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Section S1. Theoretical Background

To start with the simplest case, consider a 1D network of discrete states i = 0, ...B, where at

t = 0 a system starts at some state in the network with i = A. Over time, the system can

transition between states by moving one step forward in the network to state i = A + 1 or by

moving one step backwards to state i = A − 1. Forward transitions occur with a rate uA and

backward transitions at a rate wA. We wish to obtain the first passage probability distribution

PB,A(t) that describes the probability that a system starting at state A will reach state B at time

t without first hitting state 0.

Supplementary Material

By considering the possible transitions between states, the temporal evolution of the proba-

bility distribution can be described by backward master equations as

∂PB,A(t)

∂t
= wAPB,A+1(t) + uAPB,A−1(t)− (uA + wA)PB,A(t) (1)



with boundary conditions

PB,0(t) = 0, for all t, (2)

PB,B(t) = δ(t), (3)

PB,A(0) = 0, for 1 ≤ A ≤ B − 1 (4)

To solve this equation a Laplace transform, defined as

P̃B,A(s) =

∫ ∞
0

exp(−st)PB,A(t)dt (5)

is performed, allowing for Eq. 1 to be written as

P̃B,A(s) = wAP̃B,A+1(t) + uAP̃B,A−1(s)− (uA + wA)P̃B,A(s) (6)

From here, precise details of the solution depend upon the nature of the system (24), for exam-

ple, whether the rates of transition between states are all the same or vary depending upon which

state the system is in. However, in all cases, irrespective of these details, a final expression of

the form

PB,A(t) ∝ tB−A−1 (7)

is obtained. At early times this term dominates, leading to, on a log-log scale, the key result of

lnPB,A(t) ' (B − A− 1) ln t+ C (8)

corresponding to Eq. 1 of the main text. Physically, the implication of this expression is that, at

early times, only the fastest events are observed in which the system moves sequentially from



the initial state to the final state via every intermediate state. In this regime, the probability of

transitioning from one intermediate state to the next intermediate state is proportional to the

time. For the pathway with m = B −A− 1 intermediate states, this will lead to the power-law

dependence as described above.

Now consider a general system that involves multiple discrete states. Processes taking place

in this system can be viewed as a multi-dimensional network of transitions between these dif-

ferent states. Here, for a process of interest in which a system moves from state A to state B

many pathways may connect the initial and final states. As such, in analyzing events that start

at the state A and finish at B, it is clear that events corresponding to all of these pathways will

be included. However, the time to travel along each possible pathway in the network of discrete

states is not the same. In considering short times, only events along the shortest pathway i.e.

with the fewest number of intermediate states, will be observed because they will be the fastest.

This means that at short times we are probing effectively a one-dimensional part of the system,

corresponding to the shortest pathway. While the exact range of times over which these shortest

events occur will depend on transition rates it can be shown that this short-time regime will

always exist (34). As such, the method can also be successfully used for analysis of complex

multi-dimensional systems.

Section S2. DNA hairpin sequences

Details of the fabrication of DNA hairpin structures have previously been reported (32, 33, 36,

37), including the three state structure used in this work (32). The four state hairpin is built

from two strands. The first has the following sequence:

AATAGAGACACATATATAATAGATC

TTCGCACTGACTGACGAGCATCACA



AAAATCGACGCTCAAGTCAGAGGTG

GCGAAACCCGACAGGACTATAAAGA

TACCAGGCGTTTCCCCCTGGAAGCT

CCCTCGTGCGCTCTCCTGTTCCGAC

TGTGGTGTAGTCTTGGCAGGAGCTA

AACACGAAACGGGAATCACTTGTAC

CGGCTATCCGAGATGTTGACCTTCG

ACAGAAATTGGCCCTCATAACCCCC

ATGAAAAGCGCATTAAGCCTAGAGG

CGTAAGAACTGGACGTTTGATCGCG

GTATATTGCTGAGTATGCACGTCAC

TTAGTAACTAACATGATAGTTAC + loop (TTTT)

The second strand is the complementary strand to this sequence.

Particle trajectories are acquired from videos using standard image analysis techniques (38).

As datasets are acquired via an automated process using the optical tweezers, large datasets of

trajectories are obtained for each potential landscape (500-4000 trajectories corresponding to

more than 105 particle positions) (28, 39).

Section S3. Analysing particle trajectories and establishing the
slope of the linear regime

To calculate the first-passage time distributions in our colloidal system, data is first split into

subsets. Each subset corresponds to the particle starting from a different potential minimum,

and thus position within the channel. The value of m iattached to each distribution indicates the

lowest number of minima that must be crossed by the particle to exit from the channel, from

its initial position (a minima in the channel) to its final position (the left or right reservoir).
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Figure S1: Typical trajectories contributing to first-passage time distributions. Trajectories
shown contribute tom = 0, 1, 2, 3 in a colloidal system with imposed potential minima of depth
∆U ∼ 3 kBT . Also shown is the corresponding potential landscape U(x). Dashed lines indicate
the boundaries between minima and solid grey lines the left and right channel exits. For each
trajectory the starting position is marked as a black cross and the final position by coloured
stars.

