, never 
been addressed in detail.

In this work we will rigorously examine these experimental contributions in LOTs 
showing how to eciently and reliably estimate the free energies of formation of DNA 
and RNA hairpins in unzipping assays. The same methodology is applicable to proteins 
and ligand binding interactions using LOTs or other force measuring techniques as well 
(AFM, magnetic tweezers and so on). The development of novel and refined statisti-
cal analysis methods to extract dierences in thermodynamic potentials (free energy, 

3 LOT invention was revealed to be a breakthrough in laser physics and was awarded with the Nobel Prize in 
Physics in 2018 [9].

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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enthalpy, entropy, chemical potential, ...) will become crucial with the recent boost of 
high-throughput single-molecule techniques (magnetic tweezers, acoustic force spectr
oscopy) that will require fast and ecient algorithms.

The content of this paper is organized as follows. In sections 2 and 3 we describe the 
typical experimental setup of LOTs and then define and discuss the dierent contrib
utions to the total free energy. The two following sections  4 and 5 feature how to 
estimate these contributions when analyzing DNA and RNA molecules. Section 4 first 
covers the situations in which it is possible to introduce the so-called eective stiness 
approximation, which considerably simplifies the computation of the large stretching 
terms. When this approximation fails, a more elaborate approach requiring a careful 
evaluation of the elastic response of the linkers and of the force probe is needed, and 
this is the focus of section 5. Finally, in section 6 we present the conclusions.

2. Model of the experimental setup

We consider the case of a nucleic acid (DNA or RNA) hairpin pulled by LOTs. In an 
LOT, the total distance λ between the tip of the micropipette and the center of the 
optical trap is the control parameter of the experiments. As shown in figures 1(a) and 
(b), the distance λ can be decomposed as:

λ( f) =

{
xb( f) + xh( f) + xd( f) + const ( folded state) ,

xb( f) + xh( f) + xss( f) + const (unfolded state) ,� (1)

depending on whether the molecule is folded or unfolded. Here xb( f) is the displace-
ment of the bead from the center of the optical trap, and xh( f) = xh1( f) + xh2( f) 
accounts for the sum of the elongations of the two double-stranded handles, xss( f) 
is the end-to-end extension of the single-stranded unfolded molecule, and xd( f) is 
the average extension of the folded hairpin. This last term is defined as the distance 
between the attachment points of the handles to the 5’ and 3’ ends of the hairpin and 
is usually called the ‘hairpin diameter’ (whence the index d). All these extensions are 
evaluated against the x-(pulling) axis and at a given force f . The ‘const’ stands for an 
arbitrary shift in the total distance λ, which does not aect the analysis.

In general, a small perturbation δλ generates a small change in the applied force δf . 
The extent of this variation is the eective stiness of the system keff = δf/δλ and it 
equals the slope of the experimental force-distance curve (FDC). Therefore, according 
to the above definition and to the prescription given in (1), the inverse eective stiness 
of the folded (F) and unfolded (U) branches are respectively given by:

1

kF
eff( f)

=
1

kb( f)
+

1

kh( f)
+

1

kd( f)
,� (2a)

1

kU
eff( f)

=
1

kb( f)
+

1

kh( f)
+

1

kss( f)
� (2b)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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where kb( f) corresponds to the stiness of the bead in the optical trap, kh( f) is the 
sum of the two handles’ stiness and kd( f) and kss( f) stand for the molecular stiness 
of the folded and unfolded molecule, respectively.

In particular, kd( f) is modeled as the stiness to orient a dipole of diameter d (typi-
cally d  =  2 nm for DNA and RNA hairpins [30]) along the force axis [31]. Recalling that 
in general k−1 = δx/δf , the dipole stiness can be derived from the well-known relation 
between a dipole average extension (which is here equal to the average extension of the 
folded hairpin) and the force f  to which it is subjected:

xd( f) = d

[
coth

(
fd

kBT

)
− kBT

fd

]
� (3)

where T is the temperature of the heat bath around the dipole and kB is the Boltzmann 
constant.

An analytic expression for kss and kh can be obtained by describing the elastic 
response of nucleic acids in their single-stranded and double-stranded form with the 
worm-like chain (WLC) polymer model and its interpolation formula [32],

f(x) =
kBT

4P

[(
1− x

Lc

)−2

− 1 + 4
x

Lc

]
� (4)

Figure 1.  (a), (b). Laser optical tweezers (LOTs) experimental setup. The molecule 
is tethered between two polystyrene beads using two dsDNA (or dsRNA or even 
dsDNA/DNA hybrids) handles. The arrow towards the center of the optical 
trap indicates the direction of the force. λ = xb + xh + xm (with xh = xh1 + xh2) 
is the relative distance between the center of the optical trap and the tip of the 
micropipette. xm equals xd when the molecule is folded (a) or xss when the molecule 
is unfolded (b). (c) Sketch of the force versus relative extension (extension divided 
by contour length) for each elastic element showing their respective energy 
contributions (shaded areas). (d) Elastic energy contribution of each element versus 
force and comparison with the typical energy of formation (dashed line, ∆G0) for 
a 20 bp DNA or RNA hairpin.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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where x is the average extension of the molecule (x = xss for the unfolded hairpin, 
x = xh for the double-stranded handles) and P is the persistence length, i.e. the typi-
cal distance along the polymer backbone over which there is an appreciable bending 
due to thermal fluctuations. Lc is the contour length, i.e. the end-to-end distance of 
the fully straightened polymer, which can also be written as Lc = ndb with n being the 
total number of monomers in the polymer and db the length per monomer. In general, 
inverting (4) to get x( f) is not an easy task (the full computation is reported in the 
appendix) and the solution depends on the system parameters.

