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Variance sum rule for entropy production
I. Di Terlizzi1,2†, M. Gironella3,4†, D. Herraez-Aguilar5, T. Betz6,7, F. Monroy8,9, M. Baiesi2,10, F. Ritort3,11*

Entropy production is the hallmark of nonequilibrium physics, quantifying irreversibility, dissipation,
and the efficiency of energy transduction processes. Despite many efforts, its measurement at
the nanoscale remains challenging. We introduce a variance sum rule (VSR) for displacement and force
variances that permits us to measure the entropy production rate s in nonequilibrium steady states.
We first illustrate it for directly measurable forces, such as an active Brownian particle in an optical
trap. We then apply the VSR to flickering experiments in human red blood cells. We find that s is
spatially heterogeneous with a finite correlation length, and its average value agrees with calorimetry
measurements. The VSR paves the way to derive s using force spectroscopy and time-resolved
imaging in living and active matter.

N
onequilibrium steady states (NESS) per-
vade nature, from climate dynamics (1)
to living cells and active matter (2). A
fundamental quantity is the entropy
production rate s at which energy is

dissipated to the environment, which is pos-
itive by the second law of thermodynamics
(3, 4). Entropy production measurements
remain challenging despite their relevance,
especially in microscopic systems with sto-
chastic and spatially varying fluctuations and
limited access to microscopic variables (5, 6).
The entropy production rate s determines
the efficiency of energy transduction in clas-
sical and quantum systems (7, 8), the ener-
getic costs and irreversible behavior of living
cells (9–12). It is an elusive quantity when
forces and currents are experimentally inac-
cessible. Bounds can be obtained from time
irreversibility (13, 14), the thermodynamic
uncertainty relation (15, 16), and coarse-grain-
ing (17–21). Most of these results provide lower
bounds that refine the second law of ther-
modynamics, s ≥ 0. However, the bounds are
often loose without upper limits and therefore
uninformative about the actual s. Alternative

methods that estimate s more precisely are
needed to determine dissipative processes in
the nanoscale.

Variance sum rule

We introduce a variance sum rule (VSR) to de-
rive s in experiments where a measurement
probe is in contact with a system in a NESS
(Fig. 1A). Dynamics are described by a Langevin
equation,x

�

tð Þ ¼ mFt þ
ffiffiffiffiffiffi
2D

p
ht, with probemo-

bility m, diffusivityD, and aGaussianwhite noise
term, ht. The total force acting on the probe
Ft ≡ Ft xtð Þ equals the sum of the force exerted
by the measurement device, FM

t , plus a probe-
system interaction, F I

t , Ft ¼ FM
t þ F I

t (arrows
in Fig. 1A). In most experimental settings, F I

t

remains inaccessible, so Ft and s cannot be
directly measured. Our approach focuses on
howobservablesQt on average spread in time, as
quantified by their variance VQ tð Þ ¼ Q2

t � Qt
2

with …ð Þ the dynamical average in the NESS.
The VSR is an equality for integrated quan-
tities in an arbitrary time interval (0, t), which
imposes a tight constraint on the fluctuations
in a stochastic diffusive system over the exper-
imental timescales. By integrating the Langevin
equation over the interval (0,t) and by taking
the variance of both sides, a time-preserved
identity can be obtained (materials and meth-
ods S1). The VSR for position and force fluc-
tuations reads

VDx tð Þ þ m2VSF tð Þ ¼ 2Dt þ S tð Þ ð1Þ

where the left-hand side includes the var-
iances of the displacements Dxt ¼ xt � x0, and
of time-cumulative forces [ SF tð Þ ¼ ∫

t

0
dsFs ].

