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Free energy recovery in single molecule experiments 

Single molecule force measurements (experimental setup shown in Fig. S1) can be used 

to determine free-energy differences between the folded (F) and the unfolded (U) states 

provided that the process is quasi-static (i.e. that the pulling is done slowly enough for the 

system to go through a succession of equilibrium states). In the mechanical unfolding of 

an RNA molecule, by measuring the reversible work revW  performed on the molecule 

during the unfolding process and using the thermodynamic relation revWG =∆ , we can 

estimate the RNA folding free energy at zero force 0G∆  (after correcting for the 

stretching of the handles required to manipulate the RNA hairpin and the entropy loss of 

the RNA between the extended conformation at a fixed end-to-end distance and the 

unfolded state). This method has been applied to small RNA hairpins that, in the absence 

of Mg++, can be unfolded quasi-statically at low pulling speeds 1. However, when the 

native state is determined by the existence of tertiary contacts, pulling cannot be carried 

out reversibly as the typical value of the folding-unfolding relaxation time 

relaxτ (measured at the transition force, 2/1F , i.e. the force at which both chemical species 

(F,U) are equally populated) is larger than the time required to reach 2/1F  during the 

pulling protocol, rFrelax /2/1>>τ , where r  is the loading rate in pN-s-1. Using very low 

pulling rates is often not a solution to obtain reliable free-energy estimates because of 

thermal drift of the instrument2. Nonequilibrium methods offer an alternative  way to 

extract free energy differences. 



 

The Jarzynski equality 

For irreversible pulls it is possible to use the Jarzynski equality3 (hereafter referred to as 

JE).  It relates the equilibrium free-energy difference G∆  between two equilibrium states 

to an exponential average (denoted by >< ... ) of the work done on the system, W , taken 

over an infinite number of repeated nonequilibrium experiments, 

>−=<∆− )/exp()/exp( TkWTkG BB . Using Jensen’s inequality, 

( ) >≥<>< XX )exp(log , it follows that GW ∆>≥<  which is recognized as the content 

of the second law of thermodynamics. For reversible processes the equality holds 

GW ∆>=< . The JE requires exponential averaging over an infinite number of work 

trajectories in order to recover the free energy. Performing this average over a finite 

number of trajectories introduces a systematic bias in the free-energy estimate whose 

magnitude depends on the finite number of pulls and the extent of the work 

dissipation6,7,8. Recently, the JE was experimentally tested in single-molecule force-

unfolding experiments1 on the P5ab RNA hairpin, a derivative of the L-21 Tetrahymena 

ribozyme4 .  These experiments showed that application of the Jarzynski equality on work 

values obtained when the molecule was unfolded irreversibly converged after a few 

hundred realizations towards the values of the free energy derived from the quasi-static, 

mechanical unfolding of the molecule. A few hundred repetitions of the irreversible work 

trajectories were enough to determine the value of G∆  with an accuracy of  TkB2
1

± . 

This result has been later theoretically justified in5. However, the average value of the 

dissipated work (defined as GWWdiss ∆−= ) during these irreversible studies was 



relatively small, ~ TkB3 , in comparison with values in the range TkB5010 − often seen in 

single molecule pulling experiments, and application of the JE to more dissipative 

processes is not straightforward. In fact, sources of random noise introduce a systematic 

bias in the exponential average required by the JE, which can be comparable in 

magnitude but of different sign to the bias arising from the finite number of pulling 

repetitions 6,7,8.  These two sources of noise often lead to large statistical uncertainties in 

the free energies estimated with the JE, particularly when the process occurs far from 

equilibrium. We find that the slow convergence shown by the JE can be improved by 

using the CFT 9 , and that the latter constitutes a less error–sensitive and faster – 

convergence method to extract equilibrium free energies from non-equilibrium processes.  