Typical particle trajectories, as used to calculate the distributions shown in Fig. 2A and B in

the main manuscript, are shown in Fig. S1. Here, all trajectories correspond to escape to the

left reservoir. The corresponding potential landscape, U(x), for the system is also shown, with

potential minima depth ∆U ∼ 3 kBT . Black crosses indicate the starting position of the particle

in each trajectory, coloured stars the final position and black circles the position of the particle

at which it crosses the left boundary, which is used to determine the first-passage time. Here,

m = 0 corresponds to crossing 0 minima or one boundary to move from the initial state (minima

0) to final state (left reservoir), m = 1 to crossing 1 minima or two boundaries from the initial

state (minima 1) to final state (left reservoir), m = 2 to crossing 2 minima or three boundaries

from the initial state (minima 2) to final state (left reservoir) and m = 3 to crossing 3 minima

or two boundaries from the initial state (minima 3) to final state (left reservoir).

The scaling behaviour of the short-time regime is determined simply by inspection of the



distributions. As a first step, the distribution for a particular imposed potential is compared

to that with no imposed potential (corresponding to free diffusion for the colloidal system as

shown in section S4). This allows for the change in shape of the distribution to a more linear

behaviour caused by the presence of the potential minima to be identified. Having thereby

identified the linear regime of the distribution, we compare this region of the data on a log-log

scale to lines of integer slope to determine the scaling that best describes it.

Section S4. First-passage time distributions with no imposed
potential landscape

Fig. S2A and B show the first-passage time distributions, P (tFPT), for a system with no im-

posed potential, where the particle is allowed to diffuse freely before exiting the channel. Here,

the distributions have been built from subsets of trajectories that start from different regions of

the channel. More specifically, subsets correspond to particles starting from each of four equal

regions in x, with m = 1, 2, 3, now indicating exit of the particle by crossing at least 1, 2 or 3

regions respectively. These distributions act as a control against which measurements with im-

posed potential minima can be directly compared. In Fig. S2 the distributions with no imposed

potential landscape on both a (A) linear and (B) log-log scale exhibit the expected qualitative

behavior for escape from the channel from regions at increasingly large distances from the exit,

namely a broadening and a shift in the peak to larger times. On a linear scale the distribution

with no-imposed potential landscape looks qualitatively very similar to the behaviour of the

first-passage time distributions with an imposed potential landscape (shown for comparison in

Fig. S2C). On a log-log scale, however, the distributions with no potential landscape in (B) do

not show the linear behaviour at short-times – corresponding to the short-time power law scal-

ing of Eq. 1– that is evident in the short-time regime of the distributions with imposed potential

minima in (D). The short-time behaviour of the distributions with no imposed potential is in
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Figure S2: First-passage time distributions of colloidal particles with and without an im-
posed potential landscape. Distributions in (A) and (B) show P (tFPT) on a linear and log-log
scale for freely diffusing particles i.e. with no imposed potential landscape. Dashed lines in
B show the theoretical prediction for the first-passage time distribution of a particle in a sys-
tem with no imposed potential landscape. For comparison, distributions in (C) and (D) show
P (tFPT) on a linear and log-log scale for particles diffusing over a potential landscape com-
posed of four potential minima with depth ∆U ∼ 3kBT (from main manuscript Fig. 2A and
B). Dashed lines indicate the predicted power-law scaling according to Eq. 1 and the legend in
panel A applies to all panels.
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Figure S3: The very short-time regime of the first-passage time distribution. (A) Com-
parison of the very short time regime of the first-passage time distributions with no imposed
potential and with ∆U ∼ 3kBT . Data is shown separately in Fig. S2. Dashed lines indicate the
predicted power-law scaling according to main manuscript Eq. 1 as shown in Fig. S2D. (B) The
same data over a larger range of times. Vertical lines indicate the experimental time resolution
and an estimate of the minimum escape time for the system.

fact in good agreement with theoretical predictions for the first-passage time distribution of a

particle undergoing free diffusion, shown in Fig. S2B as black dashed lines. These curves are

calculated as a numerical solution of the Fokker-Planck equation with the experimental diffu-

sion coefficient, channel length and measured probability distribution of starting positions as

input. Importantly, the agreement with the expected theoretical behaviour further emphasises

the absence of a linear regime in the data with no imposed potential.

To further highlight the different behaviour seen with and without an imposed potential

more explicitly, Fig. S3A shows a direct comparison of the short time regime of the first-passage

time distributions shown in Fig. S2. Here, black dashed lines indicate the predicted power-law

scaling according to Eq. 1 and the difference in qualitative behaviour of the distributions at

short-times can clearly be seen. Fig. S3A also allows for the more similar behaviour of the

distributions at very short times to be considered. To achieve this, data for ∆U ∼ 0 kBT has



been renormalised (leading to a shift downwards) to overlap with the data for ∆U ∼ 3 kBT .

This allows for the shape of the distributions in this limit to be more easily compared. Fig. S3A

clearly shows that at very short times i.e. for times at which there is a deviation from the power

law scaling for the data with imposed potential landscape, the shape of the distributions with an

imposed potential landscape coincides with that of the distributions for the free diffusion case.