The total variance VT tð Þ ¼ VDx tð Þ þ m2VSF tð Þ
equals the free diffusion term 2Dt plus a non-
equilibrium contribution S tð Þ denoted as ex-
cess variance

S tð Þ ¼ 2m∫
t

0
ds CxF sð Þ � CFx sð Þ½ � ð2Þ

that measures the breakdown of time-reversal
symmetry, with CAB sð Þ ¼ AsB0 � As B0 the
correlation function in the NESS. In equilib-

rium, S tð Þ ¼ 0 because of time-reversal sym-
metry. Figure 1B illustrates the VSR for a
generic NESS.
From the VSR, one can derive an equation

relating s to the variances of fluctuating var-
iables. By taking the time derivative twice of
Eq. 2 and evaluating it at t ¼ 0, one obtains a
formula for s that depends on the convexity
of the excess variance S tð Þ at t ¼ 0 (materials
and methods S2),

s ¼ v2

m
þ 1

4m
@2
t Sjt¼0 ð3Þ

where v ¼ �x
�

is the particle’s average velocity
and s is expressed in power units (e.g.,kBT=s).
By using Eq. 1 along with Eq. 3, we derive
the formula for the rate of entropy produc-
tion in terms of the static variance of the force
VF ¼ F2 � F 2 and the convexity of the mean-
squared displacement VDx at time 0

s ¼ v2

m
þ 1

4m
@2
t VDxjt¼0 þ

m
2
VF ð4Þ

To illustrate the VSR, we consider two ex-
amples of a NESS where Ft equals the force in
themeasurement device, Ft ¼ FM

t , and F I
t ¼ 0.

Methods

Experiments with colloidal particles (Figs. 1 and
2) were done in a miniaturized version of an
optical tweezers instrument described in (22).
Human red blood cells (RBCs) were obtained
by finger pricking of a healthy donor for the
RBC experiments. The phosphate-buffered sa-
line (PBS) solution contains 130 mM NaCl,
20 mMK/Na phosphate buffer, 10 mM glucose,
and 1 mg/ bovine serum albumin per milliliter
of solution. For optical tweezer (OT)-stretching
experiments, 4 ml of blood was diluted in 1 ml
of PBS. RBCswere treated and biotinylated for
OT sensing as described in (11). For optical mi-
croscopy (OM) measurements, the RBC pellet
obtained after centrifugation (5000g for 10 min
at 4°C) was resuspended (1:15) in PBS solu-
tion (23). Contact areas in OT experiments were
estimated using a multiscale feature extractor
based on a Gaussian pyramid representation
of the raw image followed by a Laplacian recon-
struction. For OT sensing, we used estimates
from (11).

Bead dragged through water

The first system is an optically trapped col-
loidal particle dragged through water (fric-
tion coefficient g ¼ 1=m) at speedv. The bead’s
dynamics can be analytically solved, and
the VSR (Eq. 1) verified (materials and meth-
ods S3). Equation 4 follows with S ¼ 0 and
s ¼ gv2, as expected. Figure 1C shows the ex-
perimental validation of the VSR (Eq. 1). The
right inset shows measurements of s� gv2

for several repetitions of the experiment and
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using Eq. 4, finding s� gv2 ¼ �5 T 7 kBT=s.
Notice that S ¼ 0 implies that the two right-
most terms in Eq. 4 are of equal magnitude
but opposite sign, compensating each other,
mVF ¼ � 1

2m @
2
t VDxjt¼0 ¼ kBT=tr > 0withtr ¼

g=k ¼ 0:35ms the bead’s relaxation time (k ¼
70 pN=mm being the trap stiffness). The value
mVF ∼ 3� 103 kBT=s is almost three orders of
magnitude larger than s� gv2 (T7 kBT=s).
The results S ¼ 0 and s ¼ gv2 are not re-

stricted to a harmonic well but hold for an ar-
bitrary time-dependent potential U x � vtð Þ .
This gives a reversed thermodynamic un-
certainty relation (16) for the work exerted on
the bead by the optical trap, Wt ¼ vSF tð Þ ¼
v∫t0dsFs, and an upper bound for s (materials
and methods S4),

s
kBT

≤
2Wt

2

t VW tð Þ ð5Þ

In Fig. 1C (left inset), we experimentally test
Eq. 5. The upper bound becomes tight for
t ≫ tr , the difference between two terms in
Eq. 5 vanishing as tr=t, as expected from the
steady-state fluctuation theorem for Gaussian
work distributions (4).