Finally, the stiness of the polymer can be obtained by dierentiation of (4):

k(x) ≡ ∂f(x)

∂x
=

kBT

2LcP

[(
1− x

Lc

)−3

+ 2

]
.� (5)

Given (4), it is also possible to further take into account the elastic deformation of 
the stretched polymer by performing the substitution Lc → Lc(1 + f/Y ), with Y the 
Young modulus of the stretchable polymer [33, 34], i.e. the resistance to deformation of 
the system to an applied uniaxial stress. In this case, the contour length becomes force-
dependent and the corresponding model is called the extensible WLC. By contrast, 
equation (4) where Lc is constant is known as the inextensible WLC. The latter has 
been shown to describe the elastic properties of single-stranded nucleic acids (ssDNA 
and ssRNA) with good accuracy [35] while the former has for long been the standard 
to model the elastic properties of double-stranded nucleic acids in the entropic regime.

The persistence length P is a measure of the mechanical stiness of the polymer 
being strongly sensitive to environmental conditions (e.g. ionic strength, temperature, 
solvation, etc). Polymers with P � Lc eectively behave as rigid rods, whereas if P � Lc 
polymers are bent at the scale of the contour length by thermal forces. It is important 
to mention that P does not only depend on the ionic concentration and temperature 
[36] (as predicted by polyelectrolyte theories) but also on experimental parameters such 
as contour length [35]. For example, at 1 M NaCl, recent single-molecule studies have 
shown that, for short (a few tens bases) ssDNA molecules, P  =  1.35 nm [37] whereas 
for long ssDNAs  ∼13 kb P  =  0.76 nm [38]. On the other hand, for short ssRNA mol-
ecules P  =  0.75 nm [39] and for long  ∼1 kb ssRNAs P  =  0.83 nm [35]. These values are 
significantly lower than for double-stranded nucleic acids (dsDNA and dsRNA) where 
P  =  50 nm for dsDNA [40] and P � 60 nm for dsRNA molecules [41].

3. Stretching contributions and free-energy recovery

Let us suppose that initially at t  =  0 we have a molecule in thermal equilibrium at 
the folded (or native, N) state at a given value λ0 of the control parameter. Then, we 
perturb the system by applying a predetermined time-dependent forward (F) protocol, 
λF(t), which, starting at λ0 at t  =  0, ends at an arbitrary λ1 at a time t1. The mechani-
cal work W done along this process is equal to:

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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W =

∫ λ1

λ0

fdλ .� (6)

The Crooks fluctuation theorem (CFT) [15] relates to the mechanical work done 
on a system in a set of arbitrary irreversible measurements with the equilibrium free-
energy dierence of this system between λ0 and λ1, ∆G = G(λ1)−G(λ0). It reads:

PF(W )

PR(−W )
= exp

(
W −∆G

kBT

)
,� (7)

where PF(W ) is the probability distribution of the work done in the F process and 
PR(−W) is the probability distribution of the work measured in the time-reversed (R) 
process (i.e. starting in thermal equilibrium in λ1 and performing the time-mirrored 
protocol so that λR(t) = λF(t1 − t)). The derivation of the CFT has become a mile-
stone for single-molecule experimentalists, allowing the measurement of free-energy 
dierences in conditions where traditional bulk experiments are unfeasible. By pulling 
single molecules using LOTs or magnetic tweezers, it is possible to recover molecular 
free-energy dierences from irreversible work measurements [17, 42]. The CFT (equa-
tion (7)) implies the well-known Jarzynski equality [14]:

〈
exp

(
− W

kBT

)〉

F

= exp

(
−∆G

kBT

)
.� (8)

Note that the average 〈· · · 〉F is evaluated over PF(W ) (an analogous equality holds 
for the reverse process). It is important to bear in mind that the free energy ∆G 
obtained using the CFT (7) (or the Jarzynski equality (8)) contains several contrib
utions due to the stretching of the dierent parts forming the experimental setup. 
These are the molecules under study, the molecular handles and the optically trapped 
bead (figures 1(a) and (b)):

∆G = ∆G0 +∆Wm +∆Wb +∆Wh,� (9)
where ∆G0 is the free energy of formation of the molecule at zero force, which is equal 
to the free energy dierence between the folded and unfolded hairpin conformations 
in solution (i.e. without optical trap and handles and without any applied force). The 
quantities ∆Wi (i = m, b, h) are the reversible work dierences between the state of 
the ith setup element (optical trap, handles or molecule) at λ0 (where the hairpin is 
folded and subjected to a minimum force fmin) and λ1 (where the hairpin is unfolded 
and subjected to a maximum force fmax). Mathematical definitions of these quantities 
for the LOT setup are given in the subsections below.

As depicted in figures 1(c) and (d), for typical unfolding forces in DNA and RNA 
hairpins (15–25 pN), (9) is dominated by the trap contribution, while the other terms 
have the same order of magnitude. Therefore, an accurate measurement of ∆G0 requires 
precise knowledge of all the dierent energetic contributions involved in the mechanical 
unfolding of the molecule.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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3.1. Molecular stretching contribution

The molecular contribution ∆Wm in (9) accounts for the reversible work needed to 
stretch the molecule under study and it can be written as:

∆Wm =

∫ xss( fmax)

0

f(xss) dxss −
∫ xd( fmin)

0

f(xd) dxd ,� (10)

where f(xss) and f(xd) are the equilibrium force-extension curves of the unfolded and 
folded molecule, respectively (albeit dierent mathematical functions, the same letter 
f  will be used to lighten the notation). The first term in the right-hand side of (10) 
corresponds to the reversible work needed to stretch the unfolded molecule from its 
single-stranded random coil conformation at f   =  0 up to fmax and it can be computed 
from the WLC model, equation (4). The second term in the right-hand side of (10) is 
the reversible work required to orientate the molecular diameter along the force axis. 
It can be written as:

∫ xd( fmin)

0

f(xd)dxd = fmin · xd( fmin)−
∫ fmin

0

xd( f)df� (11)

where xd( f) is given by (3).