This suggests that these very short time events correspond to effectively ‘ballistic’ motion in the

direction of the exit with particles moving so rapidly across the potential landscape that they do

not have enough time to feel the potential minima.

Furthermore the very short time deviations highlight the approximate nature of the modeling

of our experimental system, which has a continuous potential landscape, in terms of a Markov

Jump process, as in the theoretical description of movement through a discrete network. This

assumption is only valid in the limit in which there is separation of timescales such that the

time spent within a minimum is much longer than the time spent moving between the minima

and thus is only valid for sufficiently deep minima. Indeed, alternative theoretical approaches

that more explicitly consider continuous diffusion processes find different scaling behaviour at

short-times (as discussed in (40–42) ) and so we note our observation of these very short time

deviations may reflect the different behaviour associated with a continuous landscape.

In Fig. S3B we show the same data but now over a wider range of times. Here we also

indicate as vertical lines two key timescales for the system. The first is the experimental time

resolution of ∼ 0.0167s for the frame rate of 60 fps. It is clear from Fig. S3B that the time

resolution is around an order of magnitude smaller than the shortest events. This supports our

conclusion that the deviations from the linear scaling at short times do not arise from events that

are missed due to the finite time resolution.

Indicating the time resolution also clearly shows that there is an initial period of time for

which no first passage events occur. This is because the particle must diffuse a certain distance



to the exit before it can escape, and the length of time associated with this diffusion corre-

sponds to the region between the two vertical lines in Fig. S3B. Here, the second vertical line,

marked τ1, shows a theoretical estimate of the shortest time at which it is probable to observe an

event. To estimate τ1, we first obtain the 1D probability distribution of particle displacements,

P (∆x, t), for a particle with the diffusion coefficient measured in our experiments. Multiplying

this probability distribution by the number of experimental trajectories and then integrating the

area under the distribution with ∆x > L/4, where L is the channel length, provides an estimate

of the number of particles that would display this displacement after time t. As the value of

t increases, the probability of finding a particle at a larger distance from its initial position in-

creases, leading to a broader distribution. The value of τ1 corresponds to the time required for

the distribution to have become sufficiently broad that this integral is approximately equal to 1,

i.e. for there to be an appreciable probability that a particle will diffuse far enough to escape.

This estimate is in good agreement with the shortest events observed in our experiment.

Section S5. Linking the length of the linear regime to minima
depth

In Fig. 2D of the main manuscript we observe a linear increase in ∆t, the length of the power-

law scaling regime of P (tFPT ), with exp(∆U/kBT ). Furthermore, the gradient of ∆t against

exp(∆U/kBT ) increases with m. Note that we do not include data for m = 3 at ∆U ∼ 5kBT

as the very long times associated with this distribution mean we have insufficient statistics to

accurately estimate the short-time regime.

To rationalise this we consider the main features of the theoretical model used to derive

Eqn. 1 from the main manuscript (24). The theoretical model follows Kramer’s theory, which

assumes that transitions between the states in the network involve only barrier-crossing, with

barriers that are large comparable to kBT . The short-time regime of the distribution reflects



movement of the particle along the single shortest pathway, i.e. directly towards the exit cross-

ing intermediate barriers in only one direction. The time required to follow this shortest path

will therefore be related to the number of barriers crossed multiplied by the time necessary to

cross a barrier. The time for barrier crossing is proportional to exp(∆U/kBT ). As such it is

clear that ∆t should scale with exp(∆U/kBT ). Furthermore, as the number of minima that

must be crossed increases, the time to follow the shortest path will also increase, rationalising

the increase in gradient in Fig. 2D with increasing value of m.

Having established the dependence of the length of the linear regime on the potential minima

depth, this relationship can be used to determine the effective value of ∆U/kBT in the molecular

hopper system. To compare the length of the linear regime in different systems, however, the

differing typical time and lengthscales in each system must be taken into account. To account

for this the plot of ∆t against exp(∆U/kBT ) in Fig. 2D is expressed as:

∆t ∼ Cmt0 exp(∆U/kBT ) (9)

where Cm is a constant, dependent onm, and t0 is the time to move across a state in the absence

of a potential minima. This can be rearranged as

∆U

kBT
∼ ln

(
∆t

t0Cm

)
. (10)

For the colloidal system, the m = 1 line in Fig. 2D has a gradient Cmt0 = 0.0658. The typical

diffusion coefficient of a colloidal particle in the channel is approximately 0.25 µm2s−1 and the

distance between the potential minima is 1.2 µm. As such, the typical timescale for moving

between states in the absence of an imposed potential landscape, t0 ∼ 3 s. This allows for the

constant Cm = 0.022 for the m = 1 process to be obtained.

For the nanoscale molecular hopper system, the distance between states is approximately

0.68 nm and the typical timescale to move between states in the absence of footholds is ap-

proximately 5 µs (43). Furthermore, in the m=1 distribution for the hopper (main manuscript



Fig. 3B), the length of the linear regime, ∆t = 2.5s. Substituting these values for ∆t, t0 and

Cm into Eq. (2) allows ∆U to be calculated for the molecular hopper as approximately 17 kBT .
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