The stochastic switching trap

The second system we consider is the stochas-
tic switching trap (SST) (22), where an active
force is applied to an optically trapped bead
by randomly switching the trap position lt be-
tween two values (lþ; l� ) separated by Dl ¼
lþ � l� (Fig. 2A). Jumps occur at exponentially
distributed times with switching rates wþ;w�
at each position. The ratiow�=wþ ¼ q= 1� qð Þ
defines the probability q of the trap to be at
position lþ . Figure 2B shows the measured
bead’s position xt and force Ft ¼ k lt � xtð Þ
for three cases with q ¼ 1=2 and varying Dl.
The bead follows the movement of the trap
(top), quickly relaxing to its new equilibrium
trap position at every jump (force spikes,
bottom). Figure 2C shows the total variance,
VT tð Þ ¼ VDx tð Þ þ m2VSF tð Þ. VT deviates from
2Dt (dashed line) between 10�4 and 1 s, show-
ing that S≠0 is comparable to VT (notice the
log-log scale). The SST model is analytically
solvable (materials and methods S5), giving
expressions for VDx tð Þ;VSF tð Þ, and S tð Þ. For
the latter, we find

S tð Þ ¼ 4ðDlÞ2q 1� qð Þ

� a 1� e�wrtð Þ � a2 1� e�wtð Þ
1� a2

ð6Þ

with w ¼ wþ þ w� , a ¼ wr=w , and wr ¼
1=tr ¼ k=g (the bead’s relaxation rate for a
resting trap). In Fig. 2C, we test the VSR and
Eq. 6 for three NESS conditions. The inset
shows the two terms contributing to the total
variance VT. For large times, S converges to a

finite value, and VT merges with the equilib-
rium line 2Dt (black dashed line) when plotted
in log-log scale. Equations 3 and 6 yield the the-
oretical prediction (v ¼ 0)

sth ¼ ðkDlÞ2q 1� qð Þm w

wþ wr
ð7Þ

Figure 2D shows values of smeasured in SST
experiments with Dl ¼ 280 nm using Eq. 4.
Their average sexp ¼ 4:6 T 4� 103 kBT=s
agrees with the theoretical prediction (Eq. 7),
sth ∼ 5:3 � 103 kBT=s . Figure 2E compares
sexp with sth (Eq. 7) (black dashed line) for
varying Dl. Experiment and theory agree over
three decades of s.

Reduced VSR

Until now, we have considered the case of a
single degree of freedom where the total force
acting on the bead equals the measured force,
Ft ¼ FM

t and F I
t ¼ 0. For the case of multiple

degrees of freedom where positions and total
forces can be measured, Eqs. 1 and 3, can be
generalized (materials and methods S1 and
S2). Quite often, however, ameasurement probe
(atomic force microscope tip, microbead, etc.)
is in contact with a system in aNESS, such as a
biological cell with metabolic activity (Fig. 1A).
In this case, F I

t ≠ 0 is experimentally inac-
cessible, and Ft ¼ FM

t þ F I
t cannot be mea-

sured, making the VSR (Eq. 1) inapplicable.
Moreover, in many cases, only a spatial degree

of freedom xt is monitored, e.g., in particle-
tracking experiments (24, 25) or in detecting
cellular fluctuations (26, 27). To apply the VSR
in these situations, it is necessary to model the
NESS by making assumptions about the in-
teraction F I

t and the underlying degrees of
freedom. Specifically, for a linear-responsemea-
suring device (FM

t ¼ �kxt), a reduced VSR for a
single degree of freedom can be derived and
expressed in terms of variances related to the
position xt only. In these conditions, the dis-
placement variance,VDx, alongwith the variance
of Sx tð Þ ¼ ∫t0ds xs ,VSx tð Þ , satisfy (materials
and methods S6),

VDx tð Þ þ m2k2 VSx tð Þ ¼ 2Dt þ ~S tð Þ ð8Þ

Equation 8 is a general result which, how-
ever, does not permit one to derive a formula
for s like Eq. 3. Notice that ~S differs from S in
Eq. 1 and does not vanish in equilibrium. ~S
can be expressed in terms of the generic in-
teracting force F I

t ; see eq. S38 in materials
and methods. To derive s using Eq. 8, we
use a solvable model for the experiment and
a procedure consisting of the following steps:
(i) Analytically derive expressions for the ex-
cess variances, S tð Þ and ~S tð Þ for the model;
(ii) calculate sth from S tð Þ using Eq. 3; (iii)
fit the reduced VSR (Eq. 8) to the experimen-
tal data using ~S tð Þ from the model to extract
the model parameters; (iv) insert the pa-
rameters in the analytical expression for sth