3.2. Bead and handles stretching contributions

The term ∆Wb +∆Wh, which corresponds to the sum of the reversible work required 
to displace the bead from the center of the optical trap (∆Wb) plus the reversible work 
needed to stretch the handles (∆Wh), can be generally written as:

∆Wb +∆Wh =

∫ xb( fmax)

xb( fmin)

f(xb) dxb +

∫ xh( fmax)

xh( fmin)

f(xh) dxh

=

∫ fmax

fmin

f

(
∂f

∂xb

)−1

df +

∫ fmax

fmin

f

(
∂f

∂xh

)−1

df

=

∫ fmax

fmin

f

kb( f)
df +

∫ fmax

fmin

f

kh( f)
df .

�

(12)

Note that each element in the setup is substantially dierent. In particular, the 
bead in the optical trap can be well approximated by a Hookean spring, whereas the 
elastic response of the handles and the single-stranded molecule (plus the diameter) is 
strongly nonlinear (see below). The contribution of these two terms in equation (9) is 
often large. In particular, the energy required to displace the bead from the center of 
the optical trap is considerably higher as compared to the other terms. A schematic 
depiction of this fact can be seen in figure 1(c), where the shaded areas below the curves 
represent the work W obtained according to (6) using realistic elastic parameters for 
DNA and RNA hairpins.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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3.3. Eective stiness approximation

A further important simplification can be carried out when the FDC along the folded 
branch is approximately linear over the integration range of forces. Such a situation 
corresponds by definition to a scenario where the slope (or stiness) is constant, i.e. 
kF
eff �= kF

eff( f). It allows one to readily perform the integration in equation (12), which 
is now reduced to the simple task of integrating an ane function:

∆Wb +∆Wh =

∫ fmax

fmin

f

(
1

kb
+

1

kh

)
df ∼=

∫ fmax

fmin

f

kF
eff

df =
f 2
max − f 2

min

2kF
eff

,� (13)

where we used the fact that the stiness of the dipole modeling the folded hairpin is consider-

ably larger than the other terms in (2a), so that kF
eff = (k−1

h + k−1
b + k−1

d )−1 ∼= (k−1
h + k−1

b )−1, 
and where the constant stiness assumption is used in the last equality of the right-
hand side of (13). Linearity of the FDC is a good approximation if the integration range 
is not too large (for example, when fmax − fmin ≈ 5 pN, the case of the DNA and RNA 
hairpins considered in the next section.). Above all, linearity of the FDC certainly 
requires a linear optical trap of constant stiness [31]. We will refer to this approx
imation as the eective stiness method.

4. The eective stiness method

The eective stiness approximation discussed in section 3.3 provides an easy method 
to treat the elastic contributions of the experimental setup. Here we provide two typi-
cal scenarios where (13) provides a reliable estimation of the free energy of formation 
∆G0 of DNA and RNA hairpins. In section 4.1, the case of the CD4 DNA hairpin with 
short handles is reported. Then in section 4.2 we discuss the case of the CD4 RNA 
hairpin with long handles.

4.1. Short handles: the CD4 DNA hairpin

The use of short dsDNA handles (∼29 bp each) in single-molecule experiments has been 
shown to increase the precision of kinetic measurements due to their enhanced signal-
to-noise ratio as compared to long handles [31]. Short handles also make the evalua-
tion of the stretching contributions easier. In fact, the large stiness of short handles 
as compared to the trap stiness, kh � kb, implies that keff � kb to first order. As the 
trap stiness itself can be considered nearly force independent kF

eff is, therefore, con-
stant along the folded branch, and the eective stiness approximation (13) becomes 
applicable.

We tested this approach using a 20 bp DNA hairpin ending in a tetraloop (sequence 
in top panel of figure 2(a)) flanked by two dsDNA handles, each one of 29 bp. The 
assembled molecular construct (DNA hairpin  +  handles) shown in figures 1(a) and (b), 
is repeatedly pulled between λ0 and λ1. In the forward (reverse) process the system 
starts in thermal equilibrium at λ0 (λ1) and it is driven out of equilibrium following 
a predetermined protocol λF(t) (λR(t)) until λ1 (λ0) is reached. For each experimental 
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realization the work W is calculated according to (6). Note that, in the force range at 
which the molecule typically unfolds and refolds (12–17 pN in figure 2(a)), the FDCs 
are linear in force (inset of figure 2(a)). Therefore, the conditions required to use the 
eective stiness method are fulfilled (13).

In figure 2(b) we show the F and R work distributions calculated for two pulling 
speeds (6 and 16 pN s−1) in the same integration range. According to the CFT (7), the 
work value at which both distributions cross (black solid points) are equal to ∆G. Note 
that, since the integration range is the same, ∆G does not change with pulling speed, 
as it is required for an equilibrium quantity. We emphasize the validity of the CFT by 
plotting the function logPF(W )/PR(−W ) as a function of W in kBT  units. According to 
(7), this function is linear in W with slope 1 and with a y-intercept equal to ∆G (both in 
kBT  units). As expected, the experimental data (solid points) satisfy the previous rela-
tion (see inset of figure 2(b), where the solid line is a linear fit to the experimental data).

Once we have measured ∆G using the CFT, we subtract the stretching contrib
utions to recover ∆G0. According to (9), we have:

∆G0 = ∆G−∆Wm −∆Wb −∆Wh .� (14)
The term ∆Wm is calculated using (10). In order to model the ssDNA elastic 

response (i.e. f(xss) in (10)), we use the WLC model (4) with a persistence length P 
equal to 1.35 nm and an interphosphate distance db equal to 0.59 nm/base [37], so that 
Lc = (2nbases + 4)× 0.59 nm/base ≈26 nm. On the other hand, the term ∆Wh +∆Wb is 
calculated using the eective stiness method (13) with kF

eff = 0.065± 0.002 pN nm−1 
(obtained by a linear fit of the FDCs, see the inset in 2(a)).