In practice, as mentioned above, it is often difficult to extract unfolding free energies 

using quasi-static pulling rates (below a few pN-s-1) due to spatial drift in various 

components of the manipulation instrument.  Drift effects decrease noticeably for larger 

pulling speeds, making it possible to obtain more reliable experimental data and better 

statistics (doing a large number of pulls), but at the expense of a more irreversible 

unfolding process 
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     FIGURE S1 

Figure S1. The optical tweezers set-up is similar to the one previously described in1. An 

RNA molecule is attached between a streptavidin coated bead positioned at the tip of a 

micropipette and an anti-digoxigenin coated bead captured in an optical trap. A piezo 

controls the position of the chamber and thus of the bead on the micropipette2. Molecules 

are stretched and relaxed by moving the chamber in the vertical direction at constant 

rate via the piezoelectric stage. The forces on the trap bead are determined by measuring 

the change of momentum of the photons as they pass through the trap. This movement is 

monitored with the light-lever, which consists of a small laser, a lens connected to the 

chamber, and a detector2. Force and extension of the molecule were monitored at ~300 

Hz. 

 

The Crooks fluctuation theorem (CFT) 

(numbering of equations in this section refer to the body text of the paper) 

The reversible process is an example of the CFT (1) where there is no hysteresis, so both 

unfolding and refolding distributions are equal and GW ∆= . The JE can also be obtained 

as a particular case of (1) as can be shown by rewriting (1) in the form 

)/exp()()/exp()( TkGWPTkWWP BRBU ∆−−=−  and integrating with respect to W  from 

−∞=W  to ∞=W . The l.h.s of this equation gives then the exponential average of the 

work along the unfolding path whereas the rhs is equal to )/exp( TkG B∆− . 

 

Expression for the work (2) is not strictly accurate.  The CFT (1) requires that ix  must be 

the control (non-fluctuating) parameter that characterizes the state of the system. 

However, the end-to-end distance is strictly speaking not the control parameter in our 

RNA pulling experiments, as the position of the bead fluctuates in the trap10,11. However, 

it can be shown that this effect is too small compared to other sources of error and the 



work done can be approximated10 by Eq. 2. When this is not the case, the correct free-

energy profile can nevertheless be reconstructed using the analysis of Hummer and 

Szabo12, or for sufficiently stiff traps the method of Park and Schulten7. 

 

Although the simple identity (3) already gives an estimate of ∆G , it is not necessarily 

very precise as it only uses the local behavior of the distribution around GW ∆= .  

However, the CFT suggests at least two methods of utilizing the full distributions of work 

values to extract G∆  and to avoid the noise and the convergence problems of the JE.  In 

the direct method, we plot the ratio )(/)( WPWP RU −  in logarithmic scale as a function of 

W .  The resulting points should fall on the line TkGW B/)( ∆− intersecting the W -axis at 

GW ∆= ; this is a direct test of the validity of the CFT, Eq. (1).  When the overlapping 

region of work values between the unfolding and refolding distributions is too narrow, as 

may happen for large dissipated work values, the direct method cannot be used and 

another type of analysis is required. In the matching method we define the functions 

( ) )2/()(log)( TkWWPWg BUU −=  and ( ) )2/()(log)( TkWWPWg BRR +−=  and use Eq. 

(1) to infer the relation TkGWgWg BUR /)()( ∆=− . We then determine the value of G∆  

such that the experimental distributions )(WgU , )(Wg R  match each other. Matching the 

experimental distributions )(),( WgWg RU  cannot be very accurate in the presence of 

large statistical fluctuations in the tails of the distributions. Therefore a different 

optimization analysis of the experimental data is necessary.  This is the basis of the ratio 

acceptance method developed by Bennett to efficiently estimate free-energy differences 

from Monte Carlo data 13,14,15 (see below and Fig. S7).  This method has been used to 

determine values of ∆G  that are in agreement (within the statistical error) with the ones 



found by the matching method.  The values so obtained are comparable (but also more 

accurate) to those derived by averaging the JE estimates for the unfolding and refolding 

paths thereby proving the consistency between the different estimates13,14.  A 

compendium of all results obtained for the different molecules we investigated is shown 

in Table 1 (main text). 