Fig. 1. Variance sum rule
(VSR): Sketches and
experiments with a dragged
particle. (A) Experimental setup
for a NESS measured with
optical tweezers. (B) Illustration
of the VSR showing the differ-
ent terms in Eq. 1. (C) Experi-
mental test of the VSR for
an optically trapped bead
dragged through water at room
temperature (bead radius
R ¼ 1:5 mm, mobility m ¼
4� 104 nm/pN � s, speed v ¼
10 mm=s, gv2 ¼ 610 kBT=s). The

lower inset plots s� gv2 ¼
1
4m @

2
t VDxjt¼0þ m

2VF from

Eq. 4 for the experimental
realizations; the horizontal red
line shows the average over
all experiments [�5 T 7 kBT=s]
with one standard deviation
(red band). The black
dashed line is the theoretical

prediction s ¼ gv2. The upper
inset shows the experimental
test of the inequality (Eq. 5). Dashed vertical lines show the bead’s relaxation time tr.
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to derive s. The approach remains applicable
to a vast category of NESS whenever the in-
teracting force FI between the probe and NESS
is linear. This is a typical situation in meso-
scopic systems where fluctuations are small
in the linear response regime. A model for the
experimental system that includes the degrees
of freedom contributing most to s is required.
For instance, consider an active Brownian

particle (ABP) in an optical trap subject to a
random time-correlated active force F I

t ≡ f at

of amplitude D , f at ¼ 0, f at f as ¼ D2e� t�sj j=ta ,
with ta the active correlation time (Fig. 3A,
inset). The dynamics are described by the sto-
chastic equation

x
�

t ¼ �kmxt þ
ffiffiffiffiffiffi
2D

p
ht þ mf at ð9Þ

with k the trap stiffness, m the particle mo-
bility, and D ¼ kBTm the diffusion constant.
To test the reduced-VSR approach (Eq. 8) for
deriving s, we exploit the mapping of the ABP

(Eq. 9) to the SST model discussed previously
(Fig. 2A). The mapping follows by identify-
ing parameters D ¼ kDl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 1� qð Þp

, ta ¼ 1=w,
wr ¼ km fromwhich Eq. 7 follows [forq ¼ 1=2,
see also (28)]. We have used Eq. 8 to analyze
the data already used in the previous ap-
proach for the SST experiments (Fig. 2) with
~S tð Þ ¼ 2D2m2ta t � ta 1� e�t=ta

� �� �
(compare

eq. S37) where D and ta are fitting parameters.
Results are shown in Fig. 3A and residuals
in fig. S2A. Their values and s agree with the

Fig. 2. VSR and entropy production rate for experiments with a stochastic switching trap. (A) Schematics of the experiment. (B) Traces of position and
force for three Dl values [see legend in (C)]. (C) VSR (Eq. 1) and total variance VT: Symbols are experimental data, and lines represent the theory with known parameters

without fitting. The inset shows the different terms in the VSR. (D) Measurements of s for wþ ¼ w� ¼ 10 s�1 and Dl ¼ 280 nm; we show different experimental
realizations (squares), their average sexp and the theoretical value sth (Eq. 7). (E) s (red symbols) averaged over experimental realizations (orange circles) for
Dl = 18, 70, and 280 nm; black line is the analytical prediction (Eq. 7).

Fig. 3. Application of the reduced VSR to experiments (SST and RBCs) to extract the entropy production rate. (A) Test of Eq. 8 for the SST experimental
data, equivalent to the active ABP, in a harmonic trap (Eq. 9 and inset). Symbols are experimental values for ~VT tð Þ ¼ VDx tð Þ þ m2k2 VSx tð Þ, fitted to Eq. 8 for different
Dl (lines). Blue and red circles are the two contributions to ~VT tð Þ for Dl ¼ 18 nm. (B and C) Fits of the reduced VSR to ~VT tð Þ for the two-layer active model
(materials and methods S6). (B) Healthy RBCs in OT-stretching experiments at three trap stiffness values (Fig. 4A). To help visualization, the three different
~VT tð Þ values have been scaled with respect to a single ~D value; (C) Healthy (active) and passive RBCs in OT-sensing experiments (Fig. 4B).
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expected ones (table S1 and fig. S3A.). There-
fore, the reduced VSR (Eq. 8) permits us to infer
NESS parameters and s from xt measure-
ments only.