Figure 2.  Free-energy recovery of CD4 DNA with short handles (a). Sequence 
of CD4 DNA (top panel), FDCs and integration range for the work W (bottom 
panel). Demonstration of the linearity of the FDCs in the integration range (inset) 
plus linear fits to the folded (solid line in the inset) and the unfolded branches 
(dashed line in the inset). (b) Forward (solid lines) and reverse (dashed lines) work 
distributions for two dierent pulling speeds calculated in the integration range 
indicated in panel (a). Crossing points between work distributions are tagged as 
solid points. The CFT verification is shown inset. Error bars have been obtained 
using the Bootstrap method.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Ecient methods for determining folding free energies in single-molecule pulling experiments

11https://doi.org/10.1088/1742-5468/ab4e91

J. S
tat. M

ech. (2019) 124001

In table 1 we report the values we obtained for ∆G, ∆G0, as well as the aforemen-
tioned stretching contributions.

Results for ∆G0 are in very good agreement with the theoretical ones obtained using 
the nearest-neighbour model for DNA either using Mfold parameters (∆G0 = 51kBT ) 
[43] or the ones derived from unzipping experiments (∆G0 = 48kBT ) [44].

4.2. Long handles: the CD4 RNA hairpin

In what follows, we first discuss the characteristics of long handles in section 4.2.1, 
explaining why sometimes the eective stiness method can be applied, while other 
times it cannot. To illustrate the two distinct situations, we first present in section 4.2.2 
a scenario based on the CD4 RNA hairpin, where the eective stiness method is 
applicable with long handles, just as with short handles (section 4.1). Secondly, the 
development of a general approach for long handles, beyond the eective stiness 
approximation, is covered in section 5 and exemplified with the CD4L12 RNA hairpin.

4.2.1. Characteristics of long handles.  Long handles, ∼500 bp each, typically repre-
sent a bigger challenge than their short counterpart because they are significantly 
softer. This implies that long handle stiness features a noticeable force dependence 
kh = kh( f), especially in the lower range of forces experimentally accessible with LOTs. 
Moreover, the magnitude of kh is now lower and typically comparable to the trap 

stiness, kh ∼ kb. Thus, since kF
eff � (k−1

h + k−1
b )−1, the term kh significantly contributes 

to kF
eff . This, together with the clear force dependence of kh, implies in turn that the 

eective stiness is not constant but depends on force: kF
eff = kF

eff( f). Consequently, 
upon calculating stretching contributions, the terms ∆Wb and ∆Wh need to be evalu-
ated more carefully. At closer inspection, however, the use of long handles does not 
invalidate per se the eective stiness approximation (13). The validity of (13) relies 
on the assumption that kF

eff is constant over the integration range [λ0,λ1]. Indeed, in 
many situations, such as with CD4 RNA hairpin, the actual integration range occurs 
at forces high enough so that kh � kb and kF

eff can be taken as constant. Whenever 
this assumption does not hold, another approach must be used. There are two typical 
scenarios. On the one hand, if the integration range is large (e.g. for molecules featuring 
a pronounced hysteresis), the force-dependence of the stiness kF

eff = kF
eff( f) cannot be 

neglected (note that even if kF
eff changes marginally from pN to pN, the overall change 

Table 1.  Fluctuation theorem and stretching contributions for the CD4 DNA 
hairpin (short handles) and CD4 RNA hairpin (long handles). (DNA short, first row) 
Reported energies for the integration range [λ0,λ1]  =  [20, 80] nm corresponding to 
a force range ( fmin, fmax) = (13, 17) pN. (RNA long, second row) Reported energies 
for the integration range [λ0,λ1]  =  [30, 85] nm corresponding to a force range 
( fmin, fmax) = (18, 22) pN. Error bars obtained after averaging the results over four 
(DNA short) and five (RNA long) molecules at two pulling speeds, respectively.

∆G [kBT ] ∆Wm [kBT ]
∆Wh +∆Wb 
[kBT ] ∆G0 [kBT ]

DNA short 295 ± 1 17.4 ± 0.5 225 ± 4 52± 4
RNA long 342 ± 2 28 ± 1 244 ± 5 70± 5
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on the whole integration range can be significant). On the other hand, if we reach low 
enough forces (e.g. by using a molecule that refolds at very low forces), the eective 
stiness also exhibits force dependence. Indeed at low forces kh � kb, hence kF

eff ∼ kh, 
and as kh = kh( f) is steep at low f , so will kF

eff be.
Provided that the handle stiness kh( f) and the force stiness of the trap kb( f) are 

known with a good precision, the integrals in (12) can in principle be carried out easily, 
irrelevant of kF

eff being non-constant. This corresponds however to an idealized scenario 
that rarely occurs in practice. To begin with, the elastic properties of the handles are 
typically characterized for a few ionic and temperature ranges, and often, parameter-
izations are lacking for generic experimental situations (non-standard buer, unusual 
temperatures). Furthermore, for certain types of handles, such as DNA-RNA hybrids, 
there is a missing gap regarding the elastic description in the literature. But the largest 
problem comes by far from the usually imprecise knowledge of the optical trap stiness, 
since the slightest deviations in the expected value of kb can have a very significant 
energetic impact. For instance, a modest deviation of 5% from kb = 0.08 pN nm−1 
to kb = 0.075 pN nm−1, results in a change of a dozen kBT  in ∆Wb when integrated 
between 2 an 12 pN. Changes in the value of kb and even non-linear force corrections 
in kb( f) do inevitably occur in LOT, not only on a day-to-day basis (depending on the 
laser focusing, alignment, power, intensity or temperature) but also within the same 
day on a molecule-to-molecule basis, since the beads used for performing experiments 
can usually slightly vary in size, and the trap stiness directly depends on this. A slight 
force dependence in kb(f ) also occurs if the optical plane of the bead shifts with force. 
Hence, we see that kh( f) and kb( f) are usually not characterized precisely enough for 
the integrals in (12) to be computed reliably.

To address the aforementioned issues, we will introduce in section 5 a novel meth-
odology to retrieve the optimal stiness profile kb( f) and kh( f) directly from the FDCs 
obtained in pulling experiments with LOTs. Before doing so, let us however show an 
example where long handles and the eective stiness approximation go in pairs: the 
CD4 RNA hairpin.