 

Results for the hairpin 

For a given pulling speed, systematic deviations in the distributions for different 

molecules are expected, either due to accumulative drift effects in the optical tweezers 

machine, or to variability in the tether attachments of the RNA to the beads. These 

deviations cannot be too large, otherwise the reliability of the method would be 

compromised.  As shown in Fig. S2 variability from molecule to molecule is small 

allowing us to test Eq. (1) by using data averaged over different molecules.  We test the 

direct method in Fig. S3 where we plot the logarithm of the left hand side of Eq. (1) as a 

function of TkW B/ for four different molecules, as well as the data averaged over all four 

molecules.  Data for all molecules follow straight lines with slopes in the range 0.8-1.1 

and the value of G∆  fluctuates from molecule to molecule within a range of work values 

which is smaller than TkB1 . The average data (green circles) fall on a straight line with a 

slope 15.095.0 ±  —the error being due to variation of the slope among the different 

molecules—in very good agreement with the expected result. The reported values for 

TkG B5.03.110(exp) ±=∆ are in agreement with estimates obtained using Bennett’s 

acceptance ratio method (Figure S7).  



 

     FIGURE S2 

Figure S2. Reproducibility of work distributions for 4 molecules taken at r=7.5pN/s. 

Molecules 1,2,3,4 plotted with different colors correspond to 50,120,110,106 pulls 

respectively. The thick green line corresponds to the average work distribution (green) 

shown in Figure 1 (main text). 

 

The result TkG B5.03.110(exp) ±=∆  is also in good agreement with estimates obtained 

using cumulant expansions16 , valid for distributions that do not deviate much from 

Gaussian behavior.  Estimates obtained by using the JE are also comparable, albeit their 

statistical fluctuations tend to be larger.  As shown in the last column of Table 1 (main 

text), the work distributions for the unfolding of this hairpin satisfy the fluctuation-

dissipation relation between the variance of the work and the average dissipated work, 

RU
disBRU TWk ,2

, 2=σ , characteristic of Gaussian work distributions.  We note, however, that 

these irreversible measurements are not taken in the linear response regime.  For the latter 



we would expect RU
disW ,  and the variance 2

,RUσ  to be proportional to the loading rate r 5. 

This proportionality is not observed in the data shown in Table 1 (main text), indicating 

that the dissipated work tends to saturate as has been predicted in two-state kinetic 

models of the unfolding reaction17. 

       
        FIGURE S3 

Figure S3. Test of the CFT (1) for the distributions shown in Figure S2 plotted in the 

region of work values W where unfolding and refolding distributions overlap along the 

work axis (data have been linearly interpolated between contiguous bins of the unfolding 

and refolding work distributions). The different color symbols correspond to different 

molecules (same as in Fig. S2), the green color indicating the average data (circles) as 

well as the best linear fit to that data (dashed green line) giving a slope of 15.095.0 ±  

(the error spanning the range of slopes observed for different molecules) and a free-

energy value TkG B5.03.110(exp) ±=∆  (the error being given by the range of work values 

at which different molecules cross the work axis).  

 

 



The RNA motif S15 

The structure and typical force-extension curves for the wild and mutant types (without 

magnesium) are shown in Fig.S4 and in Fig. S5 for the wild type in magnesium. The 

matching method shown in Fig. S6 makes it possible to determine the value of G∆ for the 

unfolding of both molecules without magnesium.  Folding free energy predictions for 

S15 under different conditions are given in Table 1 (main text). 

 

    FIGURE S4 

Figure S4. Secondary structures of the three-helix junction in the wild type and the 

C754G-G587C mutant. Five typical force-extension curves of unfolding (orange) and 

refolding (blue) reactions  (62 mM KCl, 10 mM HEPES pH 7.8) are shown for both cases. 