Red blood cells

Finally, we apply the reduced-VSR to the chal-
lenging case of human RBCs (29). RBCs me-
tabolize glucose into adenosine 5´-triphosphate
(ATP) via the glycolytic pathway, producing the
cell membrane’s active flickering with a con-
sequent entropy creation (11, 23, 30, 31). The
RBCmembrane is dynamically attached to the
spectrin cortex through multiprotein com-
plexes, which actively bind and unbind in the
phosphorylation step of the glycolytic pathway
(32). We have carried out experimental RBC

measurements using three techniques (Fig. 4).
Two of them use OTs in different setups: (i)
mechanical stretching of RBCs using beads
nonspecifically attached to themembrane with
different optical trap stiffness (OT stretching,
Fig. 4A); (ii) mechanical sensing of a biotinyl-
ated RBC membrane using streptavidin func-
tionalized beads using data from (11) (OT
sensing, Fig. 4B). The third technique measures
cell contour fluctuations by membrane flicker-
ing segmentation tracking of free-standing
RBCs using ultrafast OM (23, 33) (Fig. 4C). As
a first observation, a single-layer active model
(Eq. 9) with its ~S tð Þ in Eq. 8 does not describe
the experimental data. Instead, we consider
a two-layer model with one hidden position
variable for the active membrane–cortex in-

teraction that is linearly coupled to the mem-
brane outer layer x (probe) (materials and
methods S7). Similar active models have been
proposed in the study of hair-cell bundle dy-
namics (14, 34, 35). The two-layer activemodel
leads to a reduced VSR of the form (Eq. 8) that
fits the experimental data; the fitting proce-
dure is described in materials and methods
S8 and S9. Some fits of the reduced VSR are
shown in Fig. 3, B and C, and residuals of the
fits are shown in fig. S2, B to F.
Figure 4, D and E, show s values obtained

from OT-stretching data in the range of trap
stiffnesses kb ¼ 5� 10�2 � 7 � 10�4 pN/nm
and OT-sensing data withkb ∼ 2� 10�5 pN/nm
for healthy and ATP-depleted (passivated) RBCs.
For OT stretching, s increases as kb decreases

Fig. 4. Application of the reduced VSR to RBCs. (A) OT-stretching
experiments. Video image of stretched RBC and schematics of contact area
estimation (left); (right) three selected bead position traces at a high (blue),
medium (orange), and low (red) trap stiffness. (B) OT-sensing experiments.
Experimental setup from (11) (left) and tracking bead position traces for a
healthy (red) and passive (blue) RBC (right). (C) Ultrafast OM measurements:
Healthy RBC (upper images) and position traces (right) for three selected
pixels (50 nm by 50 nm) along the cell contour with high (red), medium (yellow),
and low (green) variance Vx; passive RBC (lower images) and cell contour
traces for three selected pixels (blue, right). The right images also show a color
variance map along the cell contour. The color bar denotes variance levels (red,
highest; blue, lowest). (D) s and position variance Vx measurements for OT