4.2.2.  Stretching contributions and folding free energy of CD4 RNA.  The eective 
stiness method can be applied to the CD4 RNA hairpin, which is a molecule show-
ing nearly reversible folding-unfolding kinetics at the accessible pulling speeds [17, 39]. 
The molecule has the same sequence as hairpin CD4-DNA presented in section 4.1 
but replacing thymines by uracils (top panel of figure 3(a)). In the present case, the 
RNA hairpin is inserted between two  ∼500 base-long hybrid RNA/DNA handles [45]. 
Thus, the molecular construct is formed by the RNA hairpin plus the two long hybrid 
handles. Pulling experiments were performed analogously as described in section 4.1.

Due to the narrowness of the region in the FDCs (figure 3(a), bottom panel) where 
folding-unfolding events of CD4 RNA take place, the eective stiness kF

eff remains 
fairly constant over the force range experimentally probed. This linearity of the FDCs 
is evidenced in the inset of figure 3(a) and justifies the use of the eective stiness 
approximation. By fitting the FDCs slopes in the highlighted region, we obtain a value 
for kF

eff equal to 0.067± 0.001.
Next, we integrate all FDCs in the range, [λ0,λ1]  =  [30, 85] nm, which corresponds 

to the force interval ( fmin, fmax) = (18, 22) pN. As we did in section 4.1, the F and R 
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work distributions are calculated for two pulling speeds (2 and 20 pN s−1) and are shown 
in figure 3(b). Note that the crossing point between both distributions corresponds to 
the work value equal to ∆G. The CFT (7) is satisfied for CD4 with long handles, as 
can be seen in the inset of figure 3(b). We can thus subtract from the obtained ∆G the  
stretching contributions ∆Wh +∆Wb using the eective stiness method, along the 
exact same lines as in 4.1. As a last step, the term ∆Wm in (9) is calculated using  
the WLC model (4) with P  =  0.75 nm and an interphosphate distance db equal to 
0.665 nm/base, so that Lc ≈ 29 nm, higher than for the CD4 DNA molecule.

We report in table 1 the values we obtained for ∆G, ∆G0, as well as for the stretch-
ing contributions. The measured value for ∆G0 (70± 5kBT ) is compatible with the 
previous single-molecule measurements obtained in LOT assays at 100mM Tris HCl pH 
8 and 1 M NaCl (∆G0 ≈ 65 kBT ) [39] and with the Mfold prediction (∆G0 = 68 kBT ) 
[43]. We conclude that the eective stiness approximation is valid for determining 
folding free energies from irreversible work measurements if the integration range is 
narrow enough so that FDCs along the folded branch have a constant slope in such a 
range (i.e. the eective stiness kF

eff can be taken as constant).

5. Beyond the eective stiness method

In the previous sections we introduced the eective stiness method, testing its reli-
ability in addressing the analysis of both short and long handles. We also gave evidence 
that its validity is limited to the case of a linear elastic response and that when this 

Figure 3.  Free-energy recovery CD4 RNA hairpin with long handles (a). Sequence 
of CD4 RNA (top panel). FDCs and integration range for the work W (bottom 
panel). Visual evidence of the linearity of the FDCs in the integration range (inset) 
plus linear fits to the folded (solid line in the inset) and the unfolded branches 
(dashed line in the inset). (b) Forward (solid lines) and reverse (dashed lines) work 
distributions for two dierent pulling speeds calculated in the integration range 
are indicated in (a) panel. Crossing points between work distributions are tagged 
as solid points. The CFT verification is shown as an inset. Error bars have been 
obtained using the Bootstrap method.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Ecient methods for determining folding free energies in single-molecule pulling experiments

14https://doi.org/10.1088/1742-5468/ab4e91

J. S
tat. M

ech. (2019) 124001

condition is not fulfilled a more general methodology becomes necessary. This is the 
subject covered by section 5.1 where we present a novel technique going beyond the 
eective stiness approximation. Then, in section 5.2 we present an application of this 
method to the case of CD4L12, a dodecaloop RNA hairpin exhibiting large hysteresis 
in pulling experiments.

5.1. Estimating the stretching contributions in the general case

As can be seen in (1) the force-extension profile λ( f) depends on xb and xh, and these 
are, by definition, related to the stiness through:

xi( f) =

∫ f

0

k−1
i ( f ′)df ′ ,

dxi

df
=

1

ki( f)
for i = b,h .� (15)

This hints at the fact that FDCs (i.e. the λ( f) profile) might allow us to retrieve the 
stiness profiles needed to estimate the elastic energy contributions from bead and 
handles in (12). To realize this in practice, we must assume the elastic response of 
the trap and the one of the handles can be parametrized by some reasonable physical 
model. Starting with the handles, we will assume that the extensible WLC model (ext-
WLC) is a good description.

kh( f) = kext−WLC
h ( f ; {P , db,Y }) , xh( f) = xext−WLC

h ( f ; {P , db,Y }) ,
�

(16)

where we introduced the usual WLC elastic parameters (i.e. persistence length P, 
Young modulus, Y, and monomer length db). Then, we can either model the trap 
stiness as constant, or as a linear function of force:

kb( f) = kb,0 + αf , xb( f) =
1

α
log

(
1 +

α

kb,0
f

)
,� (17)

where α quantifies the linear dependence and kb,0 is the stiness at zero force (xb( f) is 
obtained by integrating as in (15)).