 

As shown in Table 1, cumulant methods do not even predict correctly the sign of the free-

energy difference ( TkG B8.2(exp)
0 −=∆∆ ) whereas the Jarzynski equality gives less 



accurate free-energy values, with larger statistical uncertainties. Only by averaging the 

free-energy estimates obtained for the unfolding and refolding paths  (called )(est
JW  in 

Table 1, main text) can we get comparable values. 

Unlike the hairpin, sometimes the three-helix junction (wild and mutant) does not refold 

into its native state, but into an intermediate conformation. The presence of the 

intermediate is revealed by the subsequent unfolding of the molecule which shows a 

completely different force-extension curve that cannot be aligned to the worm-like chain 

reference curve. We have excluded these trajectories (typically around 5%) from our data 

as one of the conditions for the validity of Eq.(1) is the fact that the initial state during the 

unfolding process must be the equilibrium (or native) conformation. Because the wild 

type and the mutant molecules were attached to identical handles, the contributions of 

these handles and RNA stretching are the same for both. Therefore, these contributions 

subtract out when estimating the free-energy difference between the two molecules.  

         
    FIGURE S5 

Figure S5. Typical force-extension curves for the wild type in the presence of Mg2+; five 

unfolding and refolding pathways are presented in orange and blue, respectively. 



 

    FIGURE S6 

Figure S6. Matching method applied to the unfolding and refolding experimental work 

histograms as described in the text. The value of G∆  obtained is consistent with that 

extracted using the Bennett’s acceptance ratio method13. We obtain 

TkG B4.01.154 ±=∆ and TkG B2.09.157 ±=∆  for the three-helix junction and the 

mutant, respectively.  The thick black error bars show the vertical range along which 

matched distributions shift when changing the estimate for G∆  by TkB1 . 

 

Bennett’s acceptance ratio method  

When there is little overlap between the unfolding and refolding work distributions, an 

estimate of G∆  can be obtained with the acceptance ratio method, first proposed by 

Bennett in the context of equilibrium sampling13 and later extended by to the 

nonequilibrium case by Crooks18.  To begin, note that Eq.(1) can be rewritten as,  

)()(exp)(exp)( WPWf
Tk
GWP

Tk
WWf Rx

B
U

B
x −






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


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


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where )(Wfx  is an arbitrary real function, which depends on a parameter x.  Integrating 

both sides of  (4) between −∞=W and ∞=W we get, 

Rx
BUB

x Wf
Tk
G

Tk
WWf )(expexp)( 






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
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where
U

...  and 
R

...  denote averages over work values sampled from the unfolding and 

refolding distributions, )(WPU  and )( WPR − , respectively. 

This relation is valid for arbitrary functions )(Wfx . In particular, for 1)( =Wfx  we get 

the Jarzynski equality. If we further define, 
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then we obtain the simple relation, 

Tk
Gxzxz

B
UR

∆
=− )()(         .                                                                           (7) 

Therefore the difference between both z functions must be a constant over all range of x  

values. Equation (7) is an exact relation if we were to know both unfolding and refolding 

work distributions with infinitely high precision. However, this is not the case in the 

experiments where there is noise in the measurements and only a finite number of 

measurements is available. Bennett has proven that, among all possible functions )(Wfx , 

the one that minimizes the statistical error of the estimate of G∆  is given by the function, 
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Moreover, when the number of  repeated experiments is the same along the unfolding and 

refolding paths, the best estimate is obtained by evaluating (7) at Gx ∆= meaning that 

the best estimate for G∆ can be obtained from the intersection of the curves 

)()()( xzxzxy UR −=   and 
Tk

xxy
B

=)(  . This result has been recently derived using 

maximum-likelihood methods by Pande and collaborators15.  The results of the analysis 

for the hairpin and S15 (with and without magnesium) are shown in Figure S7.  