stretching (A) varying the trap stiffness kb from high values (5� 10�2 pN/nm,
rightmost points) to low values (7� 10�4 pN/nm, leftmost points) for healthy
RBCs. (E) s measurements for OT sensing for healthy (red symbols) and
passive (blue symbols) RBCs. (F) Colored s map for OM measurements along
the equatorial cell contour, as in (C), for a healthy RBC (circles) and a passive
RBC (diamonds). The radial distance represents s in arbitrary units. The
orange curve is the s-smoothed profile. (G) Scatter plot of s versus Vx for the
RBCs of (F), showing that they are partially anticorrelated. Orange circles are
s values averaged over windows of 50 nm2 in Vx. (H) Spatial correlation
functions for s and position x are measured along the cell contour. (I) Values
of sRBC compared to calorimetry estimates. For OT stretching, the dark (light)
red bar corresponds to the lowest (highest) trap stiffness.
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reachings ¼ 3 T 1ð Þ � 103 kBT=s averaged over
RBCs, for the lowest kb . This value is com-
patible with OT-sensing measurements, s ¼
2 Tð 1Þ � 103 kBT=s for healthy RBCs, which
is larger than for passive RBCs (red and blue
symbols in Fig. 4E). Moreover, s appears cor-
related with the variance of the flickering
signal as measured from the position traces,
Vx ¼ x2 � x2 (Fig. 4D). The apparent corre-
lation demonstrates that the probe stiffness
kb must be lower than the stiffness of the
RBC, kRBC ∼ 5� 10�3 pN/nm, to measure s;
otherwise, the active flickering of the RBC
membrane is suppressed by the passive fluc-
tuations of the bead. The correlation between
s and Vx is also explicitly shown in fig. S4,
where a color-map plot of the stiffness shows
that we can detect active flickering and s
only forkb < kRBC. Indeed, for the largest trap
stiffness kb ∼ 5� 10�2 pN/nm, one obtains
s ∼ 10 kBT=s (rightmost points in Fig. 4D), a
value almost constant if the RBC is stretched
up to 30 pN (fig. S4). The measured s is ex-
tensive with the bead–RBC contact area. Es-
timations from video images (Fig. 4A and
materials and methods) yield circular con-
tact areas of a ¼ 0:8 T 0:2 mm2 for both OT-
type experiments giving the heat flux density
js ¼ s=a ¼ 3 T 1ð Þ � 103 kBT= s � mm2ð Þ for OT
stretching at low kOT and js ¼ 1:8 T 0:6ð Þ�
103 kBT= s � mm2ð Þ for OT sensing. Such esti-
mations are subject to uncertainty in the
actual diameter and shape of the contact area.
Furthermore, we have analyzed the simulation
data of the OT-sensing experiments based
on the three-dimensional numerical model
of (11). The active and passive trajectories
for the sensing bead give s ∼ 104 kBT=s and
s ∼ 20 kBT=s, respectively (materials andmeth-
ods S10).
For the OM experiments, we show in Fig.

4C the color map of the position variance Vx

(healthy, top; passive, bottom), and in Fig. 4F
we show the color map of s (circles, healthy;
diamonds, passive), measured over pixels of
area 50 nm by 50 nm along the RBC contour.
For the healthy RBCs, both s andVx reveal an
RBC heterogeneous activity with average val-
ues s ¼ 7 T 1ð Þ � 103 kBT=s and Vx ¼ 400 T
10 nm2 . Molecular maps of heterogeneous
RBC deformability have been previously re-
ported (36). In contrast to OT experiments
(Fig. 4, D and E), for OM experiments s and Vx

are anticorrelated in the active regime (Pearson
coefficient ∼� 0:4 ) with high-variance re-
gions showing lower s (Fig. 4G). Results for
other RBCs are shown in fig. S5. This coun-
terintuitive result demonstrates the critical
role of the active timescale ta, which, for fixed D,
determines the active contribution to the total
variance, Vx ¼ Vpassive

x þ a tað Þs tað Þ (eq. S41a)
with a tað Þ positive and monotonically in-
creasing with ta and s tað Þ given in eq. S42. It
can be shown that in the high-activity limit

ta → 0, s tað Þ saturates to a finite value whereas
a tað Þ ∼ ta , decreasing Vx (fig. S6). We hy-
pothesize that the anticorrelation observed
in the s map derives from the highly hetero-
geneous ta (mean 0.05 s and standard devia-
tion 0.2 s) but nearly constant D (mean 4.4 pN
and standard deviation 0.2 pN) across all pixel
units. A constant-noise amplitude D with a
heterogeneous ta suggests a uniform density
of kickers but a heterogeneous ATP concen-
tration cATP across the RBC surface, which
modulates the ATP binding rate of the kickers,
t �1
a ∼ kbindº cATP.
The s map of a single RBC determines the