Note that we can rewrite (1) as:

λ( f) = xh( f) + xb( f) + xd( f)δN + xss( f)δU + λ0 ,� (18)
where we used a delta-Kronecker-like notation (δN(U) = 1 if the molecule is in the Native 
(Unfolded) state and zero otherwise) and explicitly introduced the oset λ0, which 
accounts for the fact that the molecular extension is always measured with respect to 
the micropipette. If we now rewrite the explicit dependence with respect to our model 
parameters, (18) becomes:

λ( f) = xh( f ; {P , db,Y }) + xb( f ; {α, kb,0}) + xd( f)δN + xss( f)δU + λ0

≡ M( f ; {P , db,Y ,α, kb,0,λ0}) ,
�

(19)

where we have denoted M as the overall model underpinning the λ( f) response. As (1) 
illustrates, the knowledge of a handful of physical parameters fully determines the FDC 
for the N and U branches. The key idea behind our methodology is that the inverse 
implication is also true: knowing λ( f) and given M we can extract P , db,Y ,α, kb,0 
through (19), using a least squares method, a Bayesian approach, or generally any 
regression method. Once these parameters are fitted, we can recompute kh( f) and 
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kb( f) for all f  using the models in (16) and (17), eventually obtaining the stretching 
contributions through the numerical integration of (12). Crucially, this can be done 
without any a priori knowledge of the parameters of the experimental setup.

In practice, however, the fitting procedure requires a FDC featuring enough curva-
ture to be able to constrain the model, and even so, the number of parameters to fit 
is too large for a two-dimensional curve, so that some additional considerations must 
be taken into account. Firstly, reasonable bounds/priors on the allowed values for the 
parameters must be set. Secondly, it is convenient to assume that certain parameters 
play a minor role in the overall FDC shape (such as Y) or are characterized well enough 
(e.g. the monomer length for dsDNA) to be fixed at some nominal value and not fitted. 
Thirdly, computing the handles extension xh = xh( f) using the extensible WLC can be 
slow and numerically inaccurate as it normally requires the performance of a numer
ical inversion of f = f(xh). To address this, we introduce in the appendix a formula to 
explicitly invert the WLC, which can then be used in (19). Fourthly, to get as many 
points as possible to constrain the fit, we have aligned all the FDCs in the starting 
point so they share an identical λ0 oset (i.e. ‘const’ in (1)(a) and (b)). After all these 
steps, fitting λ( f) = M( f ; {P , db,Y ,α, kb,0,λ0}) is aordable.

In the following section we will show concrete examples of the FDCs fitting proce-
dure and its application to extract the stretching contributions.

5.2. Application to the specific example of the CD4L12 RNA hairpin

The eective stiness method may work well when the range of force integration is not 
too large. This condition is met in molecules exhibiting mild hysteresis. For molecules 
showing large hysteresis in pulling cycles, the limits of integration fmin and fmax are 
far away and the eective stiness kF

eff cannot be considered constant anymore. Here 
we present results for an RNA molecule (CD4L12) falling in this category and present 
a general procedure to extract the free energy of formation. CD4L12 shares the same 
stem than the previously discussed CD4 RNA in section 4.2.2, but with the original 
tetraloop replaced by a dodecaloop (i.e. 12-loop bases); see the sequence in figure 4(a). 
A large loop yields a larger entropic barrier for refolding and large hysteresis in the 
FDC. Pulling experiments were performed as described in section 4.1, with a pulling 
speed of 100 nm s−1 and 300 nm s−1 and a buer containing 4 mM MgCl, 50 mM NaCl, 
and 10 mM Tris. The values of P  =  0.75 nm and db = 0.665 nm were used to describe 
the elastic properties of the ssRNA for this buer [39].

As can be seen in figure 4(b), CD4L12 behaves as a two-state system being either 
folded or unfolded along the FDCs. As expected, pulling cycles feature large hyster-
esis, with a maximal dierence of nearly 20 pN between the lowest folding and largest 
unfolding force rips. In order to compute the work needed for the CFT (7), we must 
integrate the area under the FDC within a large force range with a very low fmin. It is 
clear that in this case the constant stiness approximation described in section 4.2.1 
does not apply, as shown in the inset of figure 4(b) where kF

eff markedly changes with 
force. To estimate the stretching contributions we follow the previous section 5.1 and 
(19) to obtain ∆Wb, ∆Wh, and, from (14), the value of ∆G0.

In order to carry out the fit prescribed by (19), we need to introduce some further 
assumptions to simplify the problem. Regarding the hybrid DNA-RNA handles, we 
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use the value of the interphosphate distance db = 0.27 nm of A-form RNA and Young 
modulus Y  =  200 pN obtained by fitting the stiness of the handle profile (figure 4(c)). 
While changes in db only moderately aect the overall curvature of kh (but they impact 
the overall contour length, an eect already captured by fitting λ0), changes in Y do 
not. Hence fixing these two values gives a better constrained model. For the persistence 
length of the handles P it is convenient to fit the deviation ∆P  (in %) with respect to a 
plausible expected nominal value P0, i.e. Peff = P0 (1 + ∆P ), which we take from the fit 
in figure 4 as P0  =  20 nm. Lastly, we also include the number of nucleotides n released 
in the transition between the folded and the unfolded branches as an extra free param
eter of the model. We are thus eventually left with five free parameters which we fit (18) 
and (19) using a standard non-linear least square regression (Levenberg–Marquardt):

λ( f) = M( f) = M( f ; {kb,0,α, ∆P ,λ0,n)}) .� (20)
An example of such a fitting procedure is shown in figure 5(a). As can be seen, the 

agreement between the experimental points and the reconstructed curve is remark-
able. Furthermore, all the values obtained from the fit dovetail with prior expecta-
tions. Firstly, the value of n matches with the expected number of released nucleotides 
(i.e. 52). Secondly, the zero-force trap stiness kb falls in an expected range [31]. 
Thirdly, the force-dependence parameter α of the trap stiness is of the same order 
of magnitude than values already reported in the literature for similar LOT settings 
[31]. Fourthly, ∆P  is small so P is reasonably close to the assigned nominal value P0. 
Another good generic indicator is the very low error on the fitted parameters, hinting at 

Figure 4.  Free-energy recovery CD4L12 RNA hairpin. (a) Sequence and secondary 
structure of CD4L12 RNA. (b) Aligned FDCs folding (red) and unfolding (blue) 
for a given molecule pulled at 100 nm s−1. Inset: eective stiness profile measured 
along the folded branch. (c) Stiness profile of the hybrid DNA-RNA handles that 
form the molecular construct used with CD4L12 and CD4 RNA [39]. Data points 
have been obtained using the high frequency power-spectrum method described 
in [31]. The red line is a fit of the extensible WLC model, yielding P = 20± 4 nm 
and Y = 200± 14 pN (db was not fitted but fixed to the interphosphate distance of 
A-form RNA, db = 0.27 nm [45]).
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a well-constrained model; a fact that is further confirmed by the observation that in the 
correlation matrix of the fit, most o-diagonal entries are near-zero (details not shown). 
We must finally stress that the choice of free parameters in (20) is convenient for the 
considered situation but is by no means customary. In a context where the trap would 
be well characterized and the handles would not, we may have, for instance, fixed kb 
but fitted db. Equation (19) can be adapted at will, depending on the requirement.