  

  FIGURE S7(A)     FIGURE S7(B) 

Figure S7. Bennett’s acceptance ratio method13 applied to different molecules. According 

to Eq. (7) the function )()()( xzxzxy UR −=  should intersect the dashed line 

Tkxxy B/)( =  at Gx ∆= . The former must be also approximately constant around the 

intersection region. (A) Hairpin at 7.5 and 20.0 pN/s (data shown in Figure 2, main text). 

Note that the function )()()( xzxzxy UR −=  is flat over a wide range of work )(x  values. 

The small square indicates the crossing region located around Tkx B3.110= . (B) S15 

three-helix junction in the absence and with Mg2+ ions. The function 

)()()( xzxzxy UR −=  is very nearly flat around the crossing region (indicated by small 

circles) and shows the reliability of the method. The values obtained using this method 

are shown  in Table 1. 
 



Applicability of the method   

Here we describe how general is the present method and under which conditions we 

expect it to be applicable to extract free energies. The main limitations to the method is 

for processes in which the system is removed too far from equilibrium with excessively 

large values of the dissipated work. We expect our method to be applicable as long as the 

amount of dissipated work (equal to the difference between the total irreversible work 

and the reversible or minimum work) is equal or less than ~ 100 kBT.  For large values of 

the dissipated work the experimental unfolding and refolding work distributions hardly 

cross, thereby limiting the direct applicability of the Crooks FT.  Although the possibility 

to determine the crossing between the unfolding and refolding work distributions 

increases for a larger number of pulls, that number might soon become un-realizable in 

some cases.  In general, a far better way to get reliable free energy estimates is by using 

quantitative data analysis such as the Bennett’s acceptance ratio method used in this 

paper. 

 

There are, however, at least two cases where, even for large values of the dissipated work, 

the method might still work.  The first case corresponds to biomolecules that have 

transition states very close either to their folded or unfolded states. In this case we expect 

one among the two work distributions (unfolding or refolding) to be pretty wide and the 

other pretty narrow. The presence of a long tail in the one of the two work distributions 

might make it easier to infer the value of the reversible work at which the two 

distributions cross each other. This is the case of proteins with a high barrier located  at 

less than 1nm distance from the folded state, and whose crossing constitutes the rate 



limiting step for the unfolding dynamics. In addition, the protein can be characterized by 

a very corrugated free energy landscape with many competing basins of attraction or 

intermediates that slow down the folding dynamics. The unfolding work distribution 

would display, in this case, a very long left tail while the refolding distribution would be 

strongly peaked at smaller work values. The latter would dictate that the excursion of the 

molecule from the unfolded to the native state follows quite similar force-extension 

curves in every refolding realization, implying a reproducible collapse of the unfolded 

structure for every one of the repeated trajectories.  Note that the scenario described 

above is what it is observed in our measurements on S15, suggesting more similarities 

than differences between the mechanical unfolding of proteins and RNAs19. The second 

case corresponds to biomolecular complexes that have a modular structure (e.g. RNAs 

made out of several domains). Application of our approach to recover the free energy 

landscape in such cases might be possible if the unfolding of different domains occurs in 

an approximate sequential fashion at different values of forces. In this way, the method 

could be applied by measuring the partial work at several intermediate forces 

corresponding to each of the unfolding intermediates. This approach would make it 

possible to reconstruct the free energy landscape for unfolding.  

 

The applicability of the method to AFM pulling data could, however, be problematic. The 

stiffness of the AFM tip, which is typically 1000 times larger than that of the optical trap, 

may drive the system too far from equilibrium. In fact, the relevant parameter that tunes 

the degree of irreversibility induced by the pulling is the loading rate which is equal to 

the pulling speed times the stiffness of the AFM tip.  Only by separating the tip from the 



substrate at speeds around 1 – 10 nm/s we can expect the method to be applicable.  AFMs 

have another limitation, however.  For molecules with critical forces below 50 pN, the 

signal-to-noise ratio of the AFM might be too small to clearly define the transition events 

and accurately measure the work values along the pulls.  
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