finite correlation length x for the spatially vary-
ing s field, a main prediction of active field the-
ories (37, 38) and stochastic hydrodynamics
(39). For healthy RBCs, x has been estimated
from the spatial correlation functionCss dð Þ, and
Cxx dð Þ of the traces at a curvilinear distance d
along the RBC contour, Fig. 4H. Functions can
be fitted to an exponential ∼exp �d=xð Þ with
xss ∼ 0:35 T 0:05mm and xxx ∼ 0:82 T 0:02 mm,
giving themedianx ∼ 0:6 T 0:2mm. This value
is larger than the lateral resolution of the
microscope (200 nm). The structure factor of
the s field along the cell contour shows a char-
acteristic peak at a domain length l ∼ 1:3 mm,
which is larger than xss , possibly due to the
heterogeneous cortex-membrane binding-
unbinding dynamics that produce differently
active s domains (materials and methods S11).
A two-layer active model in a ladder with an
interlayer coupling kxx further corroborates
the value obtained for xxx (materials and meth-
ods S12). The average heat flux density can
be estimated as js ¼ s=x2 ¼ 2 T 1ð Þ� 104 kBT=
s � mm2ð Þ with x2 the typical area of an entropy-
producing region. In summary, for an RBC
of typical surface area A ∼ 130 mm2, one ob-
tainssRBC ¼ js � A ¼ 2 T 1ð Þ � 105 kBT=s (OT
stretching, at lowest kb); sRBC ¼ 2 T 1ð Þ�
105 kBT=s (OT sensing); and sRBC ¼ 3 T 1ð Þ�
106 kBT=s (OM). These values are compatible
with calorimetric bulk measurements of packed
RBCs, sbulkRBC ¼ 2 T 1ð Þ � 106kBT=s (40, 41) and
are larger than indirect measures based on
the breakdown of the fluctuation-dissipation
theorem and effective temperatures (11, 42).
The significantly low s values obtained for
passive RBCs (blue data in Fig. 4, E to G and
I) validate our approach. Our sRBC ∼ 105�
106 kBT=s is higher than the values obtained
through information-theoretic measures based
on the breakdown of detailed balance (12, 14).
Intuitively, the VSR (Eqs. 1 and 8) sets an
energy balance between fluctuating positions
and forces, both conjugated energy variables,
a missing feature in the thermodynamic un-
certainty relation and coarse-graining mod-
els (43–45). In general, the VSR captures most
of s because sampling rates, 40 kHz for OT
stretching, 25 kHz for OT sensing, and 2 kHz
for OM, are higher than the frequency of the

active noise,∼100 s�1 for the RBC experiments
(tables S2 to S4).

Discussion

The agreement between mechanical and bulk
calorimetric estimates of the RBC metabolic en-
ergy turnover suggests that the heat produced
in the glycolytic pathway is tightly coupled with
membrane flickering due to active kickers.
Tight mechanochemical coupling is critical to
an efficient free-energy chemical transduction.
It has been observed in processive enzymes
(e.g., polymerases, transport motors, etc.) (46)
and in allosteric coupling in ligand binding
(47). Tightly coupled processes are related to
emergent cycles in cellular metabolism and
chemical reaction networks, particularly for
the relevant glycolytic cycle of RBCs (48). A
clarifying example of weak versus tight cou-
pling is the effect of the trap stiffness in de-
riving s (Fig. 4D). Unless the probe stiffness
is smaller than the RBC stiffness, the probe’s
passive fluctuations mask the system’s activ-
ity and s. In addition to molecular motors and
living cells, the VSR should apply to time-
resolved photoacoustic calorimetry (49) and
enzyme catalysis, where the effective diffusion
constant of the enzyme increases linearly with
the heat released (50), a consequence of Eq. 1.
Moreover, spatially resolved maps of partial
measurements of s for weak mechanochem-
ical coupling provide insight into the struc-
tural features underlying heat dissipation
in biological cells. In a wider context, the VSR
applies to nonlinear systems, from non-Gaussian
active noise to nonlinear potentials (materials
and methods S13). Finally, we stress that dif-
ferent models can fit the experimental data.
However, the power of the VSRs, Eqs. 1 and
8, is given by the constraint imposed by the
sum of variances over the experimental time-
scales. By fitting the experimental data to a
single function, the total variance VT tð Þ over
several decades, the contribution of dissipa-
tive processes over multiple timescales is ap-
propriately weighted in the sum balance. This
distinguishes our approach from plain model
fitting of the experimental power spectrum
to derive the model parameters (35) that may
lead to inaccurate estimations (materials and
methods S14). In this regard, the VSR links
modeling with energetics.
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