With the fitted values of α, kb,0 and ∆P  in hand and our assumptions for Y and 
db (legitimated retrospectively by the agreement of the fit in figure 5), we are now in a 
position to precisely establish the profiles of kh( f) and kb( f) through the use of equa-
tions  (15)–(17). We can now quantify the terms ∆Wb and ∆Wh using (12) and ∆G 
using the FT. These numbers together with (14) allow us to extract ∆G0.

Figure 5(b) shows the work distributions PF(W ) and PR(−W) obtained from the 
FDC (figure 4(b)). The very pronounced hysteresis and the large value of the average 
dissipated work in a pulling cycle (about 60 kBT ) is such that F and R work distribu-
tions lie far apart without overlapping. Previous methods based on the overlapping of 
F and R work distributions are not applicable and an alternative approach must be 
used, such as the Bennett acceptance ratio [47] and the ‘matching method’. This last 
method consists of finding the optimal ∆G value so that PF(W ) is the analytical con-
tinuation of PR(−W )e(W−∆G)/kBT . This procedure is graphically illustrated in the inset 
of figure 5(b) and further explained in [46]. Results obtained for dierent molecules are 
shown in table 2. We note that the values of ∆G obtained with the two methods yield 
compatible results (matching being systematically 3–5 kBT  lower than Bennett). Our 

Figure 5.  Fitting the folded and unfolded branches of CD4L12 RNA hairpin (a). 
The solid blue line is an example of curve fitting based on (20). Data points 
used for the fit are the black diamonds. They are obtained by smoothing and 
filtering the gray dots, which are themselves obtained by aggregating the unfolding 
FDCs of dierent pulling cycles from figure 4(b). (b) An example of forward and 
reverse (solid and dashed lines) work distributions for the same molecule pulled 
at 100 nm s−1. Due to the large hysteresis, work distributions do not overlap. 
Inset: Illustration of the matching method to retrieve ∆G by imposing continuity 
between PF(W ) (light green) and PR(−W )e(W−∆G)/kBT  (dark green) in log-normal 
scale. The solid grey line is the fitted Gaussian, see [46] for details.
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estimated value ∆G0 = 67± 2kBT  is not far from the Mfold prediction (∆G0 = 63 kBT ) 
showing the reliability of the approach.

We want to stress the sensitivity of the value of ∆G0 on the accurate estimation 
of the stretching contributions which, being one order of magnitude larger, can lead 
to inconsistent results. Had we used a methodology assuming ‘average’ or ‘standard’ 
stretching contributions, we would have obtained erroneous numbers. Consider, for 
instance, subtracting the average value 〈∆Wb +∆Wh +∆Wm〉 = 898kBT  derived from 
table 2 to the highest and the lowest estimates of ∆G shown in the same table: it results 
in two widely o values ∆G0 = 1107− 898 = 209kBT  and ∆G0 = 863− 898 = −35kBT . 
Therefore a tailored molecule-to-molecule estimation of the stretching contribution is 
absolutely essential for molecules like CD4L12 where the eective stiness approx
imation cannot be used.

6. Conclusions

We have presented a brief tutorial on the approaches commonly used to extract fold-
ing free energies of single molecules pulled with optical tweezers in unzipping assays. 
A recurrent issue in these calculations is the large magnitude of the stretching contrib
utions to the full free-energy dierence measured in a pulling experiment using the 
CFT. Such contributions arise from the experimental setup and include the optical 
trap, the elastic stretching of the handles used in the molecular construct and the 
extension release of the unfolded polymer. A great simplification in the analysis of 
these correction terms can be performed when the eective stiness of the experimental 
system can be approximated as constant, as we saw in section  4. In this so-called 
eective stiness approximation a single parameter kF

eff suces to quantify the stretch-
ing contributions of handles and trap. We exemplified this case in the study of a DNA 
hairpin in section 4.1. For long handles the stiness of the handles turns out to be 
comparable to that of the trap and a force-dependent kF

eff is apparent. In this case, as 

Table 2.  Fluctuation theorem and stretching contributions for CD4L12 RNA 
hairpin with long handles. Overview of the values of ∆G, the stretching corrections, 
and the final ∆G0 estimate for six dierent molecules. All values are given in kBT . 
∆GBennet and ∆GMatching provide two ways to extract ∆G using the CFT. The 
value of ∆G0 is obtained through (9) using the value of the Bennett estimate. The 
last line corresponds with the only experimental setting in which the pulling speed 
is 300 nm s−1, and all the other results were obtained at 100 nm s−1.

∆GBennet [kBT ]
∆GMatching 
[kBT ] ∆Wm [kBT ]

∆Wb +∆Wh 
[kBT ] ∆G0 [kBT ]

1045 ± 3 1040 35 944 ± 3 66
950 ± 2 947 35 846 ± 1 68
863 ± 3 859 35 758 ± 2 70
888 ± 2 886 35 790 ± 2 63
938 ± 4 935 35 838 ± 1 66
1107 ± 2 1105 38 1003 ± 2 68

Mean: 67± 2 kBT
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we showed in section 4.2.2, one can still use the eective stiness approximation if the 
range of integration to evaluate the work is narrow enough. This is possible if the pull-
ing curves are not too irreversible and forward and reverse work distributions overlap. 
In contrast, for strong irreversible pulling experiments one needs to accurately charac-
terize all elastic contributions from the experimental setup. Here we have introduced 
a novel method (section 5) based on least-squares fitting of the elastic response of the 
folded and unfolded branches. It relies on adapting the elastic parameters extracted 
from the literature (inter-monomer distance, persistence length, Young modulus) to the 
experimental data as well as accurately retrieving the stiness of the optical trap using 
the same data.

One problem that remains open is the magnitude of the statistical error commit-
ted in the estimation of ∆G0. In fact, ∆G0 is the dierence of two large numbers (∆G 
and the stretching contributions) each with a large error and extracted from the same 
experimental FDC data. How to combine the errors from these two large quantities 
remains largely unclear as they are not really uncorrelated. A rule of thumb in single-
molecule experiments is that the largest errors come from molecule to molecule exper
imental variability. It is then recommended to first extract ∆G0 values for dierent 
molecules by subtracting elastic contributions from ∆G on a single-molecule basis, and 
then derive the mean value of ∆G0 and the corresponding statistical error.

The large contribution of the stretching term (14) to the full free energy ∆G makes 
the prediction of the (comparably small) value of ∆G0 a dicult task. This situa-
tion is reminiscent of the enthalpy-entropy compensation problem in biochemistry 
[48, 49]. In this case, free-energy dierences of intra- and intermolecular weak inter-
actions (e.g. folding, binding, allostery, enzymatic reactions and so on) are typically 
one order of magnitude smaller than entropies and enthalpies, i.e. ∆G = ∆H − T∆S 
with ∆G � ∆H,T∆S . In this regard, enthalpy-entropy compensation in biochemistry 
appears to be similar to the ∆G-stretching compensation in force spectroscopy. The 
analogy is not pure coincidence as the stretching contributions are essentially also of an 
entropic nature and much larger than the bare free-energy dierence ∆G0.

The methodology we have described should be generally useful and applicable to 
force spectroscopy studies of single-molecule constructs whenever elastic contributions 
are present. Applications go beyond the case of measuring folding free energies such 
as extracting molecular free-energy landscapes [30], measuring ligand binding energies 
[50], protein-protein and RNA-protein interactions, and characterizing heterogeneous 
molecular ensembles [51].
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Appendix. WLC explicit inversion

The inextensible WLC model described in (4) gives a very direct way to compute 
f = f(x), but it is not straightforward to use it to retrieve x = x( f). Although numer
ical inversion using Mathematica and other software is possible (e.g. as in [52]), it is 
useful to have explicit inversion formulae. Hence let us now quickly show that (4) can 

be easily inverted to express z:  =  x/Lc as a function of f . We first define the normalized 

quantity f̃ = (4P/kbT ) f . We can then re-write (4) as f̃ = (1− z) −2 − 1 + 4z. By mul-
tiplying both sides of the previous by (1  −  z)2 and by moving all terms to the same side, 
we obtain:

0 = z3 + a2z
2 + a1z + a0 with a2 = −9

4
− f̃

4
, a1 =

3

2
+

f̃

2
, a0 = − f̃

4
.

� (A.1)
Thus we directly see that obtaining z as a function of f  simply maps to finding the roots 
of a cubic polynomial—a problem solved since the fifteenth century. The approach 
taken here is the canonical one [53, 54]. We start defining the following intermediate 
quantities:

R :=
9a1a2 − 27a0 − 2a32

54
Q :=

3a1 − a22
9

� (A.2)

from which we obtain the standard determinant D for cubic equations:

D := Q3 +R2.� (A.3)
If D  >  0, there is only one real solution to (A.1), and we have to define the following 
intermediate quantities to express the answer:

T :=
3

√
R +

√
D S :=

3

√
R−

√
D� (A.4)

(since D  >  0, we also have that 
√
D is real, and thus there is indeed at least one real 

cubic root for T and S). The desired inverse value z*  =  z(f ) is then finally obtained as:

z∗ = −1

3
a2 + S + T .� (A.5)

If D  <  0, there are three real roots to the cubic equation. These roots can be obtained 
by re-using the quantities S and T defined above, but doing so requires using complex 
number algebra—which may not be handy. Instead, we also can define the following 
intermediate quantity:

θ := arccos

(
R√
−Q3

)
.� (A.6)

From this, the three real roots z1, z2, z3 can be obtained directly as:

zi = 2
√

−Q cos

(
θ + θi
3

)
− 1

3
a2 with θ1 = 0, θ2 = 2π, θ3 = 4π.

�

(A.7)

The root of interest is the one lying in the interval [0, 1], since we defined above 
z  =  x/Lc and a property of the inextensible WLC is that the extension x is always 
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smaller than the contour length Lc. Using trigonometric standard formula and the fact 
that 2

√
−Q > 0 it is quite easy to verify that z1 − z2 > 0 and z3 − z2 � 0 for the given 

range of θ (which must belong to [0, π] by definition of the arccosine), which implies that 
z2 is the smallest of all the roots. Moreover, we note that all the roots must be positive, 
since we see in (4) that ∀z < 0, f(z) < 0 and is strictly monotonically decreasing. As 
all the roots are positive and z2 is the smallest of them, it therefore has to be the one 
we are looking for, in [0, 1], and hence z2 = z∗ = z( f) when D  <  0. The previous result 
also covers the D  =  0 situation, because we then have from (A.6), θ = 0, and so we are 
in the limiting case z3 = z2.

Let us finally note that in the case of the extensible WLC, the key dierence with 
the inextensible case is the replacement Lc → Lc(1 + f/Y ) with Y the Young Modulus, 
i.e. the contour length is now force dependent. It can be shown that this implies the 
following relationship between the two models:

xext
WLC( f) = xinext

WLC( f) (1 + f/Y )� (A.8)

and so we see that knowing the explicit inversion for the inextensible model directly 
yields an explicit formula for the extensible model too.
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